Natural Products: Biological-, Antioxidant Properties and Health Effects - 2nd Edition

A special issue of Antioxidants (ISSN 2076-3921). This special issue belongs to the section "Health Outcomes of Antioxidants and Oxidative Stress".

Deadline for manuscript submissions: closed (30 November 2023) | Viewed by 27068

Special Issue Editor


E-Mail Website
Guest Editor
Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece
Interests: nutritional physiology; natural antioxidants; selenium and selenoproteins; elemental metabolomics; molecular metabolism
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Natural products contain numerous antioxidant compounds endowed with reducing and radical scavenging properties. Polyphenols, carbohydrates and derivatives, terpenoids, and essential oil components are only some of the compounds that are capable of counteracting oxidative damage. In vivo, they quench radical species, peroxides, and promoters of oxidative reactions and act on redox-sensitive transcription factors to reduce oxidative stress.

Research findings have shown that the addition of natural antioxidant compounds to foods or animal feeds reduces oxidation, improves overall product quality, and increases shelf life. Recently, natural bioactive compounds have also been studied against attacking and resistant pathogenic microorganisms, bacteria, viruses, and fungi whose increasing resistance to conventional drugs represents a dramatic problem for human health and the global healthcare systems. Moreover, their supplementation can reduce cellular oxidative stress—typical of cardiovascular, inflammatory, and neurodegenerative diseases—and certain types of cancer.

Thus, due to such a broad repertoire of beneficial effects, bioactive compounds of natural products are always fields of research interest. In addition, it must be taken into account that agricultural byproducts and waste products can also represent a precious source of antioxidants.

I am pleased to invite you to submit your research findings to this Special Issue (2nd volume), which aims to collect original research papers, reviews, clinical trials, and meta-analyses covering all aspects of natural antioxidants’ applications, biological properties, antioxidant effects, and health effects. Papers dealing with plant antioxidants and natural products with improved antioxidant capacity through agricultural, analytical, biochemical, molecular, or technological approaches, innovative uses in food and feed science as antioxidants and antimicrobials, or elucidating antioxidant mechanisms are particularly welcome.

Please note that in studies of complex mixtures of natural products, the characterization of chemicals using analytical methodologies, such as HPLC, MS, LC–MS, HPLC–MS, and NMR, should be included.

I look forward to receiving your contributions.

Dr. Evangelos Zoidis
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antioxidants is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • agricultural byproducts
  • antioxidant compounds
  • bioactive compounds
  • essential oils
  • health effects
  • oxidative stress
  • polyphenols
  • radical scavenging
  • shelf life
  • waste products

Published Papers (15 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 1322 KiB  
Article
Cherries with Different Geographical Origins Regulate Neuroprotection in a Photoperiod-Dependent Manner in F344 Rats
by Francesca Manocchio, Francisca Isabel Bravo, Gisela Helfer and Begoña Muguerza
Antioxidants 2024, 13(1), 72; https://doi.org/10.3390/antiox13010072 - 03 Jan 2024
Viewed by 1251
Abstract
The photoperiod is the main environmental cue that drives seasonal adaptive responses in reproduction, behavior, and metabolism in seasonal animals. Increasing evidence suggests that (poly)phenols contained in fruits can also modulate seasonal rhythms. (Poly)phenol-rich diets are associated with an improvement in cognitive function [...] Read more.
The photoperiod is the main environmental cue that drives seasonal adaptive responses in reproduction, behavior, and metabolism in seasonal animals. Increasing evidence suggests that (poly)phenols contained in fruits can also modulate seasonal rhythms. (Poly)phenol-rich diets are associated with an improvement in cognitive function and neuroprotection due to their anti-inflammatory and antioxidative properties. However, it is unknown whether cherries affect neuroprotection in a photoperiod-dependent manner. To test this, F344 rats were exposed to L6 (6 h light/day), L12 (12 h light/day) and L18 (18 h light/day) photoperiods and fed a standard chow diet supplemented with either a control, lyophilized cherry 1 or cherry 2 with distinctive phenolic hallmarks. Physiological parameters (body weight, eating pattern index (EPI), testosterone, T4/T3) and hypothalamic key genes (Dio2, Dio3, Raldh1 and Ghrh) were strongly regulated by the photoperiod and/or fruit consumption. Importantly, we show for the first time that neurotrophs (Bdnf, Sod1 and Gpx1) in the hippocampus are also regulated by the photoperiod. Furthermore, the consumption of cherry 2, which was richer in total flavonols, but not cherry 1, which was richer in total anthocyanins and flavanols, enhanced neuroprotection in the hippocampus. Our results show that the seasonal consumption of cherry with a specific phenolic composition plays an important role in the hippocampal activation of neuroprotection in a photoperiod-dependent manner. Full article
Show Figures

