Soil Erosion: Dust Control and Sand Stabilization

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Earth Sciences".

Deadline for manuscript submissions: closed (30 June 2020) | Viewed by 29816

Printed Edition Available!
A printed edition of this Special Issue is available here.

Special Issue Editor


E-Mail Website
Guest Editor
Department of Environmental, Geoinformatics, and Urban Planning Sciences, Ben-Gurion University of the Negev, Beer Sheba 8410501, Israel
Interests: geomorphology; soil erosion; aeolian processes; dust sources and emissions; arid soils under human activities; sand transport and land formation; boundary-layer wind tunnel experiments; dust storms and air pollution
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Soil erosion by wind is significant to the Earth systems and the quality of human life. Climate change of drier conditions is associated with desertification and, thus, increased dust emission from soils and sand-dune transport. Moreover, many soils throughout the world are subjected to the impacts of rapid population growth and extensive land uses, including agricultural fields, grazing areas, unpaved roads, mines and quarries, waste soils, active sand dunes and sand sheets, and more. There is a strong interest in understanding the factors and processes of soil erosion by wind as well as in developing and applying methods to control dust emission from soils and to stabilize active sands. This Special Issue on soil erosion invites novel and original articles based on physical and chemical theories, field and laboratory experimental, soil analyses, and/or statistical and mathematical modeling that advance our knowledge on dust control and sand stabilization.   

Topics of interest include, but are not limited to:

  • Applications of natural and synthetic materials to reduce dust emission;
  • Development of materials and methods for dust control and sand stabilization;
  • Distribution of atmospheric particulate matter (PM) from dust sources;
  • Integration of experimental methods and modeling in dust emission;
  • Impacts of dust control applications on the soil quality and the environments;
  • Quantification of the efficiency in dust control and sand stabilization applications.

Prof. Itzhak Katra
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Aeolian processes
  • Arid areas
  • Dust emission
  • Dust sources
  • Environamtal pollution
  • Infrastructures
  • Human activities
  • Particle size distribution
  • Polymers
  • Sand dune
  • Sand transport
  • Soil erosion
  • Soil physics
  • Soil quality
  • Topsoil

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review, Other

3 pages, 146 KiB  
Editorial
Soil Erosion: Dust Control and Sand Stabilization
by Itzhak Katra
Appl. Sci. 2020, 10(22), 8044; https://doi.org/10.3390/app10228044 - 13 Nov 2020
Cited by 2 | Viewed by 1578
Abstract
This Special Issue on soil erosion invites novel and original articles based on physical and chemical theories, field and laboratory experimental, soil analyses, and/or statistical and mathematical modeling that advance our knowledge on dust control and sand stabilization. Full article
(This article belongs to the Special Issue Soil Erosion: Dust Control and Sand Stabilization)

Research

Jump to: Editorial, Review, Other

11 pages, 7492 KiB  
Article
Wind Tunnel Measurements of Surface Shear Stress on an Isolated Dune Downwind a Bridge
by Wenbo Wang, Hongchao Dun, Wei He and Ning Huang
Appl. Sci. 2020, 10(11), 4022; https://doi.org/10.3390/app10114022 - 10 Jun 2020
Cited by 7 | Viewed by 2349
Abstract
As part of a comprehensive environmental assessment of the Dun-Gel railway project located in Dunhuang city, Gansu Province, China, a wind tunnel experiment was proposed to predict surface shear stress changes on a sand dune when a bridge was built upstream it. The [...] Read more.
As part of a comprehensive environmental assessment of the Dun-Gel railway project located in Dunhuang city, Gansu Province, China, a wind tunnel experiment was proposed to predict surface shear stress changes on a sand dune when a bridge was built upstream it. The results show that the length of the wall shear stress shelter region of a bridge is about 10 times of the bridge height (H). In the cases that the interval of the bridge and sand dune (S) is less than 5 H, normalized wall shear stress on the windward crest is decreased from 1.75 (isolated dune) to 1.0 (S = 5.0 H, measured downwind bridge pier) and 1.5 (S = 5.0 H, measured in the middle line of two adjacent bridge piers). In addition, the mean surface shear stress in the downstream zone of the sand dune model is reduced by the bridge pier and is increased by the bridge desk. As for the fluctuation of surface shear stress ( ζ ) on the windward crest, ζ decreases from 1.3 (in the isolated dune case) to 1.2 (in the case S = 5.0 H, measured just downwind the pier) and increases from 1.3 (in the isolated dune case) to 1.6 (in the cases S = 5.0 H, in the middle of two adjacent piers). Taking the mean and fluctuation of surface shear stress into consideration together, we introduce a parameter ψ ranging from 0 to 1. A low value indicates deposition and a high value indicates erosion. On the windward slope, the value of ψ increases with height (from 0 at toe to 0.98 at crest). However, in the cases of S = 1.5 H, ψ is decreased by the bridge in the lower part of the sand dune at y = 0 and is increased at y = L/2 compared with the isolated dune case. In other cases, the change of ψ on the windward slope is not as prominent as in the case of S = 1.5 H. Downstream the sand dune, erosion starts in a point that exists between x = 10 H and 15 H in all cases. Full article
(This article belongs to the Special Issue Soil Erosion: Dust Control and Sand Stabilization)
Show Figures

