Journal Description
Applied Mechanics
Applied Mechanics
is an international, peer-reviewed, open access journal of applied mechanics, published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus and other databases.
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 15.4 days after submission; acceptance to publication is undertaken in 4.5 days (median values for papers published in this journal in the second half of 2022).
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
Latest Articles
Free Vibration of Single-Walled Carbon Nanotubes Using Nonlocal Truncated Timoshenko-Ehrenfest Beam Theory
Appl. Mech. 2023, 4(2), 699-714; https://doi.org/10.3390/applmech4020035 - 12 May 2023
Abstract
►
Show Figures
Carbon nanotubes with their outstanding mechanical, physical and electrical properties have stimulated a significant amount of scientific and technological research due to their uniqueness compared to conventional materials. As a result, an extensive study on their mechanical properties has been conducted, and the
[...] Read more.
Carbon nanotubes with their outstanding mechanical, physical and electrical properties have stimulated a significant amount of scientific and technological research due to their uniqueness compared to conventional materials. As a result, an extensive study on their mechanical properties has been conducted, and the static and dynamic behavior of single- walled and multi-walled carbon nanotubes has been examined using Euler-Bernoulli and Timoshenko beam models. The main objective of this paper is to study the free vibration behaviour of single-walled carbon nanotubes (SWCNT) using the nonlocal truncated Timoshenko beam theory. According to the Hamilton principle, the equation of motion of Timoshenko single-walled carbon nanotubes is calculated taking into account the truncated theory; and the general corresponding boundary conditions are derived. Finally, some numerical examples are performed to evaluate the effects of the nonlocal coefficient and the length of the nanotube. The obtained results are validated by comparing them with those found in the literature, and they show the accuracy and efficiency of the developed model. Particularly, the results demonstrate that the present formulation is highly efficient and capable of satisfactorily describing the behavior of nanobeams.
Full article
Open AccessArticle
Explainable Artificial Intelligence (XAI) and Supervised Machine Learning-based Algorithms for Prediction of Surface Roughness of Additively Manufactured Polylactic Acid (PLA) Specimens
Appl. Mech. 2023, 4(2), 668-698; https://doi.org/10.3390/applmech4020034 - 12 May 2023
Abstract
Structural integrity is a crucial aspect of engineering components, particularly in the field of additive manufacturing (AM). Surface roughness is a vital parameter that significantly influences the structural integrity of additively manufactured parts. This research work focuses on the prediction of the surface
[...] Read more.
Structural integrity is a crucial aspect of engineering components, particularly in the field of additive manufacturing (AM). Surface roughness is a vital parameter that significantly influences the structural integrity of additively manufactured parts. This research work focuses on the prediction of the surface roughness of additive-manufactured polylactic acid (PLA) specimens using eight different supervised machine learning regression-based algorithms. For the first time, explainable AI techniques are employed to enhance the interpretability of the machine learning models. The nine algorithms used in this study are Support Vector Regression, Random Forest, XGBoost, AdaBoost, CatBoost, Decision Tree, the Extra Tree Regressor, the Explainable Boosting Model (EBM), and the Gradient Boosting Regressor. This study analyzes the performance of these algorithms to predict the surface roughness of PLA specimens, while also investigating the impacts of individual input parameters through explainable AI methods. The experimental results indicate that the XGBoost algorithm outperforms the other algorithms with the highest coefficient of determination value of 0.9634. This value demonstrates that the XGBoost algorithm provides the most accurate predictions for surface roughness compared with other algorithms. This study also provides a comparative analysis of the performance of all the algorithms used in this study, along with insights derived from explainable AI techniques.
Full article
(This article belongs to the Special Issue Early Career Scientists’ (ECS) Contributions to Applied Mechanics)
►▼
Show Figures