Graphical abstract

28 pages, 2799 KiB  
Article
Pharmacological Property and Cytotoxic Effect Showing Antiproliferative Potency in Human Melanoma Cell Lines (A375) of Combretum racemosum P. Beauv. Leaf and Root Extracts Used in Benin
by Durand Dah-Nouvlessounon, Michaelle Chokki, Ismaël M. S. Hoteyi, Fidèle Fassinou, Floricuta Ranga, Florinela Fetea, Zorita Diaconeasa, Dan Vodnar, Bianca Furdui, Farid Baba-Moussa, Rodica Mihaela Dinica, Ramona Suharoschi and Lamine Baba-Moussa
Antioxidants 2024, 13(1), 31; https://doi.org/10.3390/antiox13010031 - 22 Dec 2023
Cited by 1 | Viewed by 786
Abstract
Combretum racemosum, a plant from the Combretaceae family, is traditionally used in Benin for various health problems. However, scientific research on Beninese samples of this plant is limited. The aim of this study was to identify and assess the bioactive compounds in [...] Read more.
Combretum racemosum, a plant from the Combretaceae family, is traditionally used in Benin for various health problems. However, scientific research on Beninese samples of this plant is limited. The aim of this study was to identify and assess the bioactive compounds in the plant’s leaves and roots. Initial screening involved analyzing powders derived from these parts for total polyphenols, flavonoids, and both condensed and hydrolyzable tannins. The polyphenolic compounds were analyzed using HPLC-DAD-ESI-MS. To evaluate the plant’s antimicrobial properties, the agar diffusion method was employed, while FRAP and DPPH assays were used to determine its antioxidant capacity. For anti-inflammatory activity, the study utilized tests for in vitro protein denaturation inhibition and in vivo acute edema induced by carrageenan. Additionally, an antiproliferative assay was conducted using the human melanoma cell line A375. The analysis revealed the presence of significant polyphenolic compounds in both the leaf and root extracts of C. racemosum. Notably, compounds like Pedunculagin, Vescalagin, Casuarictin, and Digalloyl-glucoside were abundant in the leaves, with Vescalagin being especially predominant in the roots. The study also found that the dichloromethane extracts from the leaves and roots exhibited bactericidal effects on a substantial percentage of meat-isolated strains. Moreover, the antioxidant activities of these extracts were confirmed through FRAP and DPPH methods. Interestingly, the dichloromethane root extract showed strong activity in inhibiting thermal albumin denaturation, while the water–ethanol leaf extract demonstrated significant edema inhibition. Finally, the study observed that C. racemosum extracts reduced cell viability in a dose-dependent manner, with leaf extracts showing more pronounced antiproliferative effects than root extracts. These findings highlight the potential of C. racemosum leaves and roots as sources of compounds with diverse and significant biological activities. In conclusion, C. racemosum’s leaves and roots exhibit promising biological activities, highlighting their potential medicinal value. Full article
Show Figures

Figure 1

17 pages, 1397 KiB  
Article
Effect of Milk Origin and Seasonality of Yogurt Acid Whey on Antioxidant Activity before and after In Vitro Gastrointestinal Digestion
by Eleni Dalaka, Georgios C. Stefos, Ioannis Politis and Georgios Theodorou
Antioxidants 2023, 12(12), 2130; https://doi.org/10.3390/antiox12122130 - 18 Dec 2023
Viewed by 930
Abstract
Yogurt acid whey (YAW) is a by-product of Greek strained yogurt production. The disposal of YAW constitutes an environmental problem, and given the increasing demand of Greek yogurt worldwide, its handling is a challenge. However, whey-derived peptides, resulting from microbial fermentation as well [...] Read more.
Yogurt acid whey (YAW) is a by-product of Greek strained yogurt production. The disposal of YAW constitutes an environmental problem, and given the increasing demand of Greek yogurt worldwide, its handling is a challenge. However, whey-derived peptides, resulting from microbial fermentation as well as those resulting from further hydrolysis during the digestion process, have been linked to enhanced biological activities. In this study, the antioxidant capacity of 33 samples of YAW obtained from Greek dairy companies of bovine, ovine or caprine origin was investigated using both cell-free and cell-based assays. The YAW samples, their in vitro digestion products (YAW-Ds) and a fraction of the digests (less than 3 kDa; YAW-D-P3) were assessed using four biochemical assays, namely ORAC, ABTS, FRAP and P-FRAP. Our data revealed a higher antioxidant capacity for digested samples compared with undigested samples, with all four methods. ORAC values after in vitro digestion were higher for the ovine samples compared to their bovine (YAW-D and YAW-D-P3) and caprine (YAW-D-P3) counterparts. Furthermore, the YAW-D-P3 fraction derived from samples collected in the summer months exhibited higher ORAC values when compared to the respective fraction from the winter months’ samples. The cellular antioxidant activity of ovine YAW-D-P3 was improved in H2O2-treated HT29 cells compared to the control H2O2-treated cells. However, YAW-D-P3 could not trigger either the pathways involving the transcription factors NF-κB or NFE2L2 or the gene expression of SOD1, CAT and HMOX1 in LPS-challenged THP-1-derived macrophages. These results suggest that YAW, and particularly YAW from ovine origin, could be used as a natural source for its antioxidant potential in human and animal nutrition. Full article
Show Figures

