Exclusive Papers Collection of Editorial Board Members and Invited Scholars in Applied Microbiology (2023, 2024)

A special issue of Applied Microbiology (ISSN 2673-8007).

Deadline for manuscript submissions: 30 June 2024 | Viewed by 33546

Special Issue Editor

Division of Microbiology, Brewing and Biotechnology, University of Nottingham, Loughborough, Leicestershire LE12 5RD, UK
Interests: foodborne disease; bacteriology; bacteriophages; probiotics; prebiotics; antimicrobial resistance; host-pathogen interactions; enzymology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue is the continuation of our previous successful Special Issue “Exclusive Papers Collection of Editorial Board Members and Invited Scholars in Applied Microbiology”.

As the Editor-in-Chief of Applied Microbiology, I am pleased to acknowledge the support of the research community and their requests to extend this initiative. I therefore announce the continuation of the Special Issue entitled “Exclusive Papers Collection of Editorial Board Members and Invited Scholars in Applied Microbiology (2023, 2024)”. This Special Issue will be a collection of high-quality papers from Editorial Board Members and invited scholars. The aim is to provide a venue for networking and communication between Applied Microbiology and scholars in this field. All papers will be published as fully open access articles after peer review.

Prof. Dr. Ian Connerton
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Microbiology is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Related Special Issue

Published Papers (35 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

12 pages, 1281 KiB  
Article
A Major Facilitator Superfamily Transporter Contributes to Ergot Alkaloid Accumulation but Not Secretion in Aspergillus leporis
Appl. Microbiol. 2024, 4(1), 406-417; https://doi.org/10.3390/applmicrobiol4010028 - 20 Feb 2024
Viewed by 128
Abstract
Ergot alkaloids are fungal natural products with important roles in agriculture and medicine. We used heterologous expression and gene knockout approaches to investigate potential roles for the product of a major facilitator superfamily transporter gene (easT) recently found in an ergot [...] Read more.
Ergot alkaloids are fungal natural products with important roles in agriculture and medicine. We used heterologous expression and gene knockout approaches to investigate potential roles for the product of a major facilitator superfamily transporter gene (easT) recently found in an ergot alkaloid biosynthetic gene cluster in Aspergillus leporis. A strain of Aspergillus fumigatus previously engineered to accumulate lysergic acid, but which did not convert the precursor agroclavine to lysergic acid efficiently or secrete lysergic acid well, was chosen as an expression host for easT. Expression of easT in this strain resulted in accumulation of significantly more pathway intermediates but no detectable lysergic acid. Secretion of ergot alkaloids was reduced in the easT-expressing strain. EasT localized to discrete vesicle-like structures in the cytosol of A. fumigatus, with no localization detected in the plasma membrane. When easT was knocked out in A. leporis, accumulation of lysergic acid amides was reduced relative to the wild type. There was no negative effect on secretion of ergot alkaloids in the knockout mutant. The data indicate that easT encodes a product that contributes to accumulation of ergot alkaloids, perhaps by transporting intermediates between cellular compartments, but does not have a significant role in secreting ergot alkaloids. Full article
Show Figures

Figure 1

16 pages, 6769 KiB  
Article
Transcriptional Response of Salmonella enterica to Bacteriophage Treatments with Differential Multiplicities of Infection
Appl. Microbiol. 2024, 4(1), 390-405; https://doi.org/10.3390/applmicrobiol4010027 - 16 Feb 2024
Viewed by 335
Abstract
Salmonella enterica (S. enterica) is a causative agent of numerous foodborne outbreaks, as current industrial measures may be <90% effective. Therefore, bacteriophages have been suggested as an antimicrobial treatment against S. enterica, but it is currently unclear if there is [...] Read more.
Salmonella enterica (S. enterica) is a causative agent of numerous foodborne outbreaks, as current industrial measures may be <90% effective. Therefore, bacteriophages have been suggested as an antimicrobial treatment against S. enterica, but it is currently unclear if there is an optimal bacteriophage multiplicity of infection (MOI) against S. enterica. Two bacteriophage cocktails at MOIs 1, 10, 100, 1000 and 10,000 were co-inoculated against four S. enterica strains (S. Enteritidis, S. Newport, S. Muenchen and S. Typhimurium), and populations were estimated on days 0–3. The transcriptional profiles of 20 genes previously indicated to be differentially expressed after bacteriophage treatment were studied by extracting RNA from all four S. enterica strains after bacteriophage SE14, SF5 and SF6 treatment on days 0, 1 and 3, and RT-qPCR was conducted to determine the expression of the 20 selected genes. The results showed that an MOI of 1000 was the most optimal in reducing S. Enteritidis populations to undetectable levels from day 0 to 3. The cas1 (SOS response) and mod (DNA modification and recombination) genes were highly upregulated between 2.5- and 5-fold on day 0 for S. Enteritidis S5-483 and S. Typhimurium S5-536 at MOIs of 1000 and 10,000. On day 3, hsdS (DNA modification and recombination) was upregulated by ~1-fold for S. enteritidis S5-483 after an MOI of 1000. Understanding an optimal bacteriophage MOI can be beneficial to implementing effective and optimal bacteriophage treatments in the industry. Knowledge of S. enterica’s transcriptional response after bacteriophage treatment provides further insight into how S. enterica can survive bacteriophage infection. Full article
Show Figures

Figure 1

14 pages, 3969 KiB  
Article
Utilizing a Metagenome Assembled Genome Approach Revealed Further Insights into Microbially Mediated Heavy-Metal Resistance in Soils from a Former Nuclear Materials Production Facility
Appl. Microbiol. 2024, 4(1), 376-389; https://doi.org/10.3390/applmicrobiol4010026 - 13 Feb 2024
Viewed by 370
Abstract
Soils and sediments from the Savannah River Site (SRS), located in the USA are known to have a long history of co-contamination with radionuclides (mainly uranium) and heavy metals. To better understand the bacterial taxonomic and genomic characteristic of the SRS soil habitat, [...] Read more.
Soils and sediments from the Savannah River Site (SRS), located in the USA are known to have a long history of co-contamination with radionuclides (mainly uranium) and heavy metals. To better understand the bacterial taxonomic and genomic characteristic of the SRS soil habitat, shotgun metagenomes were obtained from three different levels of contaminated soil—high, medium, and low. Sequences were then assembled and annotated to generate metagenome-assembled genomes (MAGs) using toolkits within the nf-core/mag. The initial analysis resulted in a total of 254 MAGs. After bin refinement and de-replication, 55 MAGs which met the quality standard with a completeness > 75% and contamination < 25%, accounting for 21.67% of all the MAGs, were reconstructed. Further refinement with completeness > 90% and contamination < 10% yielded 24 MAGs (18 from the winter season and 6 from the summer season) spanning 6 bacterial phyla, predominantly Actinomycetota, Proteobacteriota, Bacteroidota, and Cyanobacteria. Overall, the Arthrobacter MAG was found to be robust for further analysis, with over 1749 genes putatively involved in the crucial metabolism of elements viz. nitrogen, phosphorous, and sulfur, and 598 genes encoding enzymes for the resistance of metals including cadmium, zinc, chromium, arsenic, and copper. In summary, this project enhances our understanding of genes conferring resistance to heavy metals in uranium-contaminated soils. Full article
Show Figures