Figure 1
Open AccessReview
Management of Intracranial Hemorrhage in the Setting of Mechanical Heart Valve Replacement Therapy
Appl. Mech. 2023, 4(2), 644-667; https://doi.org/10.3390/applmech4020033 - 11 May 2023
Abstract
►▼
Show Figures
The management of an intracranial hemorrhage in patients receiving anticoagulant therapy presents a significant challenge for medical professionals. Anticoagulant treatment is intended to prevent blood clotting, but it can worsen active brain bleeds. Despite this risk, avoiding the prothrombotic state caused by mechanical
[...] Read more.
The management of an intracranial hemorrhage in patients receiving anticoagulant therapy presents a significant challenge for medical professionals. Anticoagulant treatment is intended to prevent blood clotting, but it can worsen active brain bleeds. Despite this risk, avoiding the prothrombotic state caused by mechanical heart valves remains crucial. Guidelines on managing this issue are currently lacking, prompting a review that delves into embryonic development and anatomical functions of heart valves, valve replacement therapy for diseased valves, and the need for anticoagulants. Ultimately, recent literature and cases inform discussion regarding how best to manage intracranial hemorrhages in patients with mechanical heart valves. The expectation is that this examination will offer valuable perspectives on the handling of intracranial bleeding among individuals with mechanical heart valves and stimulate additional investigations in this intricate domain, particularly through the lens of applied mechanics.
Full article

Figure 1
Open AccessArticle
Employment of Fracture Mechanics Criteria for Accurate Assessment of the Full Set of Elastic Constants of Orthorhombic/Tetragonal Mono-Crystalline YBCO
Appl. Mech. 2023, 4(2), 585-643; https://doi.org/10.3390/applmech4020032 - 08 May 2023
Abstract
The effect of elastic constants, cij, on the nature (easy or difficult) of a cleavage system in mono-crystalline YBa2Cu3O7−δ is investigated by employing a novel three-dimensional eigenfunction expansion technique, based in part on the separation of
[...] Read more.
The effect of elastic constants, cij, on the nature (easy or difficult) of a cleavage system in mono-crystalline YBa2Cu3O7−δ is investigated by employing a novel three-dimensional eigenfunction expansion technique, based in part on the separation of the thickness variable and partly on a modified Frobenius-type series expansion technique in conjunction with Eshelby–Stroh formalism. Out of the three available, complete sets of elastic constants, only the experimental measurements using resonant ultrasound spectroscopy merit serious attention, despite reported values of c12 and, to a lesser extent, c66 being excessively high. The present investigation considers six through-thickness crack systems weakening orthorhombic mono-crystalline Yttrium barium copper oxide (YBCO) plates. More importantly, the present investigation establishes sufficient conditions for crack path stability/instability, which entail a cleavage system being easy or difficult, i.e., whether a crack would propagate in its original plane/direction or deflect to a different one. This criterion of fracture mechanics is then employed for accurate determination of the full set of elastic constants of superconducting mono-crystalline YBCO. Finally, heretofore unavailable results pertaining to the through-thickness variations of stress intensity factors and energy release rates for a crack corresponding to symmetric and skew-symmetric hyperbolic cosine loads, which also satisfy the boundary conditions on the plate surfaces, bridge a longstanding gap.
Full article
(This article belongs to the Topic Fatigue and Fracture Assessment of Structural Components and Materials)
►▼
Show Figures

Figure 1
Open AccessArticle
Τopology Optimization under a Single Displacement Constraint Using a Strain Energy Criterion
Appl. Mech. 2023, 4(2), 567-584; https://doi.org/10.3390/applmech4020031 - 05 May 2023
Abstract
►▼
Show Figures
Based on a previous concept that has been successfully applied to the sizing optimization of truss and frame structures, this work extends and improves the strain energy criterion in the topology optimization of 2D continuum structures under a single displacement constraint. To make
[...] Read more.
Based on a previous concept that has been successfully applied to the sizing optimization of truss and frame structures, this work extends and improves the strain energy criterion in the topology optimization of 2D continuum structures under a single displacement constraint. To make the proposed methodology transparent to other researchers and at the same time meaningful, the numerical value of the displacement constraint was taken to be equal to that obtained through the well-known Solid Isotropic Material with Penalization (SIMP) method under the same boundary conditions and the same external forces. The proposed method is more efficient than the SIMP method while leading to topologies very close to those obtained by the latter.
Full article