Figure 1

14 pages, 1013 KiB  
Article
Antioxidant Activity of an Aqueous Extract of Cuttlefish Ink during Fish Muscle Heating
by Marcos Trigo, David Paz, Antía Bote and Santiago P. Aubourg
Antioxidants 2023, 12(11), 1996; https://doi.org/10.3390/antiox12111996 - 13 Nov 2023
Viewed by 947
Abstract
The antioxidant effect of cuttlefish (Sepia officinalis) ink (CFI) was analysed in the present study. A model system consisting of minced seabream (Sparus aurata) muscle and different concentrations of an aqueous extract of CFI was subjected to a heat [...] Read more.
The antioxidant effect of cuttlefish (Sepia officinalis) ink (CFI) was analysed in the present study. A model system consisting of minced seabream (Sparus aurata) muscle and different concentrations of an aqueous extract of CFI was subjected to a heat (50 °C) treatment for 12 days. The effects of the CFI content and the heating time on lipid oxidation (conjugated diene (CD), conjugated triene (CT), and peroxide values and fluorescent compound formation), hydrolysis (free fatty acid content) development, and changes in the fatty acid (FA) profile (polyene index (PI), unsaturated FA content, ω3/ω6 ratio) were determined. The addition of the aqueous extract of CFI led to a lower (p < 0.05) development of lipid oxidation (CD, CT, and fluorescent compound determination) and to a higher (p < 0.05) retention of unsaturated FAs (PI determination). More important effects were found with increased CFI concentrations and at advanced heating times. However, a definite effect on lipid hydrolysis development (FFA value) could not be inferred. A new approach for the beneficial use of cuttlefish ink is presented. According to the direct relationship between rancidity stability and nutritional and sensory values, the present study provides a new strategy for the quality enhancement of thermally treated seafood. Full article
Show Figures

Figure 1

13 pages, 1323 KiB  
Article
A Comparative Analysis of Radical Scavenging, Antifungal and Enzyme Inhibition Activity of 3′-8″-Biflavones and Their Monomeric Subunits
by Iva Jurčević Šangut, Bojan Šarkanj, Erna Karalija and Dunja Šamec
Antioxidants 2023, 12(10), 1854; https://doi.org/10.3390/antiox12101854 - 12 Oct 2023
Cited by 2 | Viewed by 1170
Abstract
Biflavonoids are dimeric forms of flavonoids that have recently gained importance as an effective new scaffold for drug discovery. In particular, 3′-8″-biflavones exhibit antiviral and antimicrobial activity and are promising molecules for the treatment of neurodegenerative and metabolic diseases as well as cancer [...] Read more.
Biflavonoids are dimeric forms of flavonoids that have recently gained importance as an effective new scaffold for drug discovery. In particular, 3′-8″-biflavones exhibit antiviral and antimicrobial activity and are promising molecules for the treatment of neurodegenerative and metabolic diseases as well as cancer therapies. In the present study, we directly compared 3′-8″-biflavones (amentoflavone, bilobetin, ginkgetin, isoginkgetin, and sciadopitysin) and their monomeric subunits (apigenin, genkwanin, and acacetin) and evaluated their radical scavenging activity (with DPPH), antifungal activity against mycotoxigenic fungi (Alternaria alternata, Aspergillus flavus, Aspergillus ochraceus, Fusarium graminearum, and Fusarium verticillioides), and inhibitory activity on enzymes (acetylcholinesterase, tyrosinase, α-amylase, and α-glucosidase). All the tested compounds showed weak radical scavenging activity, while antifungal activity strongly depended on the tested concentration and fungal species. Biflavonoids, especially ginkgetin and isoginkgetin, proved to be potent acetylcholinesterase inhibitors, whereas monomeric flavonoids showed higher tyrosinase inhibitory activity than the tested 3′-8″-biflavones. Amentoflavone proved to be a potent α-amylase and α-glucosidase inhibitor, and in general, 3′-8″-biflavones showed a stronger inhibitory potential on these enzymes than their monomeric subunits. Thus, we can conclude that 3′-8″-dimerization enhanced acetylcholinesterase, α-amylase, and α-glucosidase activities, but the activity also depends on the number of hydroxyl and methoxy groups in the structure of the compound. Full article
Show Figures