Figure 1

9 pages, 1847 KiB  
Article
Biostimulation in Desert Soils for Microbial-Induced Calcite Precipitation
by Hadas Raveh-Amit and Michael Tsesarsky
Appl. Sci. 2020, 10(8), 2905; https://doi.org/10.3390/app10082905 - 23 Apr 2020
Cited by 29 | Viewed by 2747
Abstract
Microbial-induced calcite precipitation (MICP) is a soil amelioration technique aiming to mitigate different environmental and engineering concerns, including desertification, soil erosion, and soil liquefaction, among others. The hydrolysis of urea, catalyzed by the microbial enzyme urease, is considered the most efficient microbial pathway [...] Read more.
Microbial-induced calcite precipitation (MICP) is a soil amelioration technique aiming to mitigate different environmental and engineering concerns, including desertification, soil erosion, and soil liquefaction, among others. The hydrolysis of urea, catalyzed by the microbial enzyme urease, is considered the most efficient microbial pathway for MICP. Biostimulated MICP relies on the enhancement of indigenous urea-hydrolyzing bacteria by providing an appropriate enrichment and precipitation medium, as opposed to bioaugmentation, which requires introducing large volumes of exogenous bacterial cultures into the treated soil along with a growth and precipitation medium. Biostimulated MICP in desert soils is challenging as the total carbon content and the bacterial abundance are considerably low. In this study, we examined the biostimulation potential in soils from the Negev Desert, Israel, for the purpose of mitigation of topsoil erosion in arid environments. Incubating soil samples in urea and enrichment media demonstrated effective urea hydrolysis leading to pH increase, which is necessary for calcite precipitation. Biostimulation rates were found to increase with concentrations of energy (carbon) source in the stimulation media, reaching its maximal levels within 3 to 6 days. Following stimulation, calcium carbonate precipitation was induced by spiking stimulated bacteria in precipitation (CaCl2 enriched) media. The results of our research demonstrate that biostimulated MICP is feasible in the low-carbon, mineral soils of the northern Negev Desert in Israel. Full article
(This article belongs to the Special Issue Soil Erosion: Dust Control and Sand Stabilization)
Show Figures

Figure 1

33 pages, 3988 KiB  
Article
Can Vegetation Removal Successfully Restore Coastal Dune Biodiversity?
by Tania Leah Fairfax Bird, Amos Bouskila, Elli Groner and Pua Bar Kutiel
Appl. Sci. 2020, 10(7), 2310; https://doi.org/10.3390/app10072310 - 28 Mar 2020
Cited by 13 | Viewed by 4291
Abstract
Coastal dune habitats have been declining globally over the last several decades due to rapid urbanization. Within remaining dune systems, dune fixation has resulted in further losses of mobile dunes with negative impacts on their associated species. Some studies suggest vegetation removal can [...] Read more.
Coastal dune habitats have been declining globally over the last several decades due to rapid urbanization. Within remaining dune systems, dune fixation has resulted in further losses of mobile dunes with negative impacts on their associated species. Some studies suggest vegetation removal can initially promote habitat heterogeneity, and increase availability of suitable habitats for psammophile, xeric and endemic mobile dune species, but longer-term responses are generally unknown. We investigated the temporal trends of four taxonomic groups to determine the effect of vegetation removal on dune assemblages over a 12-year period at an LTER site. Three different forms of removal are investigated here—removal in a grid form on fixed dunes, removal of the wind-facing slope vegetation on semi-fixed dunes and opportunistic off-road driving on disturbed dunes. Results were varied across taxa, highlighting the need for multi-taxa monitoring in conservation and restoration management. Overall, fixed dune treatment had very little effect, while a stronger response was found in semi-fixed treatments in particular for mobile dune indicator species, which showed evidence of recolonization within a few years following treatment. Disturbed dunes were most similar to mobile dunes for animal taxa indicating that pulse removal may not be as effective as continuous press disturbance. Nevertheless, a less destructive form of disturbance such as re-introduction of grazing might be preferable and requires further investigation. Full article
(This article belongs to the Special Issue Soil Erosion: Dust Control and Sand Stabilization)
Show Figures