Figure 1
Open AccessArticle
A Numerically Efficient Method to Assess the Elastic–Plastic Strain Energy Density of Notched and Imperfective Cast Steel Components
Appl. Mech. 2023, 4(2), 528-566; https://doi.org/10.3390/applmech4020030 - 27 Apr 2023
Abstract
The fatigue strength of cast steel components is severely affected by manufacturing process-based bulk and surface imperfections. As these defect structures possess an arbitrary spatial shape, the utilization of local assessment methods is encouraged to design for service strength. This work applies the
[...] Read more.
The fatigue strength of cast steel components is severely affected by manufacturing process-based bulk and surface imperfections. As these defect structures possess an arbitrary spatial shape, the utilization of local assessment methods is encouraged to design for service strength. This work applies the elastic–plastic strain energy density concept to study the fatigue strength properties of a high-strength cast steel alloy G12MnMo7-4+QT. A fatigue design limit curve is derived based on non-linear finite element analyses which merges experimental high-cycle fatigue results of unnotched and notched small-scale specimens tested at three different stress ratios into a unique narrow scatter band characterized by a scatter index of . A comparison to the linear–elastic assessment conducted in a preceding study reveals a significant improvement in prediction accuracy which is assigned to the consideration of the elastic–plastic material behaviour. In order to reduce computational effort, a novel approximation is presented which facilitates the calculation of the elastic–plastic strain energy density based on linear–elastic finite element results and Neuber’s concept. Validation of the assessment framework reveals a satisfying agreement to non-linear simulation results, showing an average root mean square deviation of only approximately eight percent in terms of total strain energy density. In order to study the effect of bulk and surface imperfections on the fatigue strength of cast steel components, defect-afflicted large-scale specimens are assessed by the presented elastic–plastic framework, yielding fatigue strength results which merge into the scatter band of the derived design limit curve. As the conducted fatigue assessment is based solely on linear–elastic two-dimensional simulations, the computational effort is substantially decreased. Within the present study, a reduction of approximately 400 times in computation time is observed. Hence, the established assessment framework presents an engineering-feasible method to evaluate the fatigue life of imperfective cast steel components based on rapid total strain energy density calculations.
Full article
(This article belongs to the Special Issue Feature Papers in Material Mechanics)
►▼
Show Figures

Figure 1
Open AccessArticle
Delamination Behavior of Highly Stretchable Soft Islands Multi-Layer Materials
Appl. Mech. 2023, 4(2), 514-527; https://doi.org/10.3390/applmech4020029 - 26 Apr 2023
Abstract
Stretchable electronics rely on sophisticated structural designs to allow brittle metallic conductors to adapt to curved or moving substrates. Patterns of soft islands and stable cracks in layered silver-PDMS composites provide exceptional stretchability by means of strain localization as the cracks open and
[...] Read more.
Stretchable electronics rely on sophisticated structural designs to allow brittle metallic conductors to adapt to curved or moving substrates. Patterns of soft islands and stable cracks in layered silver-PDMS composites provide exceptional stretchability by means of strain localization as the cracks open and the islands strain. To investigate the reliability and potential failure modes, we study the initiation and propagation of delamination in dependence of structure geometry and quality of the metal-polymer bonding. Our numerical experiments show a well-bonded metal film to be under no risk of delamination. Even weakly bonded metal films sustain moderate strains well above the limits of classical electronic materials before the onset of delamination in the soft islands structures. If delamination occurs, it does so in predictable patterns that retain functionality over a remarkable strain range in the double-digit percent range before failure, thus, providing safety margins in applications.
Full article
(This article belongs to the Special Issue Feature Papers in Material Mechanics)
►▼
Show Figures

Figure 1
Open AccessArticle
Effect of Control Parameters on Hybrid Electric Propulsion UAV Performance for Various Flight Conditions: Parametric Study
Appl. Mech. 2023, 4(2), 493-513; https://doi.org/10.3390/applmech4020028 - 25 Apr 2023
Abstract
Nowadays, great efforts of ongoing research are devoted to hybrid-electric propulsion technology that offers various benefits, such as reduced noise and pollution emissions and enhanced aircraft performance and fuel efficiency. The ability to estimate the performance of an aircraft in any flight situation
[...] Read more.
Nowadays, great efforts of ongoing research are devoted to hybrid-electric propulsion technology that offers various benefits, such as reduced noise and pollution emissions and enhanced aircraft performance and fuel efficiency. The ability to estimate the performance of an aircraft in any flight situation in which it may operate is essential for aircraft development. In the current study, a simulation model was developed that allows estimating the flight performance and analyzing the mission of a fixed-wing multi-rotor Unmanned Aerial Vehicle (UAV) with a hybrid electric propulsion system (HEPS), with both conventional and Vertical Takeoff and Landing (VTOL) capabilities. The control is based on the continuous specification of pitch angle, propulsion thrust, and lift thrust to achieve the required conditions of a given flight segment. Six different missions were considered to analyze the effect of control parameters exhibiting the most influence on the UAV mission performance. An appropriate set of control parameters was selected through a multidimensional parametric study. The results show that the control parameters, if not well tuned, affect the mission performance: for example, in the deceleration transition, a longer time to reduce the cruise speed to stand still may be the result because the controller struggles to adjust the pitch angle. In addition, the implemented methodology captures the effects of transient maneuvers, unlike typical quasi-static analysis without the complexity of full simulation models.
Full article
(This article belongs to the Special Issue Smart Structures and Systems: Actual Scientific and Industrial Research (2nd Volume))
►▼
Show Figures