Figure 1

12 pages, 316 KiB  
Article
Antibiotic-Resistant Bacteria across a Wastewater Treatment Plant
Appl. Microbiol. 2024, 4(1), 364-375; https://doi.org/10.3390/applmicrobiol4010025 - 12 Feb 2024
Viewed by 289
Abstract
Antimicrobial resistance is presently one of the leading causes of death worldwide. The surveillance of different environments, namely, wastewater treatment plants (WWTPs), as hotspots of antibiotic-resistant bacteria, has become crucial under the One Health approach. This study aimed to characterize, phenotypically and genotypically, [...] Read more.
Antimicrobial resistance is presently one of the leading causes of death worldwide. The surveillance of different environments, namely, wastewater treatment plants (WWTPs), as hotspots of antibiotic-resistant bacteria, has become crucial under the One Health approach. This study aimed to characterize, phenotypically and genotypically, antibiotic-resistant bacteria along a WWTP receiving domestic and industrial sewage. Four sampling sites, representing distinct treatment points of the WWTP, were selected for sampling bacterial isolation in selective media supplemented, or not, with antibiotics, and subsequent antimicrobial susceptibility testing. Antibiotic resistance encoding genes were screened by molecular methods. A total of 50 bacterial isolates were obtained, 50% of which were affiliated with the genus Enterococcus. The antimicrobial susceptibility testing revealed antibiotic phenotypic resistance in isolates obtained from all the four treatment points of the wastewater samples, with resistance to tetracycline (32.5%) and ampicillin (25%) being the most common. Three isolates were found to be multidrug resistant and were affiliated with the genera Citrobacter, Shigella and Klebsiella. Molecular screening revealed the presence of tet(M), blaTEM, blaSHV and blaCTX-M, as well as class 1 integrons carrying dfrA25, ANT(3″)-IIa and aadA6 genes. This study highlights the relevance of bacterial isolation and their antimicrobial susceptibility evaluation in WWTP systems since antibiotic-resistant strains were found from the raw influent to the final effluent discharged into the environment, denoting the need for surveillance and containment measures. Full article
10 pages, 1822 KiB  
Article
Inhibitory Effects of Bacillus subtilis Isolated from Meju (Fermented Soybean Brick) on the Growth of Aspergillus parasiticus
Appl. Microbiol. 2024, 4(1), 354-363; https://doi.org/10.3390/applmicrobiol4010024 - 12 Feb 2024
Viewed by 316
Abstract
Background: Meju is a base material for making soy sauce, soybean paste, and red chili pepper paste, which are representative ingredients of Korean cuisine. Objectives: This study aimed to isolate a predominant bacterial strain of B. subtilis from meju and to observe its inhibitory [...] Read more.
Background: Meju is a base material for making soy sauce, soybean paste, and red chili pepper paste, which are representative ingredients of Korean cuisine. Objectives: This study aimed to isolate a predominant bacterial strain of B. subtilis from meju and to observe its inhibitory effects on an aflatoxigenic mold. Methods: We used yellow soybeans (Glycine max (L.) Merr.) grown in South Korea, and meju was produced according to the recommended methods of the Korea Food Research Institute. The identification of the strain was conducted based on its morphological and biochemical characteristics and 16S rDNA sequence. Evaluation of the bacterial effect against A. parasiticus ATCC 15517 was done in yeast extract–sucrose broth at 28 °C. Its inhibitory effect was evaluated using two approaches: mycelial weight and aflatoxin production. Aflatoxins were determined using high-performance liquid chromatography. Results: In the meju samples fermented for three months, a B. subtilis strain, K-0924 was identified. At the end of the incubation period of A. parasiticus, dry mycelial weight was significantly reduced by more than 80% (p < 0.01) and total aflatoxin production was inhibited by more than 63% (p < 0.05) in the presence of B. subtilis. Conclusions: These results indicate that B. subtilis K-0924 inhibits the growth and aflatoxin production of toxigenic Aspergillus, which can be contaminated with meju. We could expect more inhibition by other bacteria related to fermentation of meju, and further examination is necessary on species other than B. subtilis. Full article
Show Figures

Figure 1

13 pages, 477 KiB  
Article
Detecting Closer to Care: Combining Phage and LAMP to Detect Tuberculosis, Bovine TB and Johne’s Disease
Appl. Microbiol. 2024, 4(1), 341-353; https://doi.org/10.3390/applmicrobiol4010023 - 01 Feb 2024
Viewed by 499
Abstract
Mycobacterial diseases impact millions in the human and veterinary fields each year. Their diagnosis is long and laborious, often only sensitive in the late stages of disease. This has created an unmet need for new diagnostics that are effective in the earlier stages [...] Read more.
Mycobacterial diseases impact millions in the human and veterinary fields each year. Their diagnosis is long and laborious, often only sensitive in the late stages of disease. This has created an unmet need for new diagnostics that are effective in the earlier stages of infection and are quick and easy to perform. This study details the optimization of LAMP assays for the detection of M. tuberculosis, M. bovis and M. avium subsp. paratuberculosis combined with phage-mediated lysis to meet the needs of a novel diagnostic—termed phage-LAMP. The optimized phage-LAMP assay had a limit of detection of less than 10 mycobacteria per ml and no cross-reaction was seen between assays. The phage-LAMP method was then tested on a small number of clinical blood samples from suspected TB patients and herds suspected of Johne’s disease. The phage-LAMP assay could detect viable Mycobacterium tuberculosis and M. avium subsp. paratuberculosis in these samples. Full article
Show Figures

Figure 1

17 pages, 4108 KiB  
Article
Mapping Selected Emergent Marine Toxin-Producing Organisms Using Historical Samples with Two Methods (Biosensors and Real-Time PCR): A Comparison of Resolution
Appl. Microbiol. 2024, 4(1), 312-328; https://doi.org/10.3390/applmicrobiol4010021 - 30 Jan 2024
Viewed by 479
Abstract
The Continuous Plankton Recorder (CPR) survey is a valuable resource for mapping changes in plankton distribution and understanding harmful algal ecology because of its breadth and longevity. Preservation methods with formalin degrade DNA, making it difficult to use as a molecular tool for [...] Read more.
The Continuous Plankton Recorder (CPR) survey is a valuable resource for mapping changes in plankton distribution and understanding harmful algal ecology because of its breadth and longevity. Preservation methods with formalin degrade DNA, making it difficult to use as a molecular tool for archived marine samples. DNA was extracted from CPR samples immediately after collection, seven months later and after nine years of storage from a cruise track along the Iberian Peninsula. PCR reactions performed from the nine-year timepoint were hybridized to probes in an electrochemical biosensor and compared to results obtained from RT-PCR performed at two earlier time points. The successful identification of Pseudo-nitzschia spp., Prorocentrum lima, Alexandrium minutum, Alexandrium ostenfeldii, Gambierdiscus spp. and Coolia spp. was documented. The biosensor analysis outperformed RT-PCR, allowing us to document certain tropical toxic dinoflagellates, viz., Gambierdiscus and Coolia, that produce human ciguatoxins and Coolia toxins, respectively. These non-native algal toxins can accumulate, pervade the food web and negatively impact human food security. This supports the northerly movement of microalgae with climate change in offshore Iberian peninsular waters. This study highlights biosensors as a cost-effective tool for the offshore monitoring of HAB species and advances molecular technologies for long-term CPR datasets that have limited records of harmful algae. DNA from formalin-preserved CPR samples is degraded, so the use of a short, multiprobe biosensor can augment historical plankton records with contemporary methods that also capture infrequently occurring benthic taxa carried in surface waters. The integration of probe-based biosensor technologies offers a promising avenue for exploring plankton dynamics in response to environmental changes. Full article
Show Figures

Figure 1

13 pages, 3500 KiB  
Article
Culture-Independent Quantification of Legionella pneumophila in Evaporative Cooling Systems Using Immunomagnetic Separation Coupled with Flow Cytometry
Appl. Microbiol. 2024, 4(1), 284-296; https://doi.org/10.3390/applmicrobiol4010019 - 27 Jan 2024
Viewed by 461
Abstract
Legionella pneumophila are pathogenic bacteria that repeatedly occur in high concentrations in the process water of evaporative cooling systems (ECS). When released into the environment, the resulting bioaerosols can cause outbreaks with fatal consequences. The official, internationally accepted detection method for Legionella spp. [...] Read more.
Legionella pneumophila are pathogenic bacteria that repeatedly occur in high concentrations in the process water of evaporative cooling systems (ECS). When released into the environment, the resulting bioaerosols can cause outbreaks with fatal consequences. The official, internationally accepted detection method for Legionella spp. in water samples is based on cultivation. However, cultivation is time-consuming and may underestimate the total count of viable L. pneumophila in ECS. Therefore, culture-independent methods are receiving attention for rapid monitoring. Cartridge-based immunomagnetic separation (IMS) coupled with flow cytometry (FCM) is an innovative, antibody-based method for the culture-independent quantification of L. pneumophila, using a panel of antibodies against serogroup (Sg) 1–15. We characterized the IMS-FCM method as a quantitative rapid test by general analytical procedures. Viable cryopreserved L. pneumophila standards were used in calibration experiments for the method. We achieved detection limits for Sg 1, Sg 4, and Sg 6 of 100, 105 and 88 viable cells per 100 mL, respectively. Furthermore, we demonstrated the practical applicability of IMS-FCM with real ECS samples and compared the performance against cultivation. Cultivation showed here no positive results, but IMS-FCM evidenced L. pneumophila in a range of 0–80,000 viable cells per 100 mL. This work demonstrates that IMS-FCM is a suitable, culture-independent, quantitative method for rapidly monitoring L. pneumophila. Full article
Show Figures