Graphical abstract

21 pages, 6964 KiB  
Article
Characteristics of Aeolian Dune, Wind Regime and Sand Transport in Hobq Desert, China
by Hui Yang, Jiansheng Cao and Xianglong Hou
Appl. Sci. 2019, 9(24), 5543; https://doi.org/10.3390/app9245543 - 16 Dec 2019
Cited by 7 | Viewed by 2944
Abstract
A systematic study of the wind regime characteristics in a region can not only accurately grasp the dynamic factors of the development of aeolian geomorphology, but also provide a scientific basis for the prevention and treatment of regional sand disasters. Taking the Hobq [...] Read more.
A systematic study of the wind regime characteristics in a region can not only accurately grasp the dynamic factors of the development of aeolian geomorphology, but also provide a scientific basis for the prevention and treatment of regional sand disasters. Taking the Hobq Desert as the study area, the basic characteristics of dune are analyzed by using remote sensing images. Based on the annual meteorological data of six meteorological stations from 2009 to 2018, the spatial and temporal distribution characteristics of wind speed were obtained. With the daily wind data of three stations from 2009 to 2018, we have figured out the wind regime and sand transport characteristics of the Hobq Desert. The results show that the sand dune height of the Hobq Desert ranges large, the highest height is 5010 m and the lowest is 10 m. It decreases gradually from the west to the east. The height of dune mainly distributed below 1500 m, followed by 1500–2000 m. Migratory sand dunes in Hobq Desert accounts for 51.8% and is mainly distributed in the west of the desert. The distribution area of fixation sand dunes in Hobq Desert is the least, accounting for 8.3%. The migratory dune pattern is trellis dune, semimigrated dune and semifixed dune patterns include honeycomb dune, parabolic duneand brush dune, and fixation dune pattern is grass dune. Annual wind speed was greatest in the southeast and decreased moving to the northwest. The dominant wind direction was W and SW from 2009 to 2018 in the Hobq Desert, the average wind speed of the prevailing winds mainly distributed at 4–8 m/s. The frequency of wind speed exceeding 10 m/s is very low, with a maximum value of 10% or below. There is a low energy wind environment in the Hobq Desert, with intermediate annual directional variability and obtuse or acute bimodal wind regime. The resultant drift direction (RDD)at Dongsheng station was relatively constant from 2009 to 2018, it was about 350°. RDD differed significantly at Baotou and Linhestations were 181 ± 169° and 231 ± 121°, respectively.The relationship between drift potential (DP) and the average and maximum wind speed was expressed as a power function. DP was strongly correlated with them. There is no significant correlated between the temporal changes in DPandprecipitation and temperature from 2009 to 2018 in the Hobq Desert. Full article
(This article belongs to the Special Issue Soil Erosion: Dust Control and Sand Stabilization)
Show Figures