Figure 1
Open AccessArticle
Symbolic Parametric Representation of the Area and the Second Moments of Area of Periodic B-Spline Cross-Sections
Appl. Mech. 2023, 4(2), 476-492; https://doi.org/10.3390/applmech4020027 - 21 Apr 2023
Abstract
The calculation of moments of area is one of the most fundamental aspects of engineering mechanics for calculating the properties of beams or for the determination of invariants in different kind of geometries. While a variety of shapes, such as circles, rectangles, ellipses,
[...] Read more.
The calculation of moments of area is one of the most fundamental aspects of engineering mechanics for calculating the properties of beams or for the determination of invariants in different kind of geometries. While a variety of shapes, such as circles, rectangles, ellipses, or their combinations, can be described symbolically, such symbolic expressions are missing for freeform cross-sections. In particular, periodic B-spline cross-sections are suitable for an alternative beam cross-section, e.g., for the representation of topology optimization results. In this work, therefore, a symbolic description of the moments of area of various parametric representations of such B-splines is computed. The expressions found are then compared with alternative computational methods and checked for validity. The resulting equations show a simple method that can be used for the fast conceptual computation of such moments of area of periodic B-splines.
Full article
(This article belongs to the Special Issue Mechanical Design Technologies for Beam, Plate and Shell Structures (2nd Volume))
►▼
Show Figures

Figure 1
Open AccessArticle
AFM Indentation on Highly Heterogeneous Materials Using Different Indenter Geometries
Appl. Mech. 2023, 4(2), 460-475; https://doi.org/10.3390/applmech4020026 - 18 Apr 2023
Abstract
Hertzian mechanics is the most frequently used theory for data processing in Atomic Force Microscopy (AFM) indentation experiments on soft biological samples, due to its simplicity and significant scientific results previously published. For instance, using the Hertz model, it has been proven that
[...] Read more.
Hertzian mechanics is the most frequently used theory for data processing in Atomic Force Microscopy (AFM) indentation experiments on soft biological samples, due to its simplicity and significant scientific results previously published. For instance, using the Hertz model, it has been proven that there are significant differences in the mechanical properties of normal and cancerous tissues and that cancer cells’ invasive properties are correlated with their nanomechanical properties. However, many scientists are skeptical regarding the applicability of the Hertz theory to biological materials, as they are highly heterogeneous. The main critical question to be addressed is “what do we calculate” when fitting the force-indentation data to Hertz equations. Previous studies have shown that when using cylindrical, parabolic, or conical indenters, the fitting parameter is the average Young’s modulus. In this paper, it is demonstrated that it is also valid to fit equations derived from Hertzian mechanics to force-indentation data when testing soft, heterogeneous samples for any indenter geometry. The fitting factor calculated through this approach always represents the average Young’s modulus for a specific indentation depth. Therefore, Hertzian mechanics can be extended to soft heterogeneous materials, regardless of the indenter’s shape.
Full article
(This article belongs to the Special Issue Feature Papers in Material Mechanics)
►▼
Show Figures