Figure 1

9 pages, 1482 KiB  
Communication
First Description of Simplicillium lanosoniveum, a Potential Antagonist of the Coffee Leaf Rust from Cuba
Appl. Microbiol. 2024, 4(1), 275-283; https://doi.org/10.3390/applmicrobiol4010018 - 26 Jan 2024
Viewed by 298
Abstract
(1) The fungal genus Simplicillium (Cordycipitaceae: Hypocreales) has an extensive distribution and a broad spectrum of hosts and substrates. The species Simplicillium lanosoniveum is a mycoparasite with potential for biological control of coffee leaf rust, Hemileia vastatrix. Morphologically, Simplicillium closely resembles mycoparasitic [...] Read more.
(1) The fungal genus Simplicillium (Cordycipitaceae: Hypocreales) has an extensive distribution and a broad spectrum of hosts and substrates. The species Simplicillium lanosoniveum is a mycoparasite with potential for biological control of coffee leaf rust, Hemileia vastatrix. Morphologically, Simplicillium closely resembles mycoparasitic and entomopathogenic Lecanicillium fungi, often resulting in misidentification. A fungal isolate was obtained from leaf-rust-infested coffee plants from Cienfuegos Province, Cuba. (2) Combined analyses of morphology and molecular markers (ITS, LSU, EF-1alpha) were used for fungal identification. (3) In the NJ, ML, and BI phylogenies which were reconstructed, the isolate LBSim-01 was located in the Simplicillium lanosoniveum clade. This species-level identification was supported by morphological features. (4) The isolate LBSim-01 was assigned to the species Simplicillium lanosoniveum. This is the first description of a Simplicillium fungus associated with coffee leaf rust in Cuba. The presented results hold implications for the biological control of this economically relevant plant disease. Full article
Show Figures

Figure 1

13 pages, 2314 KiB  
Article
Combination Screening of a Naïve Antibody Library Using E. coli Display and Single-Step Colony Assay
Appl. Microbiol. 2024, 4(1), 237-249; https://doi.org/10.3390/applmicrobiol4010016 - 23 Jan 2024
Viewed by 460
Abstract
The use of single-domain camelid antibodies, termed VHHs or nanobodies, has found increasing application in diagnosis, pharmaceutical development, and research because of their superior properties, such as small size, elevated stability, high water solubility, and excellent affinity for the antigen. Antigen-specific VHHs are [...] Read more.
The use of single-domain camelid antibodies, termed VHHs or nanobodies, has found increasing application in diagnosis, pharmaceutical development, and research because of their superior properties, such as small size, elevated stability, high water solubility, and excellent affinity for the antigen. Antigen-specific VHHs are generated by screening VHH display libraries via bio-panning. However, the bio-panning step needs to be repeated multiple times, which is time-consuming and laborious. Here, we developed a simple and rapid screening method that combined Escherichia coli display and a single-step colony assay to successfully identify positive clones from a naïve VHH library. The library was constructed from peripheral blood mononuclear cells of alpaca, and VHHs were displayed on the surface of E. coli using the inverse autotransporter intimin. Libraries enriched by magnetic cell sorting were screened directly using a single-step colony assay. Colonies formed on the hydrophilic filter and antigen-coated membrane. The expression of VHHs was induced, and those bound to the antigen on the membrane were detected as positive clones. Screening and identification of positive clones required only two days, which saves considerable time and resources compared to existing protocols. Full article
Show Figures

Figure 1

22 pages, 2350 KiB  
Article
Toward Effects of Hydrophobicity on Biosurfactant Production by Bacillus subtilis Isolates from Crude-Oil-Exposed Environments
Appl. Microbiol. 2024, 4(1), 215-236; https://doi.org/10.3390/applmicrobiol4010015 - 18 Jan 2024
Viewed by 561
Abstract
Background: Due to their structural features, biosurfactants reveal promising physicochemical properties, making them interesting for various applications in different fields, such as the food, cosmetics, agriculture, and bioremediation sectors. In particular, the bioproduction of surfactin, one of the most potent microbially synthesized biosurfactant [...] Read more.
Background: Due to their structural features, biosurfactants reveal promising physicochemical properties, making them interesting for various applications in different fields, such as the food, cosmetics, agriculture, and bioremediation sectors. In particular, the bioproduction of surfactin, one of the most potent microbially synthesized biosurfactant molecules, is of great interest. However, since the wild-type productivities are comparably low, stimulatory environmental conditions have to be identified for improved bioproduction This study aims to find a correlation between the hydrophobicity and production of the biosurfactant surfactin by B. subtilis isolates from crude-oil-contaminated soil and water. Methods: The surfactin production yield was characterized in adapted batch cultivations using high-performance thin-layer liquid chromatography (HPTLC). Defined hydrophobic environmental conditions were achieved by supplementation with hexadecane or polystyrene beads, and the effects on biosurfactant production were measured. Adaptations at the protein level were analyzed using mass spectrometry measurements. Results: The correlation between hydrophobicity and surfactin production was characterized using Bacillus subtilis strains ZH1 and P7 isolated from crude-oil-contaminated soil and water. Since these isolates show the biodegradation of crude oil and hexadecane as hydrophobic substrates, respectively, a first-time approach, using polystyrene beads, was applied to provide a hydrophobic environment. Interestingly, contrary to popular opinion, reduced biosurfactant production was determined. Using mass spectrometric approaches, the physiological effects of co-cultivation and the cellular response at the protein level were investigated, resulting in altered quantities of stress proteins and proteins involved in the carbon metabolism counter to polystyrene beads. Conclusions: Contrary to common opinion, increasing hydrophobicity does not have a stimulating effect, and even reduces the effect on the bioproduction of surfactin as the main biosurfactant using selected B. subtilis strains. Full article
Show Figures

Figure 1

21 pages, 2787 KiB  
Article
Development of a Standardised International Protocol for Evaluation of the Disinfection Efficacy of Healthcare Laundry Wash Processes
Appl. Microbiol. 2024, 4(1), 194-214; https://doi.org/10.3390/applmicrobiol4010014 - 18 Jan 2024
Viewed by 421
Abstract
This research aims to develop a standardised protocol for monitoring the disinfection efficacy of healthcare laundry processes in view of numerous differential methodologies currently being employed within the healthcare laundry sector, including agitation and surface sampling for post-laundering decontamination assessment and swatch and [...] Read more.
This research aims to develop a standardised protocol for monitoring the disinfection efficacy of healthcare laundry processes in view of numerous differential methodologies currently being employed within the healthcare laundry sector, including agitation and surface sampling for post-laundering decontamination assessment and swatch and bioindicator testing for in-wash-process efficacy. Enterococcus faecium as an indicator species within industrial wash systems is preferable due to its high thermal and disinfectant tolerance. Methods for measuring laundry disinfection were compared; commercially available E. faecium bioindicators and contaminated cotton swatches (loose, in cloth bags or within nylon membranes) were laundered industrially at ambient temperature and microbial recovery determined. E. faecium was lost from cotton during laundering but retained by the bioindicator membrane, which allows disinfection efficacy to be measured without loss of microorganisms from the test swatch. Commercially available bioindicators were only permeable to disinfectants and detergents at ≥60 °C. Subsequently, polyethersulphone membranes for enclosing contaminated swatches were developed for low-temperature laundering, with permeability to industrial laundry chemistries at below ≤60 °C. This study demonstrates that bioindicators are the recommended methodology for laundry disinfection validation. The use of a universal healthcare laundry disinfection methodology will lead to standardised microbiological testing across the industry and improvements in infection control. Full article
Show Figures