Figure 1

15 pages, 13372 KiB  
Article
Using Post-Harvest Waste to Improve Shearing Behaviour of Loess and Its Validation by Multiscale Direct Shear Tests
by Wen-Chieh Cheng, Zhong-Fei Xue, Lin Wang and Jian Xu
Appl. Sci. 2019, 9(23), 5206; https://doi.org/10.3390/app9235206 - 29 Nov 2019
Cited by 17 | Viewed by 3055
Abstract
Loess and PHW (post-harvest waste) are easily accessible in the Chinese Loess Plateau and have been widely applied to construction of residential houses that have been inhabited for decades under the effect of freeze-thaw cycles. Although many researchers have recognised that the addition [...] Read more.
Loess and PHW (post-harvest waste) are easily accessible in the Chinese Loess Plateau and have been widely applied to construction of residential houses that have been inhabited for decades under the effect of freeze-thaw cycles. Although many researchers have recognised that the addition of fibers to loess soil is effective in preventing soil erosion and stabilising slopes, a consensus on this claim has not been reached yet. This study investigates the shearing behaviour of the loess-PHW mixture using small-scale and large-scale direct shear (SSDS and LSDS) tests. Four typical shear stress versus horizontal displacement curves from the multiscale direct shear tests are recognised where one is featured with strain-softening shape and the other three with a strain-hardening shape. Two out of the three curves with strain-hardening shape show a gradual increase in the shear stress at additional and larger displacements, respectively, in which some factor starts to have an influence on the shearing behaviour. Comparisons of the shear strength measured in SSDS and LSDS are made, indicating that there are differences between SSDS and LSDS. The effect of PHW addition on shear strength is assessed in order to determine the optimal dosage. The improvement of shear strength is attributed to the effect of particle inter-locking, resulting from the addition of PHW to loess specimens, and takes effect as the water content surpassed a threshold, i.e., >14%, that facilitates particle rearrangement. Particle-box interaction behaviour is assessed at the same time, and the findings satisfactorily address the main cause of the gradual increase in shear stress following the curve inflection point. The improved shearing behaviour proves the ability of the loess-PHW mixture to resist the seepage force and consequently stratum erosion. Full article
(This article belongs to the Special Issue Soil Erosion: Dust Control and Sand Stabilization)
Show Figures

Figure 1

12 pages, 3087 KiB  
Article
Comparison of Diverse Dust Control Products in Wind-Induced Dust Emission from Unpaved Roads
by Itzhak Katra
Appl. Sci. 2019, 9(23), 5204; https://doi.org/10.3390/app9235204 - 29 Nov 2019
Cited by 19 | Viewed by 3224
Abstract
Surfaces of unpaved roads are subjected to dust PM10 (particulate matter < 10 µm) emission by wind process regardless of vehicles (wheels) transport. However, there is little quantitative information on wind-induced dust emission from unpaved roads and the efficiency of diverse dust control [...] Read more.
Surfaces of unpaved roads are subjected to dust PM10 (particulate matter < 10 µm) emission by wind process regardless of vehicles (wheels) transport. However, there is little quantitative information on wind-induced dust emission from unpaved roads and the efficiency of diverse dust control products. The study aimed to fill this clear applied scientific gap using wind-tunnel experiments under laboratory and field conditions. The wind-tunnel complies with aerodynamics requirements and is adjusted to dynamic similitude by appropriately scaling all variables that affect dust transport. The results of the control sample (no-treatment) clearly show that dust emission by wind from unpaved road could be a substantial contribution to mass transfer and air pollution, and thus should be considered. Diverse dust control products of synthetic and organic polymers (Lignin, Resin, Bitumen, PVA, Brine) were tested. In the first stage, the products were tested under controlled-laboratory conditions. The results enabled quantitative assessment of the product efficacy in wind erosion without the impact of vehicle transport. In the second stage, the products were tested in field experiment in an active quarry, in which the products were applied on plots along the road. The field experiment was conducted after transportation of the quarry-haul trucks in two time points: several days after the application, and several weeks after the application. The results show that in most of the plots the dust emission increases with the wind velocity. PM10 fluxes from the road surface in each plot were calculated to determine the effectiveness of the dust control products. Some products significantly reduced dust emission from quarry roads, especially when using the Hydrous magnesium chloride (Brine). Additional experiments revealed that such Brine can be applied with reduced amounts and still keeping on low emission. Full article
(This article belongs to the Special Issue Soil Erosion: Dust Control and Sand Stabilization)
Show Figures