Figure 1
Open AccessArticle
Variation of Elastic Stiffness Parameters of Granitic Rock during Loading in Uniaxial Compressive Test
Appl. Mech. 2023, 4(2), 445-459; https://doi.org/10.3390/applmech4020025 - 13 Apr 2023
Abstract
►▼
Show Figures
Any rock mechanics’ design inherently involves determining the deformation characteristics of the rock material. The purpose of this study is to offer equations for calculating the values of bulk modulus (K), elasticity modulus (E), and rigidity modulus (G) throughout the loading of the
[...] Read more.
Any rock mechanics’ design inherently involves determining the deformation characteristics of the rock material. The purpose of this study is to offer equations for calculating the values of bulk modulus (K), elasticity modulus (E), and rigidity modulus (G) throughout the loading of the sample until failure. Also, the Poisson’s ratio, which is characterized from the stress–strain curve, has a significant effect on the rigidity and bulk moduli. The results of a uniaxial compressive (UCS) test on granitic rocks from the Morágy (Hungary) radioactive waste reservoir site were gathered and examined for this purpose. The fluctuation of E, G, and K has been the subject of new linear and nonlinear connections. The proposed equations are parabolic in all of the scenarios for the Young’s modulus and shear modulus, the study indicates. Furthermore, the suggested equations for the bulk modulus in the secant, average, and tangent instances are also nonlinear. Moreover, we achieved correlations with a high determination factor for E, G, and K in three different scenarios: secant, tangent, and average. It is particularly intriguing to observe that the elastic stiffness parameters exhibit strong correlation in the results.
Full article

Figure 1
Open AccessReview
Impact Testing on the Pristine and Repaired Composite Materials for Aerostructures
Appl. Mech. 2023, 4(2), 421-444; https://doi.org/10.3390/applmech4020024 - 12 Apr 2023
Abstract
Aircraft technologies and materials have been developing and improving drastically over the last hundred years. Over the last three decades, an interest in the use of composites for external structures has become prominent. For this to be possible, thorough research on the performance
[...] Read more.
Aircraft technologies and materials have been developing and improving drastically over the last hundred years. Over the last three decades, an interest in the use of composites for external structures has become prominent. For this to be possible, thorough research on the performance of composite materials, specifically the impact performance, have been carried out. For example, research of impact testing for pristine carbon-reinforced epoxy composites mentions matrix cracks, fibre fracture, and delamination as the failure modes that require monitoring. In addition, thorough testing has been carried out on composites repaired with an adhesive bond to observe the effects of conditioning on the adhesively bonded repair. The results suggest there are no major changes in the adhesive under the testing condition. By reviewing the impact testing on the pristine and repaired composite materials for aerostructures, this paper aims to illustrate the main findings and also explore the potential future work in this research scope.
Full article
(This article belongs to the Special Issue Feature Papers in Material Mechanics)
►▼
Show Figures

Figure 1
Open AccessArticle
Structural Design and Numerical Analysis of Hoisting Device of Test Bed for Aircraft Engine
by
Appl. Mech. 2023, 4(2), 407-420; https://doi.org/10.3390/applmech4020023 - 12 Apr 2023
Abstract
In this work, a test bed and stand structure were designed for the thrust test of an aircraft. The engine test rig consists of a thrust stand, test bed, transport system, and hoisting device. In this study, structural design and analysis of the
[...] Read more.
In this work, a test bed and stand structure were designed for the thrust test of an aircraft. The engine test rig consists of a thrust stand, test bed, transport system, and hoisting device. In this study, structural design and analysis of the stand and bed for engine thrust test equipment were performed. The stand structure supported the engine, and the test bed moved the thrust test equipment and the engine. Structural design loads were defined by analyzing the operating conditions. Structural analysis was performed based on the structural design results. As a result of analyzing the structural safety against thrust, which is the main design load, it was considered to be sufficiently safe. Finally, the target structure was manufactured to verify the design result.
Full article
(This article belongs to the Topic Advances on Structural Engineering, 2nd Volume)
►▼
Show Figures