Figure 1

20 pages, 3751 KiB  
Article
Evaluation of the Protective and Regenerative Properties of Commercially Available Artichoke Leaf Powder Extract on Plasma and Liver Oxidative Stress Parameters
by Ewa Florek, Marta Szukalska, Katarzyna Markiewicz, Izabela Miechowicz, Justyna Gornowicz-Porowska, Anna Jelińska, Joanna Kasprzyk-Pochopień, Joanna Nawrot, Agnieszka Sobczak, Małgorzata Horoszkiewicz, Wojciech Piekoszewski and Gerard Nowak
Antioxidants 2023, 12(10), 1846; https://doi.org/10.3390/antiox12101846 - 11 Oct 2023
Cited by 1 | Viewed by 1250
Abstract
Hepatocellular damage by the harmful effects of xenobiotics, which increase the production of free radicals, is a widespread phenomenon. The extract from the leaves of Cynara scolymus L. available as an artichoke preparation (natural source) of antioxidants may serve as a potential hepatoprotective [...] Read more.
Hepatocellular damage by the harmful effects of xenobiotics, which increase the production of free radicals, is a widespread phenomenon. The extract from the leaves of Cynara scolymus L. available as an artichoke preparation (natural source) of antioxidants may serve as a potential hepatoprotective factor. This study aimed to evaluate the impact of the protective and regenerative properties of artichoke preparation on the liver in three extract doses: 0.5; 1.0; and 1.5 g/kg bw/day. The evaluation was conducted by measuring the levels of oxidative stress parameters, including glutathione (GSH), glutathione S-transferases (GST), nitric oxide (NO), superoxide dismutase (SOD), catalase (CAT), Trolox equivalent antioxidant capacity (TEAC), thiobarbituric acid reactive substances (TBARS), glutathione peroxidase (GPx), paraoxonase 1 (PON1), SH- group, nitrosylated protein (RSNO), as well as such liver enzymes as alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) in the plasma and liver homogenate of rats with liver damage induced by CCl4 (1 mL/kg bw). Measurements were taken in plasma and liver homogenate. The results have demonstrated that the artichoke preparation, owing to its high antioxidative potential, exhibits protective and regenerative effects on the liver. This is supported by the observation of higher GSH levels in the plasma of rats treated with artichoke extract for two weeks before CCl4 exposure. Furthermore, the artichoke extract has shown regenerative properties, as evidenced by lower ALT, AST, and SOD activity in the group treated with artichoke extract after CCl4 exposure. These findings suggest that the in vivo administration of artichoke preparation may be beneficial for the protection and regeneration of the liver. Full article
Show Figures

Figure 1

14 pages, 12428 KiB  
Article
Different Extraction Procedures Revealed the Anti-Proliferation Activity from Vegetable Semi-Purified Sources on Breast Cancer Cell Lines
by Luigi Mandrich, Simona Piccolella, Antonia Valeria Esposito, Silvio Costa, Vincenzo Mercadante, Severina Pacifico and Emilia Caputo
Antioxidants 2023, 12(6), 1242; https://doi.org/10.3390/antiox12061242 - 09 Jun 2023
Cited by 1 | Viewed by 1614
Abstract
Breast cancer (BC) remains the leading cause of mortality in women, despite significant advancements in diagnosis. Thus, the identification of new compounds for its treatment is critical. Phytochemicals are known to exhibit anti-cancer properties. Here, we investigated the anti-proliferation potential of extracts from [...] Read more.
Breast cancer (BC) remains the leading cause of mortality in women, despite significant advancements in diagnosis. Thus, the identification of new compounds for its treatment is critical. Phytochemicals are known to exhibit anti-cancer properties. Here, we investigated the anti-proliferation potential of extracts from carrot, Calendula officinalis flower, and Aloe vera on breast cancer vs. epithelial cell lines. Various extraction methods were used, and the proliferative effect of the resulting extracts was assessed by proliferation assay on breast cancer and epithelial cell lines. Carrot, Aloe leaf, and Calendula flower extracts were extracted by hexane and methanol methods, and their semi-purified extracts were able to specifically inhibit the proliferation of breast cancer cell lines. The extract composition was investigated by colorimetric assays, UHPLC-HRMS, and MS/MS analysis. All the extracts contained monogalactosyl-monoacylglycerol (MGMG), while digalactosyl-monoacylglycerol (DGMG) and aloe-emodin were found in Aloe, and glycerophosphocholine (GPC) derivatives were identified in Calendula, except for the isomer 2 detected in carrot, suggesting that their observed different anti-proliferative properties may be associated with the different lipid compounds. Interestingly, Calendula extract was able to strongly inhibit the triple negative breast cancer MDA-MB-231 cell line proliferation (about 20% cell survival), supporting MGMG and GPC derivatives as potential drugs for this BC subtype treatment. Full article
Show Figures