Figure 1

Review

Jump to: Editorial, Research, Other

13 pages, 1338 KiB  
Review
Soil Erosion and Gaseous Emissions
by Rattan Lal
Appl. Sci. 2020, 10(8), 2784; https://doi.org/10.3390/app10082784 - 17 Apr 2020
Cited by 27 | Viewed by 6218
Abstract
Accelerated soil erosion by water and wind involves preferential removal of the light soil organic carbon (SOC) fraction along with the finer clay and silt particles. Thus, the SOC enrichment ratio in sediments, compared with that of the soil surface, may range from [...] Read more.
Accelerated soil erosion by water and wind involves preferential removal of the light soil organic carbon (SOC) fraction along with the finer clay and silt particles. Thus, the SOC enrichment ratio in sediments, compared with that of the soil surface, may range from 1 to 12 for water and 1 to 41 for wind-blown dust. The latter may contain a high SOC concentration of 15% to 20% by weight. The global magnitude of SOC erosion may be 1.3 Pg C/yr. by water and 1.0 Pg C/yr. by wind erosion. However, risks of SOC erosion have been exacerbated by the expansion and intensification of agroecosystems. Such a large magnitude of annual SOC erosion by water and wind has severe adverse impacts on soil quality and functionality, and emission of multiple greenhouse gases (GHGs) such as CO2, CH4, and N2O into the atmosphere. SOC erosion by water and wind also has a strong impact on the global C budget (GCB). Despite the large and growing magnitude of global SOC erosion, its fate is neither adequately known nor properly understood. Only a few studies conducted have quantified the partitioning of SOC erosion by water into three components: (1) redistribution over land, (2) deposition in channels, and (3) transportation/burial under the ocean. Of the total SOC erosion by water, 40%–50% may be redistributed over the land, 20%–30% deposited in channels, and 5%–15% carried into the oceans. Even fewer studies have monitored or modeled emissions of multiple GHGs from these three locations. The cumulative gaseous emissions may decrease at the eroding site because of the depletion of its SOC stock but increase at the depositional site because of enrichment of SOC amount and the labile fraction. The SOC erosion by water and wind exacerbates climate change, decreases net primary productivity (NPP) and use efficiency of inputs, and reduces soils C sink capacity to mitigate global warming. Yet research information on global emissions of CH4 and N2O at different landscape positions is not available. Further, the GCB is incomplete and uncertain because SOC erosion is not accounted for. Multi-disciplinary and watershed-scale research is needed globally to measure and model the magnitude of SOC erosion by water and wind, multiple gaseous emissions at different landscape positions, and the attendant changes in NPP. Full article
(This article belongs to the Special Issue Soil Erosion: Dust Control and Sand Stabilization)
Show Figures

Figure 1

Other

7 pages, 1423 KiB  
Technical Note
A Clay-Based Geopolymer in Loess Soil Stabilization
by Nadav Hanegbi and Itzhak Katra
Appl. Sci. 2020, 10(7), 2608; https://doi.org/10.3390/app10072608 - 10 Apr 2020
Cited by 22 | Viewed by 2602
Abstract
Soil erosion has environmental and socioeconomic significances. Loess soils cover about 10% of the global land area. Most of these soils are subjected to increased land uses such as unpaved roads, which increase soil destruction and dust emission to the atmosphere. There is [...] Read more.
Soil erosion has environmental and socioeconomic significances. Loess soils cover about 10% of the global land area. Most of these soils are subjected to increased land uses such as unpaved roads, which increase soil destruction and dust emission to the atmosphere. There is a significant interest in applications for dust control and soil stabilization. Application of geopolymers may significantly reduce environmental impacts. This study examines the use of a metakaolin-based geopolymer for dust control and soil stabilization in a semi-arid loess soil. The application of the geopolymer for dust control in comparison with common products (brine, bitumen, polyvinyl acetate-PVA) resulted in no dust emission. As a soil stabilizer, the geopolymer tested in this study provides remarkably good results in the tensile test. The most successful composition of the geopolymer, which is activation solution of sodium silicate and sodium hydroxide (NaOH) together with an addition of 30% metakaolin, obtained soil strength of 23,900 N after 28 days. The attempt to replace NaOH with lime (CaO) in the activation solution was far inferior to the original composition. There is a strong potential to develop natural soil stabilizers from a mineral base that even surpass their capabilities over existing synthetic stabilizers. Full article
(This article belongs to the Special Issue Soil Erosion: Dust Control and Sand Stabilization)
Show Figures

Figure 1

Back to TopTop