Antioxidants Benefits in Aquaculture 2.0

A special issue of Antioxidants (ISSN 2076-3921). This special issue belongs to the section "Health Outcomes of Antioxidants and Oxidative Stress".

Deadline for manuscript submissions: closed (31 March 2024) | Viewed by 10746

Special Issue Editor


E-Mail Website
Guest Editor
Centro de Investigaciones Biológicas del Noroeste, Instituto Politécnico Nacional, Mexico City, Mexico
Interests: microalga; aquaculture
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Stress conditions in culture ponds are the main obstacle to successful aquaculture. Reared organisms are associated with a wide range of stresses, related to nutrition, environment, biology, handling and density. These factors may disrupt homeostasis, cause stress in farmed organisms, and significantly affect zootechnical parameters such as growth and survival. Reactive oxygen species (ROS) in excess can lead to the oxidation of cell membranes, as well as lesions in mitochondria, proteins, DNA and other cell components. Enzymatic and non-enzymatic antioxidant defense systems play a role in preventing and repairing oxidative damage. Metabolic pathways in cells are influenced by antioxidant enzymes, which may be valuable biomarkers of general health status. Some immunostimulants and antioxidants prevent infections and protect cells from damage during excessive ROS production.
This Special Issue will publish original research papers and reviews on the benefits of antioxidants in aquaculture, in relation to the following topics:

  • Dietary antioxidants and food supplements;
  • Screening of antioxidant products for biological activities;
  • Antioxidant potential of probiotic bacteria; 
  • Antioxidant products in intestinal health;
  • Understanding the pathways of redox homeostasis; 
  • The relationship between antioxidants and health.

We look forward to receiving your contributions.

Dr. Ángel Isidro Cámpa-Córdova
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antioxidants is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • crustaceans
  • mollusks
  • fishes
  • oxidative stress
  • juvenile
  • larvae
  • superoxide dismutase
  • catalase
  • glutathione peroxidase
  • gene expression
  • enzymes
  • tissues
  • adults
  • antioxidant response
  • antioxidant enzymes
  • antioxidant gene expression

Related Special Issue

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 2720 KiB  
Article
Impact of Hydroxytyrosol-Rich Extract Supplementation in a High-Fat Diet on Gilthead Sea Bream (Sparus aurata) Lipid Metabolism
by Sara Balbuena-Pecino, Manel Montblanch, Enrique Rosell-Moll, Verónica González-Fernández, Irene García-Meilán, Ramon Fontanillas, Ángeles Gallardo, Joaquim Gutiérrez, Encarnación Capilla and Isabel Navarro
Antioxidants 2024, 13(4), 403; https://doi.org/10.3390/antiox13040403 - 27 Mar 2024
Viewed by 554
Abstract
High-fat diets (HFDs) enhance fish growth by optimizing nutrient utilization (i.e., protein-sparing effect); however, their potential negative effects have also encouraged the search for feed additives. This work has investigated the effects of an extract rich in a polyphenolic antioxidant, hydroxytyrosol (HT), supplemented [...] Read more.
High-fat diets (HFDs) enhance fish growth by optimizing nutrient utilization (i.e., protein-sparing effect); however, their potential negative effects have also encouraged the search for feed additives. This work has investigated the effects of an extract rich in a polyphenolic antioxidant, hydroxytyrosol (HT), supplemented (0.52 g HT/kg feed) in a HFD (24% lipid) in gilthead sea bream (Sparus aurata). Fish received the diet at two ration levels, standard (3% of total fish weight) or restricted (40% reduction) for 8 weeks. Animals fed the supplemented diet at a standard ration had the lowest levels of plasma free fatty acids (4.28 ± 0.23 mg/dL versus 6.42 ± 0.47 in the non-supplemented group) and downregulated hepatic mRNA levels of lipid metabolism markers (ppara, pparb, lpl, fatp1, fabp1, acox1, lipe and lipa), supporting potential fat-lowering properties of this compound in the liver. Moreover, the same animals showed increased muscle lipid content and peroxidation (1.58- and 1.22-fold, respectively, compared to the fish without HT), suggesting the modulation of body adiposity distribution and an enhanced lipid oxidation rate in that tissue. Our findings emphasize the importance of considering this phytocompound as an optimal additive in HFDs for gilthead sea bream to improve overall fish health and condition. Full article
(This article belongs to the Special Issue Antioxidants Benefits in Aquaculture 2.0)
Show Figures