Figure 1

13 pages, 1693 KiB  
Article
16S rRNA Gene Sequencing-Based Identification and Comparative Analysis of the Fecal Microbiota of Five Syntopic Lizard Species from a Low-Mountain Area in Western Bulgaria
Appl. Microbiol. 2024, 4(1), 181-193; https://doi.org/10.3390/applmicrobiol4010013 - 18 Jan 2024
Viewed by 316
Abstract
Studies on the gut microbiome of free-living reptiles in Europe are generally fragmentary and still missing in Bulgaria. We aimed to identify and compare the fecal microbiota profiles of five syntopic lizard species from three families: the European green lizard (Lacerta viridis [...] Read more.
Studies on the gut microbiome of free-living reptiles in Europe are generally fragmentary and still missing in Bulgaria. We aimed to identify and compare the fecal microbiota profiles of five syntopic lizard species from three families: the European green lizard (Lacerta viridis), the common wall lizard (Podarcis muralis), the meadow lizard (Darevskia praticola) (Lacertidae), the European snake-eyed skink (Ablepharus kitaibelii) (Scincidae), and the European slow worm (Anguis fragilis) (Anguidae), which coinhabit a low mountainous area in the western part of the country. A high-throughput sequencing of the hypervariable V3-V4 region of the 16S rRNA gene, performed on the Illumina HiSeq2500 platform, was used. The core microbiota of lizard hosts seems to be species-specific. A dynamic phyla proportion between hosts was found. The richest alpha diversity was observed in D. praticola, and the lowest alpha diversity was observed in P. muralis and A. fragilis. Within the three lacertids, the microbiota of D. praticola and L. viridis were more closely related to each other than they were to those of P. muralis. Sharing a largely common trophic resource (all species except A. fragilis are mainly insectivorous) was not an indication of similarity in their gut microbial communities. Full article
Show Figures

Figure 1

19 pages, 2833 KiB  
Article
Methanogenic Archaea Quantification in the Human Gut Microbiome with F420 Autofluorescence-Based Flow Cytometry
Appl. Microbiol. 2024, 4(1), 162-180; https://doi.org/10.3390/applmicrobiol4010012 - 17 Jan 2024
Viewed by 608
Abstract
Methane-producing Archaea can be found in a variety of habitats, including the gastrointestinal tract, where they are linked to various diseases. The majority of current monitoring methods can be slow and laborious. To facilitate gut methanogenic Archaea detection, we investigated flow cytometry for [...] Read more.
Methane-producing Archaea can be found in a variety of habitats, including the gastrointestinal tract, where they are linked to various diseases. The majority of current monitoring methods can be slow and laborious. To facilitate gut methanogenic Archaea detection, we investigated flow cytometry for rapid quantification based on the autofluorescent F420 cofactor, an essential coenzyme in methanogenesis. The methanogenic population was distinguishable from the SYBR green (SG) and SYBR green/propidium iodide (SGPI) stained background microbiome based on elevated 452 nm emission in Methanobrevibacter smithii spiked controls. As a proof-of-concept, elevated F420-autofluorescence was used to detect and quantify methanogens in 10 faecal samples and 241 in vitro incubated faecal samples. The methanogenic population in faeces, determined through Archaea-specific 16S rRNA gene amplicon sequencing, consisted of Methanobrevibacter and Methanomassiliicoccus. F420-based methanogen quantification in SG and SGPI-stained faecal samples showed an accuracy of 90 and 100% against Archaea proportions determined with universal primers. When compared to methane and Archaea presence, methanogen categorisation in in vitro incubated faeces exhibited an accuracy of 71 and 75%, with a precision of 42 and 70%, respectively. To conclude, flow cytometry is a reproducible and fast method for the detection and quantification of gut methanogenic Archaea. Full article
Show Figures

Figure 1

15 pages, 3038 KiB  
Article
Effect of kuratsuki Bacillus and Priestia on Taste of Sake
Appl. Microbiol. 2024, 4(1), 147-161; https://doi.org/10.3390/applmicrobiol4010011 - 15 Jan 2024
Viewed by 444
Abstract
The co-cultivation of sake yeast (AK25, K901, K1401, or K1801 strain) and the kuratsuki Bacillus A-10 and/or Priestia B-12 strains in koji solution was performed to demonstrate the effects of these two kuratsuki bacteria on sake taste. The results showed that the Brix [...] Read more.
The co-cultivation of sake yeast (AK25, K901, K1401, or K1801 strain) and the kuratsuki Bacillus A-10 and/or Priestia B-12 strains in koji solution was performed to demonstrate the effects of these two kuratsuki bacteria on sake taste. The results showed that the Brix and acidity patterns of sake preparations produced with and without these kuratsuki bacteria were very similar. This indicated that the addition of these kuratsuki bacteria did not inhibit ethanol fermentation or organic acid production by sake yeast. A taste recognition device showed that the effects of these kuratsuki bacteria on the saltiness and sourness of sake were greater than those on other taste properties. Astringency stimulation and saltiness of sake produced using the sake yeast K901 were increased by Bacillus A-10 and decreased by Priestia B-12. Except for these two cases, the taste intensities of sake preparations produced with the Bacillus A-10 and Priestia B-12 strains were very similar, but differed from those of sake produced with kuratsuki Kocuria. These results support our hypothesis that the flavor and taste of sake can be controlled by utilizing the interactions between kuratsuki bacteria and sake yeast. For crating the desired sake taste, a combination of kuratsuki bacteria and sake yeast should be considered. Full article
Show Figures

Figure 1

9 pages, 991 KiB  
Communication
Evaluation of Genomic Contamination Detection Tools and Influence of Horizontal Gene Transfer on Their Efficiency through Contamination Simulations at Various Taxonomic Ranks
Appl. Microbiol. 2024, 4(1), 124-132; https://doi.org/10.3390/applmicrobiol4010009 - 10 Jan 2024
Viewed by 483
Abstract
Genomic contamination remains a pervasive challenge in (meta)genomics, prompting the development of numerous detection tools. Despite the attention that this issue has attracted, a comprehensive comparison of the available tools is absent from the literature. Furthermore, the potential effect of horizontal gene transfer [...] Read more.
Genomic contamination remains a pervasive challenge in (meta)genomics, prompting the development of numerous detection tools. Despite the attention that this issue has attracted, a comprehensive comparison of the available tools is absent from the literature. Furthermore, the potential effect of horizontal gene transfer on the detection of genomic contamination has been little studied. In this study, we evaluated the efficiency of detection of six widely used contamination detection tools. To this end, we developed a simulation framework using orthologous group inference as a robust basis for the simulation of contamination. Additionally, we implemented a variable mutation rate to simulate horizontal transfer. Our simulations covered six distinct taxonomic ranks, ranging from phylum to species. The evaluation of contamination levels revealed the suboptimal precision of the tools, attributed to significant cases of both over-detection and under-detection, particularly at the genus and species levels. Notably, only so-called “redundant” contamination was reliably estimated. Our findings underscore the necessity of employing a combination of tools, including Kraken2, for accurate contamination level assessment. We also demonstrate that none of the assayed tools confused contamination and horizontal gene transfer. Finally, we release CRACOT, a freely accessible contamination simulation framework, which holds promise in evaluating the efficacy of future algorithms. Full article
Show Figures

Figure 1

12 pages, 1097 KiB  
Article
Insights into Genetic and Physiological Characteristics of Clover Rhizobia in Afghanistan Soils
Appl. Microbiol. 2024, 4(1), 112-123; https://doi.org/10.3390/applmicrobiol4010008 - 08 Jan 2024
Viewed by 371
Abstract
Livestock production in Afghanistan highly relies on grazing and clover feed, which is a key component of pastures and forage crops. This study elucidated the genetic diversity of clover-nodulating rhizobia in different ecological regions and their effects on clover growth. A total of [...] Read more.
Livestock production in Afghanistan highly relies on grazing and clover feed, which is a key component of pastures and forage crops. This study elucidated the genetic diversity of clover-nodulating rhizobia in different ecological regions and their effects on clover growth. A total of 57 rhizobia were isolated and their genetic diversities were studied through 16S rRNA and nifD genes. The isolates were inoculated to clover (Afghan local variety), to investigate the potential of nitrogen fixation and influences of clover growth. The 16S rRNA gene analysis showed two distinct groups of Rhizobium (94.7%) and Ensifer (5.3%) species. The nifD phylogenetic relationship revealed a high similarity to Rhizobium and a novel lineage group close to Rhizobium leguminosarum species. In the plant test, different genotypes significantly (p < 0.01) exhibited an increase in plant biomass production, compared to the un-inoculated plants. Among genotypes, the highest plant biomass was recorded in PC8 (1769.0 mg/plant) and PC9 (1409.2 mg/plant) isolates as compared to un-inoculated plants (144.0 mg/plant). Moreover, these isolates showed maximum nitrogen fixation rates of 8.2 and 6.5 µM/plant, respectively. These isolates were identified as the most promising rhizobial strains for developing biofertilizers in the context of Afghanistan. Full article
Show Figures