Figure 1
Open AccessArticle
Analysis and Design of Lateral Framing Systems for Multi-Story Steel Buildings
by
, , , , , and
Appl. Mech. 2023, 4(2), 389-406; https://doi.org/10.3390/applmech4020022 - 27 Mar 2023
Abstract
This study focused on identifying the most appropriate structural system for multi-story buildings and analyzing its response to lateral loads. The study analyzed and compared the different structural systems to determine the most suitable option. The study aims to utilize three lateral framing
[...] Read more.
This study focused on identifying the most appropriate structural system for multi-story buildings and analyzing its response to lateral loads. The study analyzed and compared the different structural systems to determine the most suitable option. The study aims to utilize three lateral framing systems (moment, braced, and diagrid) in order to investigate which system needs the least amount of steel to meet the design requirements. Thus, in order to determine the estimated steel savings of this system as compared to the moment and braced frames, the four-story and eight-story buildings that are 96′ × 96′ in the plane and utilize moment frames, braced frame, and diagrid framing structural systems are presented. Based on the American Society of Civil Engineers (ASCE) 7–10, load combinations are considered for the designs, and the RAM structural analysis is used for the modeling and analysis of the structural systems. The findings of this study’s illustrations were the optimum for the analysis of wind of 176 kips and seismic loads of 122 kips, the building’s lateral displacements, which were the lowest at 0.045 inches, the story drift, the story stiffness, and the story shear for each structural system. In addition, the diagrid system also had the least amount of shear for all the stories, suggesting that it is better able to manage the lateral forces. These results indicate that the diagrid system is a more efficient structural system and can be recommended for use in multi-story buildings.
Full article
(This article belongs to the Special Issue Feature Papers in Applied Mechanics)
►▼
Show Figures

Figure 1
Open AccessArticle
Combining Digital Image Correlation and Acoustic Emission to Characterize the Flexural Behavior of Flax Biocomposites
by
and
Appl. Mech. 2023, 4(1), 371-388; https://doi.org/10.3390/applmech4010021 - 21 Mar 2023
Abstract
Understanding the effect of staking sequences and identifying the damage occurring within a structure using a structural health monitoring system are the keys to an efficient design of composite-based parts. In this research, a combination of digital image correlation (DIC) and acoustic emission
[...] Read more.
Understanding the effect of staking sequences and identifying the damage occurring within a structure using a structural health monitoring system are the keys to an efficient design of composite-based parts. In this research, a combination of digital image correlation (DIC) and acoustic emission (AE) is used to locate and classify the type of damage depending on the stacking sequence of the laminate during flexural loading. As a first step, the results of the strain fields for unidirectional, cross-ply, and quasi-isotropic laminates were compared to discuss their global behavior and to correlate the different damage patterns with the possible failure mechanisms. The damage was then addressed using a comprehensive interpretation of the acoustic emission signatures and the K-means classification of the acoustic events. The development of each damage mechanism was correlated to the applied load and expressed as a function of the loading rate to highlight the effect of the stacking sequence. Finally, the results of DIC and AE were combined to improve the reliability of the damage investigation without limiting the failure mechanism to matrix cracking, interfacial failure, and fiber breakage, as expected by the unsupervised event clustering.
Full article
(This article belongs to the Special Issue Feature Papers in Material Mechanics)
►▼
Show Figures

Figure 1
Open AccessArticle
Real-Time Detection of Faults in Rotating Blades Using Frequency Response Function Analysis
Appl. Mech. 2023, 4(1), 356-370; https://doi.org/10.3390/applmech4010020 - 15 Mar 2023
Abstract
Turbo machines develop faults in the rotating blades during operation in undesirable conditions. Such faults in the rotating blades are fatigue cracks, mechanical looseness, imbalance, misalignment, etc. Therefore, it is crucial that the blade faults should be detected and diagnosed in order to
[...] Read more.
Turbo machines develop faults in the rotating blades during operation in undesirable conditions. Such faults in the rotating blades are fatigue cracks, mechanical looseness, imbalance, misalignment, etc. Therefore, it is crucial that the blade faults should be detected and diagnosed in order to minimize the severe damage of such machines. In this paper, vibration analysis of the rotating blades is conducted using an experimental laboratory setup in order to develop a methodology to detect faults in the rotating blades. The faults considered for the study include cracks and mechanical looseness for which dynamic responses are recorded using a laser vibrometer. Analysis has been carried out by comparing the frequency response function spectrums of the fault blade with those of the healthy blade related to the resonance frequency. The Internet of Things and wireless sensor networks are implemented to transmit the measured data to the cloud platform. A support vector machine algorithm is used for preparing the learning model in order to extract and classify the faults of the rotating blades. It can be clearly seen from the results that there is variation in the frequency response function spectrums of healthy and faulty conditions of the rotating blades.
Full article
(This article belongs to the Collection Fracture, Fatigue, and Wear)
►▼
Show Figures