Graphical abstract

19 pages, 1657 KiB  
Article
Fermented Whey Ewe’s Milk-Based Fruit Smoothies: Bio-Recycling and Enrichment of Phenolic Compounds and Improvement of Protein Digestibility and Antioxidant Activity
by Ali Zein Alabiden Tlais, Elisabetta Trossolo, Stefano Tonini, Pasquale Filannino, Marco Gobbetti and Raffaella Di Cagno
Antioxidants 2023, 12(5), 1091; https://doi.org/10.3390/antiox12051091 - 12 May 2023
Cited by 2 | Viewed by 2015
Abstract
This study aimed to recycle whey milk by-products (protein source) in fruit smoothies (phenolic compounds source) through started-assisted fermentation and delivering sustainable and healthy food formulations capable of providing nutrients that are unavailable due to an unbalanced diet or incorrect eating habits. Five [...] Read more.
This study aimed to recycle whey milk by-products (protein source) in fruit smoothies (phenolic compounds source) through started-assisted fermentation and delivering sustainable and healthy food formulations capable of providing nutrients that are unavailable due to an unbalanced diet or incorrect eating habits. Five lactic acid bacteria strains were selected as best starters for smoothie production based on the complementarity of pro-technological (kinetics of growth and acidification) traits, exopolysaccharides and phenolics release, and antioxidant activity enhancement. Compared to raw whey milk-based fruit smoothies (Raw_WFS), fermentation led to distinct profiles of sugars (glucose, fructose, mannitol, and sucrose), organic acids (lactic acid and acetic acid), ascorbic acid, phenolic compounds (gallic acid, 3-hydroxybenzoic acid, chlorogenic acid, hydrocaffeic acid, quercetin, epicatechin, procyanidin B2, and ellagic acid) and especially anthocyanins (cyanidin, delphinidin, malvidin, peonidin, petunidin 3-glucoside). Protein and phenolics interaction enhanced the release of anthocyanins, notably under the action of Lactiplantibacillus plantarum. The same bacterial strains outperformed other species in terms of protein digestibility and quality. With variations among starters culture, bio-converted metabolites were most likely responsible for the increase antioxidant scavenging capacity (DPPH, ABTS, and lipid peroxidation) and the modifications in organoleptic properties (aroma and flavor). Full article
Show Figures

Graphical abstract

22 pages, 1498 KiB  
Article
Phenolic Compounds Profiling and Their Antioxidant Capacity in the Peel, Pulp, and Seed of Australian Grown Avocado
by Xiaoyan Lyu, Osman Tuncay Agar, Colin J. Barrow, Frank R. Dunshea and Hafiz A. R. Suleria
Antioxidants 2023, 12(1), 185; https://doi.org/10.3390/antiox12010185 - 12 Jan 2023
Cited by 10 | Viewed by 3803
Abstract
Avocados (Persea americana M.) are highly valued fruits consumed worldwide, and there are numerous commercially available varieties on the market. However, the high demand for fruit also results in increased food waste. Thus, this study was conducted for comprehensive profiling of polyphenols [...] Read more.
Avocados (Persea americana M.) are highly valued fruits consumed worldwide, and there are numerous commercially available varieties on the market. However, the high demand for fruit also results in increased food waste. Thus, this study was conducted for comprehensive profiling of polyphenols of Hass, Reed, and Wurtz avocados obtained from the Australian local market. Ripe Hass peel recorded the highest TPC (77.85 mg GAE/g), TTC (148.98 mg CE/g), DPPH (71.03 mg AAE/g), FRAP (3.05 mg AAE/g), RPA (24.45 mg AAE/g), and ABTS (75.77 mg AAE/g) values; unripe Hass peel recorded the highest TFC (3.44 mg QE/g); and Wurtz peel recorded the highest TAC (35.02 mg AAE/g). Correlation analysis revealed that TPC and TTC were significantly correlated with the antioxidant capacity of the extracts. A total of 348 polyphenols were screened in the peel. A total of 134 compounds including 36 phenolic acids, 70 flavonoids, 11 lignans, 2 stilbenes, and another 15 polyphenols, were characterised through LC-ESI-QTOF-MS/MS, where the majority were from peels and seeds of samples extract. Overall, the hierarchical heat map revealed that there were a significant amount of polyphenols in peels and seeds. Epicatechin, kaempferol, and protocatechuic acid showed higher concentrations in Reed pulp. Wurtz peel contains a higher concentration of hydroxybenzoic acid. Our results showed that avocado wastes have a considerable amount of polyphenols, exhibiting antioxidant activities. Each sample has its unique value proposition based on its phenolic profile. This study may increase confidence in utilising by-products and encourage further investigation into avocado by-products as nutraceuticals. Full article
Show Figures