Figure 1

15 pages, 851 KiB  
Article
Occurrence of Mobile Colistin Resistance Genes mcr-1mcr-10 including Novel mcr Gene Variants in Different Pathotypes of Porcine Escherichia coli Isolates Collected in Germany from 2000 to 2021
Appl. Microbiol. 2024, 4(1), 70-84; https://doi.org/10.3390/applmicrobiol4010005 - 28 Dec 2023
Viewed by 585
Abstract
In the European Union, gastrointestinal disease in pigs is the main indication for the use of colistin, but large-scale epidemiologic data concerning the frequency of mobile colistin resistance (mcr) genes in pig-associated pathotypes of Escherichia coli (E. coli) are [...] Read more.
In the European Union, gastrointestinal disease in pigs is the main indication for the use of colistin, but large-scale epidemiologic data concerning the frequency of mobile colistin resistance (mcr) genes in pig-associated pathotypes of Escherichia coli (E. coli) are lacking. Multiplex polymerase chain reactions were used to detect virulence-associated genes (VAGs) and mcr-1mcr-10 genes in 10,573 porcine E. coli isolates collected in Germany from July 2000 to December 2021. Whole genome sequencing was performed on 220 representative mcr-positive E. coli strains. The total frequency of mcr genes was 10.2%, the most frequent being mcr-1 (8.4%) and mcr-4 (1.6%). All other mcr genes were rarely identified (mcr-2, mcr-3, mcr-5) or absent (mcr-6 to mcr-10). The highest frequencies of mcr genes were found in enterotoxigenic and shiga toxin-encoding E. coli (ETEC/STEC hybrid) and in edema disease E. coli (EDEC) strains (21.9% and 17.7%, respectively). We report three novel mcr variants, mcr-1.36, mcr-4.8, and mcr-5.5. In 39 attaching and effacing E. coli (AEEC) isolates analyzed in our study, the eae subtype β1 was the most prevalent (71.8%). Constant surveillance for the presence of mcr genes in various sectors should consider the different frequency of mcr-positive isolates in pathogenic E. coli. Full article
Show Figures

Figure 1

20 pages, 4423 KiB  
Article
Customizing Sanitization Protocols for Food-Borne Pathogens Based on Biofilm Formation, Surfaces and Disinfectants—Their Two- and Three-Way Interactions
Appl. Microbiol. 2024, 4(1), 27-46; https://doi.org/10.3390/applmicrobiol4010003 - 23 Dec 2023
Viewed by 802
Abstract
Food-borne pathogens are a serious challenge in food handling, processing, and packaging systems. The growth of microbial biofilms on food handling surfaces further complicates the management of the microbial contamination of food. Microorganisms within biofilms are difficult to eradicate with chemical disinfectants, with [...] Read more.
Food-borne pathogens are a serious challenge in food handling, processing, and packaging systems. The growth of microbial biofilms on food handling surfaces further complicates the management of the microbial contamination of food. Microorganisms within biofilms are difficult to eradicate with chemical disinfectants, with an increased likelihood of survival and the subsequent contamination of food. Therefore, a biofilm approach is needed in food safety and hygiene studies. Since many factors, such as strain, cell density, surface type and texture, environmental stress, and so forth, can affect biofilm formation and disinfectant efficacy, we evaluated the responses of biofilms formed by three food-borne bacterial pathogens on eight hard surfaces to seven chemical disinfectants. The three bacteria showed different capacities to colonize the surfaces. Similarly, chemical disinfectants also varied in efficacy, on surfaces and with pathogen species. One-, two-, and three-way interactions of strain, surface, and disinfectant were observed. The results generated demonstrate that the fine-tuning of sanitization strategies along the food production, processing, and packaging chain can be achieved in specific scenarios by accounting for two- and three-way interactions among bacteria, surface, and disinfectant. Full article
Show Figures

Figure 1

11 pages, 991 KiB  
Article
Antimicrobial Resistance Profile of Planctomycetota Isolated from Oyster Shell Biofilm: Ecological Relevance within the One Health Concept
Appl. Microbiol. 2024, 4(1), 16-26; https://doi.org/10.3390/applmicrobiol4010002 - 20 Dec 2023
Viewed by 485
Abstract
Background: Planctomycetota isolation in pure culture is still challenging with most of the reported data coming from molecular-based methods. Here, we intended to isolate Planctomycetota from the filter-feeder Pacific oyster Magallana gigas, extending the search to a not yet explored natural reservoir [...] Read more.
Background: Planctomycetota isolation in pure culture is still challenging with most of the reported data coming from molecular-based methods. Here, we intended to isolate Planctomycetota from the filter-feeder Pacific oyster Magallana gigas, extending the search to a not yet explored natural reservoir and to characterize their antimicrobial resistance phenotype. Methods: Oyster samples from different supermarkets and from a farm producer were subject to isolation in selective medium. Inoculation was performed from the shell biofilm and after an enrichment of the edible content. Results: Planctomycetota isolates (n = 65) were only obtained from the shell biofilm with four different species identified: Rhodopirellula baltica (n = 62), Rhodopirellula rubra (n = 1), Rhodopirellula heiligendammensis (n = 1) and Gimesia chilikensis (n = 1). This study reports the first association of Planctomycetota members with oysters and the first description of R. heiligendammensis in Portugal. Moreover, R. rubra, originally identified in Portugal, was isolated from oysters of French origin. Antibiotic susceptibility testing, conducted in strains belonging to two species never assayed before revealed multidrug resistance phenotypes with bacteria showing resistance to several classes of clinically relevant antibiotics (e.g., β-lactams and aminoglycosides). Conclusion: The ecological role and impact of Planctomycetota on oyster holobiont and, ultimately, in public health, under the One Health concept, is discussed. Full article
Show Figures

Figure 1

17 pages, 2425 KiB  
Article
The Impact of Lytic Viruses on Bacterial Carbon Metabolism in a Temperate Freshwater Reservoir (Naussac, France)
Appl. Microbiol. 2023, 3(4), 1407-1423; https://doi.org/10.3390/applmicrobiol3040095 - 15 Dec 2023
Viewed by 471
Abstract
In aquatic systems, the impact of the viral regulation of bacterial carbon metabolism (BCM) is often overlooked compared with nutrient supply. To address this gap, an investigation was conducted in the euphotic and aphotic zones of a mesotrophic freshwater reservoir (Naussac, France) to [...] Read more.
In aquatic systems, the impact of the viral regulation of bacterial carbon metabolism (BCM) is often overlooked compared with nutrient supply. To address this gap, an investigation was conducted in the euphotic and aphotic zones of a mesotrophic freshwater reservoir (Naussac, France) to assess the relative influence of lytic viral infection on key bacterial metabolic parameters, specifically bacterial production (BP) and respiration (BR), as indicators of BCM. Measured using flow cytometry, the abundance of viral sub-groups (V1–V3) exhibited a consistent pattern in tandem with their bacterial hosts across both time and space. A more significant relationship between bacterial and viral parameters than between physicochemical factors suggested a prevailing internal control mechanism that was potentially driven by viral lysis. Viral-mediated bacterial mortality up to 65% was evident in the euphotic zone. The observed variation in BCM (ranging from 7% to 32%) was explained by an uncoupling between BR and BP. Notably, BR was significantly higher (three-fold) than BP in bacterial communities subjected to low in situ phosphate concentrations (<0.5 µM P) and high nutrient stoichiometric ratios (N:P > 60, C:P > 900). An antagonistic relationship between lytic viruses and BCM, whereby the repression of bacterial growth results in elevated respiratory demands, could potentially be attributed to substrate availability constraints. Full article
Show Figures