Figure 1
Open AccessArticle
Data-Driven, Physics-Based, or Both: Fatigue Prediction of Structural Adhesive Joints by Artificial Intelligence
by
, , , , , and
Appl. Mech. 2023, 4(1), 334-355; https://doi.org/10.3390/applmech4010019 - 08 Mar 2023
Abstract
Here, a comparative investigation of data-driven, physics-based, and hybrid models for the fatigue lifetime prediction of structural adhesive joints in terms of complexity of implementation, sensitivity to data size, and prediction accuracy is presented. Four data-driven models (DDM) are constructed using extremely randomized
[...] Read more.
Here, a comparative investigation of data-driven, physics-based, and hybrid models for the fatigue lifetime prediction of structural adhesive joints in terms of complexity of implementation, sensitivity to data size, and prediction accuracy is presented. Four data-driven models (DDM) are constructed using extremely randomized trees (ERT), eXtreme gradient boosting (XGB), LightGBM (LGBM) and histogram-based gradient boosting (HGB). The physics-based model (PBM) relies on the Findley’s critical plane approach. Two hybrid models (HM) were developed by combining data-driven and physics-based approaches obtained from invariant stresses (HM-I) and Findley’s stress (HM-F). A fatigue dataset of 979 data points of four structural adhesives is employed. To assess the sensitivity to data size, the dataset is split into three train/test ratios, namely 70%/30%, 50%/50%, and 30%/70%. Results revealed that DDMs are more accurate, but more sensitive to dataset size compared to the PBM. Among different regressors, the LGBM presented the best performance in terms of accuracy and generalization power. HMs increased the accuracy of predictions, whilst reducing the sensitivity to data size. The HM-I demonstrated that datasets from different sources can be utilized to improve predictions (especially with small datasets). Finally, the HM-I showed the highest accuracy with an improved sensitivity to data size.
Full article
(This article belongs to the Special Issue Feature Papers in Applied Mechanics)
►▼
Show Figures

Figure 1
Open AccessArticle
Closed Form Solution in the Buckling Optimization Problem of Twisted Shafts
Appl. Mech. 2023, 4(1), 317-333; https://doi.org/10.3390/applmech4010018 - 28 Feb 2023
Abstract
The counterpart for Euler’s buckling problem is Greenhill’s problem, which studies the forming of a loop in an elastic beam under torsion. In the context of twisted shafts, the optimal shape of the beam along its axis is searched. A priori form of
[...] Read more.
The counterpart for Euler’s buckling problem is Greenhill’s problem, which studies the forming of a loop in an elastic beam under torsion. In the context of twisted shafts, the optimal shape of the beam along its axis is searched. A priori form of the cross-section remains unknown. For the solution of the actual problem, the stability equations take into account all possible convex and simply connected shapes of the cross-section. The cross-sections are similar geometric figures related by a homothetic transformation with respect to a homothetic center on the axis of the beam and vary along its axis. The distribution of material along the length of a twisted shaft is optimized so that the beam is of the constant volume and will support the maximal moment without spatial buckling. The applications of the variational method for stability problems are illustrated in this manuscript.
Full article
(This article belongs to the Special Issue Feature Papers in Applied Mechanics)
►▼
Show Figures

Figure 1
Open AccessArticle
Free-Form Deformation Parameterization on the Aerodynamic Optimization of Morphing Trailing Edge
Appl. Mech. 2023, 4(1), 304-316; https://doi.org/10.3390/applmech4010017 - 28 Feb 2023
Abstract
Every aerodynamic optimization is proceeded by a parameterization of the studied aerial object, and due to its influence on the final optimization process, careful attention should be made in choosing the appropriate parameterization method. An aerodynamic optimization of a morphing trailing edge is
[...] Read more.
Every aerodynamic optimization is proceeded by a parameterization of the studied aerial object, and due to its influence on the final optimization process, careful attention should be made in choosing the appropriate parameterization method. An aerodynamic optimization of a morphing trailing edge is performed using a free-form deformation parameterization technique with the purpose of examining the influence of the initial conditions of the parameterization on the optimization results, namely on the number of control points. High-fidelity gradient-based optimization using the discrete adjoint method is established by the coupling of OpenFOAM and Python within the DAFoam optimization framework. The results indicate that the number of control points has a considerable effect on the optimization process, in particular on the convergence, objective function value, and on the deformation feasibility.
Full article
(This article belongs to the Special Issue Feature Papers in Fluid Mechanics)
►▼
Show Figures

