

an Open Access Journal by MDPI

Atmospheric Radon Concentration Monitoring and Measurements

Guest Editors:

Prof. Dr. Qiuju Guo

Laboratory of Radiation Protection and Environmental Radioactivity, School of Physics, Peking University, Beijing, China

Dr. Miroslaw Janik

The National Institutes for Quantum and Radiological Science and Technology (QST), Center for Advanced Radiation Medicine, Chiba 263-8555, Japan

Deadline for manuscript submissions:

closed (31 December 2023)

Message from the Guest Editors

Radon is a naturally occurring noble radioactive gas, which has been epidemiologically approved to be one of the leading causes of lung cancer for the general population. In addition, its unique physical and chemical characteristics make it an effective tracer gas in many research fields, such as atmospheric transport and mixing processes, simulation and estimation of the fluxes of greenhouse gasses. So, radon has long been a species of interest in radiological protection, air quality and climate change research communities worldwide.

This Special Issue aims to collect recent comprehensive achievements related to all aspects of atmospheric radon and thoron research, level and variation of radon and thoron concentration, monitoring and measurement methods and techniques, models for radon applications as a tracer in atmospheric and environmental science, etc. A traceability system should also be included for measurement quality control.

We look forward to your submissions. The Special Issue will promote the development of the research field of atmospheric radon.

an Open Access Journal by MDPI

Editor-in-Chief

Prof. Dr. Ilias Kavouras

Environmental, Occupational, and Geospatial Health Sciences, CUNY School of Public Health, New York, NY 10027, USA

Message from the Editor-in-Chief

Continued developments in instrumentation and modeling have driven atmospheric science to become increasingly more complex with a deeper understanding of concepts, mechanisms, and interactions. This is the field that innovation built and it has led to a better appreciation for the complexity with atmosphere. Human life is intertwined in this complexity as we strive to better understand our atmosphere. Climate change is constantly stretching the limits of our thinking and forcing new ideas and concepts to be played out. Welcome to the Anthropocene!

Author Benefits

Open Access: free for readers, with article processing charges (APC) paid by authors or their institutions.

High Visibility: indexed within Scopus, SCIE (Web of Science), Ei Compendex, GEOBASE, GeoRef, Inspec, CAPlus / SciFinder, Astrophysics Data System, and other databases.

Journal Rank: CiteScore - Q2 (Environmental Science (miscellaneous))

Contact Us