Figure 1

15 pages, 1146 KiB  
Article
Campylobacter Bacteriophage Infection at Refrigeration Temperatures
Appl. Microbiol. 2023, 3(4), 1392-1406; https://doi.org/10.3390/applmicrobiol3040094 - 13 Dec 2023
Viewed by 692
Abstract
The application of bacteriophages to control foodborne bacterial pathogens in foods has gained traction in recent years. Poultry meat is a major source of Campylobacter jejuni, and a target for the application of bacteriophages. To offer the prospect of a post-harvest control [...] Read more.
The application of bacteriophages to control foodborne bacterial pathogens in foods has gained traction in recent years. Poultry meat is a major source of Campylobacter jejuni, and a target for the application of bacteriophages. To offer the prospect of a post-harvest control measure, the bacteriophage must function at refrigeration temperatures, where C. jejuni does not grow but can survive. Here, we report actions of three classes of Campylobacter bacteriophage at 4 °C. The pre-incubation of broth cultures at 4 °C before a shift to 42 °C under conditions that support the growth of the host bacteria revealed differences in the time to lysis compared with cultures incubated at 42 °C. The pre-adsorption of the bacteriophage to a sub-population of bacteria is consistent with the observation of asynchronous infection. To ascertain whether the bacteriophages adsorb and infect (the commitment to replicate), we investigated bacteriophage transcription at 4 °C. RNA transcripts for all the bacteriophage host combinations were detected after 15 min, indicating that the interaction is not merely passive. Bacteriophages can infect C. jejuni at refrigeration temperatures, but the infection does not proceed to lysis in the absence of host cell division. Full article
Show Figures

Figure 1

15 pages, 2365 KiB  
Article
Employing Active Learning in Medium Optimization for Selective Bacterial Growth
Appl. Microbiol. 2023, 3(4), 1355-1369; https://doi.org/10.3390/applmicrobiol3040091 - 03 Dec 2023
Viewed by 864
Abstract
Medium optimization and development for selective bacterial cultures are essential for isolating and functionalizing individual bacteria in microbial communities; nevertheless, it remains challenging due to the unknown mechanisms between bacterial growth and medium components. The present study first tried combining machine learning (ML) [...] Read more.
Medium optimization and development for selective bacterial cultures are essential for isolating and functionalizing individual bacteria in microbial communities; nevertheless, it remains challenging due to the unknown mechanisms between bacterial growth and medium components. The present study first tried combining machine learning (ML) with active learning to fine-tune the medium components for the selective culture of two divergent bacteria, i.e., Lactobacillus plantarum and Escherichia coli. ML models considering multiple growth parameters of the two bacterial strains were constructed to predict the fine-tuned medium combinations for higher specificity of bacterial growth. The growth parameters were designed as the exponential growth rate (r) and maximal growth yield (K), which were calculated according to the growth curves. The eleven chemical components in the commercially available medium MRS were subjected to medium optimization and specialization. High-throughput growth assays of both strains grown separately were performed to obtain thousands of growth curves in more than one hundred medium combinations, and the resultant datasets linking the growth parameters to the medium combinations were used for the ML training. Repeated rounds of active learning (i.e., ML model construction, medium prediction, and experimental verification) successfully improved the specific growth of a single strain out of the two. Both r and K showed maximized differentiation between the two strains. A further analysis of all the data accumulated in active learning identified the decision-making medium components for growth specificity and the differentiated, determinative manner of growth decisions of the two strains. In summary, this study demonstrated the efficiency and practicality of active learning in medium optimization for selective cultures and offered novel insights into the contribution of the chemical components to specific bacterial growth. Full article
Show Figures

Figure 1

9 pages, 747 KiB  
Article
Assessment of Live Lactobacilli Recovery from Probiotic Products for Vaginal Application
Appl. Microbiol. 2023, 3(4), 1195-1203; https://doi.org/10.3390/applmicrobiol3040082 - 14 Oct 2023
Viewed by 687
Abstract
The interest in the use of probiotics to treat and prevent vaginal infections is known. The new regulation of medical devices by the European Medical Agency (EMA) introduced big changes in Europe regarding probiotic products for vaginal application, as they are no longer [...] Read more.
The interest in the use of probiotics to treat and prevent vaginal infections is known. The new regulation of medical devices by the European Medical Agency (EMA) introduced big changes in Europe regarding probiotic products for vaginal application, as they are no longer considered as medical devices. As the future classification will be as drugs, it will stress the need to define robust and reliable pre-clinical in vitro testing in order to assess the quality, safety and efficacy of probiotics for human use. Before discussing the efficacy in human pathology, it is mandatory to evaluate the survival and multiplication potential of probiotic strains when brought into contact with vaginal fluid. In this work, our objective was to assess the recovery and stability profile of lactobacilli from six vaginal probiotic formulations brought in contact with specific culture media or vaginal fluid simulants (VFS). Overall, the recovery of viable lactobacilli cells from a modified vaginal fluid simulant (MVFS) solution was comparable to the recovery pattern obtained in standard culture medium. Therefore, we conclude that the MVFS seems to better simulate the conditions of the human vaginal fluid, in contrast with other simulants, and may be used to predict the viability of probiotics over time in the normal vaginal milieu. We discovered that each probiotic product has a unique profile that requires stand-alone studies in conditions that mimic the in vivo status in order to assess their preclinical effectiveness and promote their differential use by the medical community. Full article
Show Figures

Figure 1

18 pages, 2855 KiB  
Article
Genome Comparison of ‘Candidatus Phytoplasma rubi’ with Genomes of Other 16SrV Phytoplasmas Highlights Special Group Features
Appl. Microbiol. 2023, 3(3), 1083-1100; https://doi.org/10.3390/applmicrobiol3030075 - 12 Sep 2023
Viewed by 919
Abstract
Phytoplasmas are associated with important bacterial diseases, causing severe symptoms in agricultural and ornamental crops. ‘Candidatus Phytoplasma rubi’, associated with the Rubus stunt in raspberries (Rubus idaeus) and blackberries (Rubus subgenus Rubus), causes shortened internodes, elongated sepals, proliferation, [...] Read more.
Phytoplasmas are associated with important bacterial diseases, causing severe symptoms in agricultural and ornamental crops. ‘Candidatus Phytoplasma rubi’, associated with the Rubus stunt in raspberries (Rubus idaeus) and blackberries (Rubus subgenus Rubus), causes shortened internodes, elongated sepals, proliferation, phyllody, and virescence. The recently published genome of ‘Ca. P. rubi’ RS enabled a comprehensive genomic comparison to the complete genomes of 16SrV phytoplasmas, comprising strains of the flavescence dorée-associated phytoplasma CH and two ‘Candidatus Phytoplasma ziziphi’ strains. Besides the typical transporters and metabolic features of phytoplasmas, the phosphorolysis of sucrose and the utilization of the carboxylic acid L-lactate became apparent for the 16SrV-group. With respect to the effector repertoire and the encoded immunodominant membrane proteins involved in host colonization, the group revealed conserved features that comprise the variable membrane proteins A and B. However, SAP11- and SAP54 orthologs were limited to ‘Ca. P. rubi’ RS and ‘Ca. P. ziziphi’. Genome-sequence-based phylogenetic analysis supports the close relationship of these genomes relative to alder yellows phytoplasmas. The analyses supported the impact of the mobilome on phytoplasma evolution but also highlighted that there is the possibility of identifying phytoplasmas with a larger metabolic repertoire in the future. Full article
Show Figures

Figure 1

15 pages, 957 KiB  
Article
High-Throughput Viability Testing of Microbial Communities in a Probiotic Product Using Flow Cytometry
Appl. Microbiol. 2023, 3(3), 1068-1082; https://doi.org/10.3390/applmicrobiol3030074 - 11 Sep 2023
Cited by 2 | Viewed by 1188
Abstract
There is growing scientific and commercial interest in multi-species probiotic products due to their potential benefits in maintaining gut health. Determining the viability of probiotic microorganisms in these products is essential to ensure that they confer maximal health benefits. The gold standard for [...] Read more.
There is growing scientific and commercial interest in multi-species probiotic products due to their potential benefits in maintaining gut health. Determining the viability of probiotic microorganisms in these products is essential to ensure that they confer maximal health benefits. The gold standard for enumerating probiotic viability is the plate count method. However, this may be inaccurate for enumerating mixed probiotic populations, with recognised limitations including difficulty measuring metabolically active yet unculturable, very slow growing microbes, microencapsulated, enteric coated microbes, or multi-strain formulations that require differing growth media. Here, we developed a flow-cytometry-based approach using SYTOXTM Green dye to assess the viability of probiotic microorganisms in a multi-species, fibre-containing probiotic product and compared this to the traditional plate count method. This method was suitable for enumerating both total bacterial cells and the viable cell fraction in the complete product mixture, and could also be used to assess how stressors, such as gastric digestion and exposure to bile acids, affect bacterial cell viability. Flow cytometry measurements routinely detected higher viable cell counts than plate counting. This work demonstrates that flow cytometry assays can be established as a suitable method for rapid enumeration of viable cells in complex, multi-species probiotics. Full article
Show Figures