Figure 1
Open AccessArticle
Prediction of Effective Elastic and Thermal Properties of Heterogeneous Materials Using Convolutional Neural Networks
Appl. Mech. 2023, 4(1), 287-303; https://doi.org/10.3390/applmech4010016 - 27 Feb 2023
Abstract
The aim of this study is to develop a new method to predict the effective elastic and thermal behavior of heterogeneous materials using Convolutional Neural Networks CNN. This work consists first of all in building a large database containing microstructures of two phases
[...] Read more.
The aim of this study is to develop a new method to predict the effective elastic and thermal behavior of heterogeneous materials using Convolutional Neural Networks CNN. This work consists first of all in building a large database containing microstructures of two phases of heterogeneous material with different shapes (circular, elliptical, square, rectangular), volume fractions of the inclusion (20%, 25%, 30%), and different contrasts between the two phases in term of Young modulus and also thermal conductivity. The contrast expresses the degree of heterogeneity in the heterogeneous material, when the value of C is quite important (C >> 1) or quite low (C << 1), it means that the material is extremely heterogeneous, while C= 1, the material becomes totally homogeneous. In the case of elastic properties, the contrast is expressed as the ratio between Young’s modulus of the inclusion and that of the matrix (C = ), while for thermal properties, this ratio is expressed as a function of the thermal conductivity of both phases (C = ). In our work, the model will be tested on two values of contrast (10 and 100). These microstructures will be used to estimate the elastic and thermal behavior by calculating the effective bulk, shear, and thermal conductivity values using a finite element method. The collected databases will be trained and tested on a deep learning model composed of a first convolutional network capable of extracting features and a second fully connected network that allows, through these parameters, the adjustment of the error between the found output and the expected one. The model was verified using a Mean Absolute Percentage Error (MAPE) loss function. The prediction results were excellent, with a prediction score between 92% and 98%, which justifies the good choice of the model parameters.
Full article
(This article belongs to the Topic Fatigue and Fracture Assessment of Structural Components and Materials)
►▼
Show Figures

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Applied Sciences, Materials, Metals, Polymers, Applied Mechanics
Fatigue and Fracture Assessment of Structural Components and Materials
Topic Editors: Alberto Campagnolo, Alberto SaporaDeadline: 31 May 2023
Topic in
Applied Mechanics, Applied Sciences, Coatings, Materials, Metals
Surface Treatments for Protecting from Fracture and Fatigue Damage II
Topic Editors: Ricardo Branco, Filippo Berto, Francesco Iacoviello, José António CorreiaDeadline: 30 December 2023
Topic in
Applied Mechanics, Applied Sciences, Buildings, CivilEng, Infrastructures
Advances on Structural Engineering, 2nd Volume
Topic Editors: Jong Wan Hu, Junwon SeoDeadline: 31 December 2023
Topic in
Applied Mechanics, Energies, Processes, Sustainability, Wind
Wind Energy in Multi Energy Systems
Topic Editors: Zhe Chen, Davide Astolfi, Tingting ZhuDeadline: 31 December 2024

Conferences
Special Issues
Special Issue in
Applied Mechanics
Impact Mechanics of Materials and Structures
Guest Editor: Aleksandr CherniaevDeadline: 16 June 2023
Special Issue in
Applied Mechanics
Feature Papers in Material Mechanics
Guest Editors: Filippo Berto, Luis Reis, Qing PengDeadline: 18 July 2023
Special Issue in
Applied Mechanics
Feature Papers in Fluid Mechanics
Guest Editor: Pedro Javier Gamez-MonteroDeadline: 23 August 2023
Special Issue in
Applied Mechanics
Smart Structures and Systems: Actual Scientific and Industrial Research (2nd Volume)
Guest Editors: Martin Wiedemann, Hans Peter Monner, Malte Misol, Thomas Haase, Tobias Melz, Sven Herold, Ursula EulDeadline: 21 September 2023
Topical Collections
Topical Collection in
Applied Mechanics
Fracture, Fatigue, and Wear
Collection Editor: Magd Abdel Wahab