Graphical abstract

21 pages, 2677 KiB  
Article
In Vitro and In Silico Evaluation of the Antimicrobial and Antioxidant Potential of Thymus pulegioides Essential Oil
by Călin Jianu, Laura-Cristina Rusu, Iulia Muntean, Ileana Cocan, Alexandra Teodora Lukinich-Gruia, Ionuț Goleț, Delia Horhat, Marius Mioc, Alexandra Mioc, Codruța Șoica, Gabriel Bujancă, Adrian Cosmin Ilie and Delia Muntean
Antioxidants 2022, 11(12), 2472; https://doi.org/10.3390/antiox11122472 - 15 Dec 2022
Cited by 6 | Viewed by 1728
Abstract
The study was designed to analyze and evaluate the antioxidant and antibacterial properties of the essential oils of Thymus pulegioides L. grown in Western Romania. Thymus pulegioides L. essential oil (TPEO) was extracted by steam distillation (0.71% v/w) using a Craveiro-type apparatus. [...] Read more.
The study was designed to analyze and evaluate the antioxidant and antibacterial properties of the essential oils of Thymus pulegioides L. grown in Western Romania. Thymus pulegioides L. essential oil (TPEO) was extracted by steam distillation (0.71% v/w) using a Craveiro-type apparatus. GC-MS investigation of the TPEO identified 39 different compounds, representing 98.46% of total oil. Findings revealed that thymol (22.89%) is the main compound of TPEO, followed by para-cymene (14.57%), thymol methyl ether (11.19%), isothymol methyl ether (10.45%), and beta-bisabolene (9.53%). The oil exhibits good antibacterial effects; C. parapsilosis, C. albicans, S. pyogenes, and S. aureus were the most sensitive strains. The antioxidant activity of TPEO was evaluated by peroxide and thiobarbituric acid value, 1,1-diphenyl-2-picrylhydrazyl radical (DPPH), [2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium] (ABTS) radical scavenging assay, and beta-carotene/linoleic acid bleaching testing. The antioxidative data recorded reveal, for the first time, that TPEO inhibits primary and secondary oxidation products, in some particular conditions, better than butylated hydroxyanisole (BHA) with significant statistical difference (p < 0.05). Moreover, TPEO antioxidant capabilities in DPPH and ABTS assays outperformed alpha-tocopherol (p < 0.001) and delta-tocopherol (p < 0.001). Molecular docking analysis revealed that one potential target correlated with the TPEO antimicrobial activity was d-alanine-d-alanine ligase (DDl). The best scoring ligand, linalyl anthranilate, shared highly similar binding patterns with the DDl native inhibitor. Furthermore, molecular docking analysis also showed that the main constituents of TPEO are good candidates for xanthine oxidase and lipoxygenase inhibition, making the essential oil a valuable source for protein-targeted antioxidant compounds. Consequently, TPEO may represent a new potential source of antioxidant and antibacterial agents with applicability in the food and pharmaceutic industries. Full article
Show Figures