Figure 1

10 pages, 3326 KiB  
Article
Population Dynamics in the Biogenesis of Single-/Multi-Layered Membrane Vesicles Revealed by Encapsulated GFP-Monitoring Analysis
Appl. Microbiol. 2023, 3(3), 1027-1036; https://doi.org/10.3390/applmicrobiol3030070 - 02 Sep 2023
Cited by 1 | Viewed by 1027
Abstract
Various generations of membrane vesicles (MV) have been observed in Escherichia coli in terms of triggering events and populations of single-layered (s)/multi-layered (m) forms. Previously, we proposed a novel mechanism for MV generation triggered by the intracellular accumulation of biopolyester polyhydroxybutyrate (PHB). This [...] Read more.
Various generations of membrane vesicles (MV) have been observed in Escherichia coli in terms of triggering events and populations of single-layered (s)/multi-layered (m) forms. Previously, we proposed a novel mechanism for MV generation triggered by the intracellular accumulation of biopolyester polyhydroxybutyrate (PHB). This was designated as the Polymer Intracellular Accumulation-triggered system for Membrane Vesicle Production (PIA-MVP). Herein, we attempted to determine the conditions for the change in the population between s-MV and m-MV using glucose concentration-dependent PIA-MVP. PIA-MVP was established using the good correlation between the glucose concentration-dependent PHB accumulation and MV generation. Thus, we assumed the presence of a critical glucose concentration could determine the population ratio of s-MV to m-MV, indicating that s-MV generation is a dominant component in the extracellular environment. Cytoplasmic green fluorescent protein (GFP) was used to evaluate the glucose concentration, enabling the selective generation of s-MV. The glucose concentration was determined to be 15 g/L to satisfy this purpose under the culture conditions. In conclusion, we established a biological system allowing us to selectively generate both single- and multi-layered MVs based on PIA-VIP encapsulation of GFP, providing a versatile toolkit to gain insights into the MV generation mechanism and achieve progress in various engineering applications. Full article
Show Figures

Figure 1

25 pages, 4022 KiB  
Article
Development of a Chicken Gastrointestinal Tract (GIT) Simulation Model: Impact of Cecal Inoculum Storage Preservation Conditions
Appl. Microbiol. 2023, 3(3), 968-992; https://doi.org/10.3390/applmicrobiol3030066 - 22 Aug 2023
Viewed by 1272
Abstract
A chicken gastrointestinal tract (GIT) simulation model was developed to help predict the potential effects of feed additives supplementation on chicken’ microbiota. The chemical and enzymatic conditions for oral, gastric, intestinal, and cecum fermentation phases were designed to closely resemble the chicken GIT [...] Read more.
A chicken gastrointestinal tract (GIT) simulation model was developed to help predict the potential effects of feed additives supplementation on chicken’ microbiota. The chemical and enzymatic conditions for oral, gastric, intestinal, and cecum fermentation phases were designed to closely resemble the chicken GIT conditions. For cecum fermentation, the inoculum was obtained from the cecal contents of 18 38-day broiler chickens. The impact of inoculum preservation on bacteria viability was assessed by comparing two methods of preservation with fresh inoculum: (1) 5% dimethyl sulfoxide (DMSO) at −80 °C and (2) 30% glycerol at −20 °C. The fermentation with fresh and frozen (DMSO method) inoculums was performed and compared using standard chicken feed (SCF) and SCF with 1% fructooligosaccharides (FOS), and inoculum control (IC) condition without feed matrix was used as a baseline. Inoculum’s viability was assessed throughout 90 days of storage by culture media platting, while bacterial growth and metabolites production during fermentation was evaluated by quantitative polymerase chain reaction (qPCR), high-performance liquid chromatography (HPLC), and total ammonia nitrogen quantification. The DMSO method was shown to be the most suitable for cecal inoculum storage. Higher growth of beneficial cecal bacteria for fresh inoculum was observed in SCF while for frozen inoculum, was the SCF + FOS condition. Also, frozen inoculum had lower activity of butyrate producers and proteolytic bacteria, showing different fermentation profiles. The GIT model developed showed to be useful to test the effect of feed additives supplementation. Full article
Show Figures

Graphical abstract

Review

Jump to: Research, Other

21 pages, 1481 KiB  
Review
Sustainability of Biogas Production from Anaerobic Digestion of Food Waste and Animal Manure
Appl. Microbiol. 2024, 4(1), 418-438; https://doi.org/10.3390/applmicrobiol4010029 - 21 Feb 2024
Viewed by 191
Abstract
Anaerobic digestion (AD) involves a set of microbiological reactions and physio-chemical processes to generate biogas, a mixture of predominantly CH4 and CO2. It is commercialized globally; however, AD has limited commercial applications in the U.S. compared to other regions of [...] Read more.
Anaerobic digestion (AD) involves a set of microbiological reactions and physio-chemical processes to generate biogas, a mixture of predominantly CH4 and CO2. It is commercialized globally; however, AD has limited commercial applications in the U.S. compared to other regions of the world. The main objective of this article is to review different studies on socio-economic and environmental aspects and policies of biogas/biomethane production and to focus on resource availability. The key outcome from this review shows that the anaerobic digestion of food waste and animal manure has great potential to achieve economic and environmental benefits compared to other waste management techniques such as landfilling or conventional manure management. The 12 life cycle assessment (LCA) studies reviewed showed lower impacts for biogas systems and indicated a need for standardization of methodology so that alternative production concepts can be objectively compared. Similarly, economic analyses showed higher profitability for a biogas combined heat and power facility compared to a biomethane facility. By considering a review of the sustainability of biogas, we presented a new multi-criteria sustainable assessment framework that includes three domains: i. resource availability and logistics, ii. process modeling, and iii. impact assessment with primary application to the optimum location and installation of sustainable biogas/biomethane plants in the U.S. Full article
Show Figures

Graphical abstract

25 pages, 3237 KiB  
Review
Role of Bacteria-Derived Exopolysaccharides in Inflammatory Bowel Disease with a Special Focus on Cyanobacterial Exopolysaccharides
Appl. Microbiol. 2024, 4(1), 250-274; https://doi.org/10.3390/applmicrobiol4010017 - 23 Jan 2024
Viewed by 547
Abstract
Instances of inflammatory bowel disease (IBD), a chronic inflammatory condition of the gastrointestinal tract, are rapidly increasing in western and newly industrialized countries. Exopolysaccharides (EPSs) are one of the strategies to enhance the gut microbiota and modulate the immune-inflammatory response deregulation in IBD [...] Read more.
Instances of inflammatory bowel disease (IBD), a chronic inflammatory condition of the gastrointestinal tract, are rapidly increasing in western and newly industrialized countries. Exopolysaccharides (EPSs) are one of the strategies to enhance the gut microbiota and modulate the immune-inflammatory response deregulation in IBD patients. EPSs are produced by commensal bacteria such as Lactobacillus and Bifidobacterium. Additionally, Cyanobacteria species are promising sources of novel EPS and have potential pharmaceutical and therapeutic applications. The presence of uronic acids and sulphate groups in Cyanobacterial EPSs is an important factor that gives EPSs an anionic charge that is not seen in other prokaryotic species. This feature may impact their physico-chemical characteristics and biological properties. Additionally, Cyanobacterial EPSs have a wide range of biotechnological applications that include use as thickeners, stabilizers, and gelling agents in the food and pharmaceutical sectors. The present review focuses on the role of EPSs in IBD, with a special focus on EPSs derived from Cyanobacteria. This review also covers the biological properties of Cyanobacterial EPS in immuno-inflammatory responses and against pathogens as well as its role in biotechnological applications. Overall, Cyanobacterial EPSs have therapeutic potential against IBD due to their anti-inflammatory and immunoregulatory properties that can reduce inflammation and regulate the immune response and restore the gut microbiota of patients. Full article
Show Figures