Figure 1

31 pages, 2958 KiB  
Article
Naturally Occurring Functional Ingredient from Filamentous Thermophilic Cyanobacterium Leptolyngbya sp. KC45: Phytochemical Characterizations and Their Multiple Bioactivities
by Kittiya Phinyo, Khomsan Ruangrit, Jeeraporn Pekkoh, Yingmanee Tragoolpua, Thida Kaewkod, Kritsana Duangjan, Chayakorn Pumas, Nakarin Suwannarach, Jaturong Kumla, Wasu Pathom-aree, Wenhui Gu, Guangce Wang and Sirasit Srinuanpan
Antioxidants 2022, 11(12), 2437; https://doi.org/10.3390/antiox11122437 - 09 Dec 2022
Cited by 3 | Viewed by 1887
Abstract
Cyanobacteria are rich in phytochemicals, which have beneficial impacts on the prevention of many diseases. This study aimed to comprehensively characterize phytochemicals and evaluate multifunctional bioactivities in the ethanolic extract of the cyanobacterium Leptolyngbya sp. KC45. Results found that the extract mainly contained [...] Read more.
Cyanobacteria are rich in phytochemicals, which have beneficial impacts on the prevention of many diseases. This study aimed to comprehensively characterize phytochemicals and evaluate multifunctional bioactivities in the ethanolic extract of the cyanobacterium Leptolyngbya sp. KC45. Results found that the extract mainly contained chlorophylls, carotenoids, phenolics, and flavonoids. Through LC–ESI–QTOF–MS/MS analysis, 38 phenolic compounds with promising bioactivities were discovered, and a higher diversity of flavonoids was found among the phenolic compounds identified. The extract effectively absorbed the harmful UV rays and showed high antioxidant activity on DPPH, ABTS, and PFRAP. The extract yielded high-efficiency inhibitory effects on enzymes (tyrosinase, collagenase, ACE, and α-glucosidase) related to diseases. Interestingly, the extract showed a strong cytotoxic effect on cancer cells (skin A375, lung A549, and colon Caco-2), but had a much smaller effect on normal cells, indicating a satisfactory level of safety for the extract. More importantly, the combination of the DNA ladder assay and the TUNEL assay proved the appearance of DNA fragmentation in cancer cells after a 48 h treatment with the extract, confirming the apoptosis mechanisms. Our findings suggest that cyanobacterium extract could be potentially used as a functional ingredient for various industrial applications in foods, cosmetics, pharmaceuticals, and nutraceuticals. Full article
Show Figures

Graphical abstract

17 pages, 1584 KiB  
Article
Multifunctional and Collaborative Protection of Proteins, Peptides, Phenolic Compounds, and Other Molecules against Oxidation in Apricot Seeds Extracts
by María Concepción García, Víctor Lombardo-Cristina and María Luisa Marina
Antioxidants 2022, 11(12), 2354; https://doi.org/10.3390/antiox11122354 - 28 Nov 2022
Cited by 3 | Viewed by 1324
Abstract
Antioxidant activity studies usually focus on a single type of molecule and do not consider possible collaborations among different molecules. The purpose of this work was to obtain multicomponent extracts exerting protection against oxidation from apricot seeds and to study the individual role [...] Read more.
Antioxidant activity studies usually focus on a single type of molecule and do not consider possible collaborations among different molecules. The purpose of this work was to obtain multicomponent extracts exerting protection against oxidation from apricot seeds and to study the individual role of these components in the whole protection. Pressurized liquid extraction was employed to obtain extracts, and a response surface methodology enabled exploration of the effect of extraction conditions on the composition and prevalence of the antioxidant mechanism. Extractions carried out at 170 °C, in up to 7% ethanol, and for up to 25 min guaranteed multifunctional protection against oxidation by the collaboration of different molecules. While phenolic compounds were the main contributors to radical-scavenging capacity (R2 = 90% for ABTS and 88% for DPPH), proteins and phenolic compounds showed similar roles in the whole reducing power (proteins (R2 = 86%) and TPC (R2 = 90%)), and other compounds inhibited the formation of hydroxyl radicals and, especially, the peroxidation of lipids. The presence of peptides modified the antioxidant protection of extracts. UHPLC-Q-Orbitrap-MS/MS confirmed the presence of phenolic compounds and other antioxidant molecules. The presence of different kinds of molecules led to a multifunctional and collaborative protection against oxidation that could not be exerted by individual molecules. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