Figure 1

23 pages, 2001 KiB  
Review
Systematic Review of Probiotics and Their Potential for Developing Functional Nondairy Foods
Appl. Microbiol. 2024, 4(1), 47-69; https://doi.org/10.3390/applmicrobiol4010004 - 26 Dec 2023
Viewed by 738
Abstract
The gastrointestinal tract is an environment that hosts various microorganisms, including pathogens. Generally, pathogenic bacteria enter the host body through food and the gastrointestinal tract. These pathogenic bacteria can colonize or infiltrate host cells and tissues, causing various infectious diseases. In recent years, [...] Read more.
The gastrointestinal tract is an environment that hosts various microorganisms, including pathogens. Generally, pathogenic bacteria enter the host body through food and the gastrointestinal tract. These pathogenic bacteria can colonize or infiltrate host cells and tissues, causing various infectious diseases. In recent years, the protective role of probiotic bacteria against gastrointestinal pathogens has been carefully investigated. Probiotics have been found to modulate intestinal microbial flora and play a significant role in the gastrointestinal tract’s function, especially by inhibiting the growth of pathogenic bacteria. However, the mechanism of action of probiotics has yet to be sufficiently proven and recognized. Several important mechanisms support the antagonistic effects of probiotics on various microorganisms, which is achieved, for example, through the production of different antimicrobial compounds, such as bacteriocins, various organic acids, antibiotics, antimicrobial proteins, and exopolysaccharides; mucosal barriers with mucosa and bacteria binding blockers; competition for nutrient uptake; and strengthening of the immune system. Accordingly, this review summarizes the recent studies that have examined the mechanism of action of probiotic bacteria and their beneficial effects in preventing pathogenic bacterial growth and improving gastrointestinal functions. Comprehending their mechanisms of action allows the selection of appropriate probiotic strains for specific applications in gastrointestinal dysfunction. Full article
Show Figures

Figure 1

13 pages, 731 KiB  
Review
Exopolysaccharides Synthesized by Rhizospheric Bacteria: A Review Focused on Their Roles in Protecting Plants against Stress
Appl. Microbiol. 2023, 3(4), 1249-1261; https://doi.org/10.3390/applmicrobiol3040086 - 16 Nov 2023
Viewed by 735
Abstract
Plants are constantly exposed to a wide range of environmental factors that cause different kinds of stress, such as drought, salinity, heat, frost, and low nutrient availability. There are also biotic sources of stress, which include pathogens (bacteria, viruses, pests), herbivores, and plant [...] Read more.
Plants are constantly exposed to a wide range of environmental factors that cause different kinds of stress, such as drought, salinity, heat, frost, and low nutrient availability. There are also biotic sources of stress, which include pathogens (bacteria, viruses, pests), herbivores, and plant competitors. These various types of stress affect normal plant physiology and development, and may lead to significantly lower yields. However, certain microorganisms (MOs), known as plant growth-promoting rhizobacteria (PGPR), can interact with and benefit plants in stressful environments. They do so through a series of mechanisms which contribute to minimizing the negative effects of plants’ responses to stress. This review summarizes current knowledge about those mechanisms, with a focus on the production of exopolysaccharides (EPSs). These compounds can act as osmoprotectants, promote the production of phytohormones, prevent the entry of pathogens through roots, bioremediate metals, and improve soil structure and permeability, among many other beneficial effects. This makes them suitable alternatives to guarantee food security while reducing the excessive use of chemical agricultural inputs and their harmful consequences for the environment. Full article
Show Figures

Figure 1

Other

Jump to: Research, Review

10 pages, 1240 KiB  
Brief Report
Phenotypic and Draft Genome Sequence Analyses of a Paenibacillus sp. Isolated from the Gastrointestinal Tract of a North American Gray Wolf (Canis lupus)
Appl. Microbiol. 2023, 3(4), 1120-1129; https://doi.org/10.3390/applmicrobiol3040077 - 23 Sep 2023
Viewed by 10477
Abstract
The discovery of novel probiotic bacteria from free-ranging animals for the treatment of inflammatory bowel disease in domestic pets is a unique approach. The chloroform extraction of gastrointestinal (GI) tract material was used to inactivate vegetative cells and select for spore-forming bacteria. A [...] Read more.
The discovery of novel probiotic bacteria from free-ranging animals for the treatment of inflammatory bowel disease in domestic pets is a unique approach. The chloroform extraction of gastrointestinal (GI) tract material was used to inactivate vegetative cells and select for spore-forming bacteria. A bacterium identified as a novel Paenibacillus sp. strain via small ribosomal RNA (16S) gene sequencing was isolated from the GI tract of a gray wolf (Canis lupus). The bacterium was typed as Gram-variable, both catalase/oxidase-positive and positive via starch hydrolysis and lipase assays. The bacterium inhibited the growth of Staphylococcus aureus, Escherichia coli and Micrococcus luteus. The draft whole genome sequence (WGS) assembly was 7,034,206 bp in length, encoding 6543 genes, and is similar in size and coding capacity to other closely related Paenibacillus spp. The isolate’s genome encodes several germination and sporulation gene products along with antimicrobials such as a bacteriocin system and chitinase. Enzyme genes such as alpha amylase, cellulase, lipases and pectin lyase are also present in the genome. An incomplete lysogenic bacteriophage genome was also present in the isolate’s genome. Phenotypic characteristics combined with a WGS genotype analysis indicate that this bacterium, designated Paenibacillus sp. ClWae2A, could be a potential candidate probiotic for domestic dogs. Full article
Show Figures

Figure 1

11 pages, 1022 KiB  
Case Report
Salmonella Enteritidis ST11 Prosthetic Valve Endocarditis Complicated by a Paravalvular Abscess: Case Report and Literature Review
Appl. Microbiol. 2023, 3(3), 1057-1067; https://doi.org/10.3390/applmicrobiol3030073 - 08 Sep 2023
Viewed by 777
Abstract
Salmonella infection typically causes self-limiting gastroenteritis. However, in rare cases, it can lead to prosthetic valve endocarditis (PVE), especially in older adults with a history of valve replacement surgery. In this case study, we describe a case of Salmonella PVE in a man [...] Read more.
Salmonella infection typically causes self-limiting gastroenteritis. However, in rare cases, it can lead to prosthetic valve endocarditis (PVE), especially in older adults with a history of valve replacement surgery. In this case study, we describe a case of Salmonella PVE in a man with a prosthetic aortic valve. Complications of PVE include abscess formation, which is associated with increased mortality. If a patient with a history of prosthetic valve replacement presents with symptoms suggestive of gastroenteritis or bacteremia, a thorough investigation should be conducted with suspicion of PVE. The prognosis of Salmonella PVE can be improved by promptly initiating appropriate antibiotics and administering them for an adequate duration, as well as by considering surgical intervention when necessary. Additionally, confirming negative blood cultures after treatment of Salmonella bacteremia is important to prevent the development of PVE and paravalvular abscesses. Full article
Show Figures

Figure 1

11 pages, 2012 KiB  
Case Report
Diabetic Foot Osteomyelitis Caused by Co-Infection with Methicillin-Resistant Staphylococcus aureus and Multidrug-Resistant Extended-Spectrum ß-Lactamase-Producing Escherichia coli: A Case Report
Appl. Microbiol. 2023, 3(3), 1046-1056; https://doi.org/10.3390/applmicrobiol3030072 - 07 Sep 2023
Viewed by 958
Abstract
This case report describes a 47-year-old man with type 2 diabetes and its associated complications. The patient developed co-infection with methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant (MDR) extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli following surgical amputation for osteomyelitis caused by diabetic foot infection (DFI). [...] Read more.
This case report describes a 47-year-old man with type 2 diabetes and its associated complications. The patient developed co-infection with methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant (MDR) extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli following surgical amputation for osteomyelitis caused by diabetic foot infection (DFI). The patient had a history of recurrent hospitalization due to DFI and had received multiple antimicrobials. Intraoperative wound cultures identified MRSA and MDR ESBL-producing E. coli as the causative agents of the co-infection. Intravenous vancomycin and meropenem were administered. After surgery, daily debridement and hyperbaric oxygen therapy were performed. The patient underwent surgical wound closure and was discharged on day 86. Polymicrobial infections in DFIs worsen antimicrobial resistance, impede wound healing, and increase the risk of osteomyelitis and amputation. Furthermore, infections caused by MDR bacteria exacerbate challenges in infection control, clinical treatment, and patient outcomes. In DFI cases caused by co-infection with MDR bacteria, prompt and appropriate antimicrobial therapy, debridement, and regular wound care while considering transmission are essential. Full article
Show Figures

Figure 1

Back to TopTop