27 pages, 1015 KiB  
Review
Nutrigenomics of Natural Antioxidants in Broilers
by Ioanna Kouvedaki, Athanasios C. Pappas, Peter F. Surai and Evangelos Zoidis
Antioxidants 2024, 13(3), 270; https://doi.org/10.3390/antiox13030270 - 22 Feb 2024
Viewed by 944
Abstract
The broiler industry supplies high-quality animal protein to the world. The ban of antibiotics as growth promoters has opened the way for plenty of phytochemicals and antioxidants to be explored. This study summarizes the use of natural antioxidants in a broiler diet as [...] Read more.
The broiler industry supplies high-quality animal protein to the world. The ban of antibiotics as growth promoters has opened the way for plenty of phytochemicals and antioxidants to be explored. This study summarizes the use of natural antioxidants in a broiler diet as a way through which to deal with stressors, as well as their effects on the expression of various genes. The transcriptional factors and genes involved in the regulation of redox homeostasis are described and emphasis is placed on nuclear factor erythroid 2-related factor 2 and nuclear factor kappa B. Sources such as fruits, vegetables, spices, mushrooms, and algae contain numerous natural antioxidant compounds. The antioxidant activity of these compounds has also been confirmed at the genome level. This study focuses on the regulation of oxidative stress-related genes, as well as on genes that regulate the inflammatory response, apoptosis, response to heat stress, lipid metabolism, and the intestinal barrier status. The natural compounds presented include, but are not limited to, the following: rutin, lycopene, magnolol, genistein, hesperidin, naringin, quercetin, curcumin, bisdemethoxycurcumin, resveratrol, astaxanthin, squalene, pterostilbene, protocatechuic acid, taraxasterol, myricetin, and proanthocyanidins. Several studies have revealed a dose-dependent action. Future studies should focus on the role of phytogenic compounds as antibiotic alternatives in relation to gut microbiota and their role in eubiosis. Full article
Show Figures

Graphical abstract

27 pages, 2033 KiB  
Review
The Role of Isoflavones in the Prevention of Breast Cancer and Prostate Cancer
by Tomislav Pejčić, Milica Zeković, Uroš Bumbaširević, Milica Kalaba, Irena Vovk, Maja Bensa, Lazar Popović and Živoslav Tešić
Antioxidants 2023, 12(2), 368; https://doi.org/10.3390/antiox12020368 - 03 Feb 2023
Cited by 9 | Viewed by 3488
Abstract
This narrative review summarizes epidemiological studies on breast cancer and prostate cancer with an overview of their global incidence distribution to investigate the relationship between these diseases and diet. The biological properties, mechanisms of action, and available data supporting the potential role of [...] Read more.
This narrative review summarizes epidemiological studies on breast cancer and prostate cancer with an overview of their global incidence distribution to investigate the relationship between these diseases and diet. The biological properties, mechanisms of action, and available data supporting the potential role of isoflavones in the prevention of breast cancer and prostate cancer are discussed. Studies evaluating the effects of isoflavones in tissue cultures of normal and malignant breast and prostate cells, as well as the current body of research regarding the effects of isoflavones attained through multiple modifications of cellular molecular signaling pathways and control of oxidative stress, are summarized. Furthermore, this review compiles literature sources reporting on the following: (1) levels of estrogen in breast and prostate tissue; (2) levels of isoflavones in the normal and malignant tissue of these organs in European and Asian populations; (3) average concentrations of isoflavones in the secretion of these organs (milk and semen). Finally, particular emphasis is placed on studies investigating the effect of isoflavones on tissues via estrogen receptors (ER). Full article
Show Figures

Figure 1

27 pages, 472 KiB  
Review
The Therapeutic Alliance between Pomegranate and Health Emphasizing on Anticancer Properties
by Panagiota D. Pantiora, Alexandros I. Balaouras, Ioanna K. Mina, Christoforos I. Freris, Athanasios C. Pappas, Georgios P. Danezis, Evangelos Zoidis and Constantinos A. Georgiou
Antioxidants 2023, 12(1), 187; https://doi.org/10.3390/antiox12010187 - 12 Jan 2023
Cited by 9 | Viewed by 2535
Abstract
Pomegranate is a fruit bearing-plant that is well known for its medicinal properties. Pomegranate is a good source of phenolic acids, tannins, and flavonoids. Pomegranate juice and by-products have attracted the scientific interest due to their potential health benefits. Currently, the medical community [...] Read more.
Pomegranate is a fruit bearing-plant that is well known for its medicinal properties. Pomegranate is a good source of phenolic acids, tannins, and flavonoids. Pomegranate juice and by-products have attracted the scientific interest due to their potential health benefits. Currently, the medical community has showed great interest in exploiting pomegranate potential as a protective agent against several human diseases including cancer. This is demonstrated by the fact that there are more than 800 reports in the literature reporting pomegranate’s anticancer properties. This review is an update on the research outcomes of pomegranate’s potential against different types of human diseases, emphasizing on cancer. In addition, perspectives of potential applications of pomegranate, as a natural additive aiming to improve the quality of animal products, are discussed. Full article
Back to TopTop