Figure 1

25 pages, 1980 KiB  
Article
Effects of Ferulic Acid on Respiratory Metabolism, Oxidative Lesions, and Apoptotic Parameters in Gills and Red Blood Cells of Carp (Cyprinus carpio Var. Jian) Response to Copper
by Huatao Li, Haijing Liu, Siyue Wu, Chengyan Ai, Qi Yang, Jingting Jia, Xiao Xu, Min Wu and Jun Jiang
Antioxidants 2024, 13(3), 314; https://doi.org/10.3390/antiox13030314 - 04 Mar 2024
Viewed by 732
Abstract
In sustainable aquaculture systems, copper sulfate (CuSO4) is widely applied as a disinfectant to control parasitic infections and algal growth. However, aquatic organisms may suffer from exposure to excessive concentrations of Cu. Elevated Cu concentrations could activate damage to the respiratory [...] Read more.
In sustainable aquaculture systems, copper sulfate (CuSO4) is widely applied as a disinfectant to control parasitic infections and algal growth. However, aquatic organisms may suffer from exposure to excessive concentrations of Cu. Elevated Cu concentrations could activate damage to the respiratory functions of aquatic animals. Thus, this study explored the effects exerted by ferulic acid (FA) on respiratory metabolism, oxidation-related lesions, and the apoptosis parameters of the gills and red blood cells in copper sulfate pentahydrate (CuSO4·5H2O)-treated carp (Cyprinus carpio var. Jian). When the 30-day feeding experiment was completed, the carp were exposed to 12.5 μM of Cu for 4 days. The results indicated that the Cu decreased the oxygen consumption and ammonia excretion rates in the carp, reduced the metabolic- and antioxidant-related enzyme activities and glutathione levels in the carp, and enhanced the caspase activities and reactive oxygen species and malondialdehyde levels in the gills of the carp. Moreover, in addition to the changes in the above parameters, the Cu decreased the cell numbers and hemoglobin concentrations and increased the phosphatidylserine exposure and cytochrome c levels in the red blood cells of the carp. These results demonstrate that Cu is capable of decreasing respiratory metabolism and increasing oxidation-related lesions and apoptosis inside the gills and red blood cells of the fish. However, dietary FA quenched the Cu-induced apoptosis and oxidative lesions by reversing the same biomarker indicators, thereby suppressing the Cu-induced decrease in respiratory metabolism. Thus, FA can be used as a suppressor of Cu stress in fish. Full article
(This article belongs to the Special Issue Antioxidants Benefits in Aquaculture 2.0)
Show Figures

Figure 1

17 pages, 3475 KiB  
Article
Investigating the Impact of Disrupting the Glutamine Metabolism Pathway on Ammonia Excretion in Crucian Carp (Carassius auratus) under Carbonate Alkaline Stress Using Metabolomics Techniques
by Yanchun Sun, Chuanye Geng, Wenzhi Liu, Yingjie Liu, Lu Ding and Peng Wang
Antioxidants 2024, 13(2), 170; https://doi.org/10.3390/antiox13020170 - 29 Jan 2024
Viewed by 755
Abstract
With the gradual decline in freshwater resources, the space available for freshwater aquaculture is diminishing and the need to maximize saline water for aquaculture is increasing. This study aimed to elucidate the impact mechanisms of the disruption of the glutamate pathway on serum [...] Read more.
With the gradual decline in freshwater resources, the space available for freshwater aquaculture is diminishing and the need to maximize saline water for aquaculture is increasing. This study aimed to elucidate the impact mechanisms of the disruption of the glutamate pathway on serum metabolism and ammonia excretion in crucian carp (Carassius auratus) under carbonate alkaline stress. A freshwater control group (C group), a 20 mmol/L NaHCO3 stress group (L group), and a 40 mmol/L NaHCO3 stress group (H group) were established. After 30 days of exposure, methionine sulfoximine (MSO) was injected to block the glutamate pathway metabolism, and the groups post-blocking were labeled as MC, ML, and MH. Ultra-high-performance liquid chromatography coupled with the quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) metabolomics technique was employed to detect changes in the composition and content of crucian carp serum metabolites. Significant differential metabolites were identified, and related metabolic pathways were analyzed. The results revealed that, following the glutamate pathway blockade, a total of 228 differential metabolites (DMs) were identified in the three treatment groups. An enrichment analysis indicated significant involvement in glycerophospholipid metabolism, arachidonic acid metabolism, sphingolipid metabolism, purine metabolism, arginine and proline biosynthesis, pantothenate and CoA biosynthesis, glutathione metabolism, and fatty acid degradation, among other metabolic pathways. The results showed that ROS imbalances and L-arginine accumulation in crucian carp after the glutamate pathway blockade led to an increase in oxidative stress and inflammatory responses in vivo, which may cause damage to the structure and function of cell membranes. Crucian carp improves the body’s antioxidant capacity and regulates cellular homeostasis by activating glutathione metabolism and increasing the concentration of phosphatidylcholine (PC) analogs. Additionally, challenges such as aggravated ammonia excretion obstruction and disrupted energy metabolism were observed in crucian carp, with the upregulation of purine metabolism alleviating ammonia toxicity and maintaining energy homeostasis through pantothenate and CoA biosynthesis as well as fatty acid degradation. This study elucidated the metabolic changes in crucian carp under carbonate alkaline stress after a glutamate pathway blockade at the cellular metabolism level and screened out the key metabolic pathways, which provide a scientific basis for further in-depth studies on the ammonia excretion of freshwater scleractinian fishes under saline and alkaline habitats at a later stage. Full article
(This article belongs to the Special Issue Antioxidants Benefits in Aquaculture 2.0)
Show Figures

Figure 1

14 pages, 2153 KiB  
Article
Effects of α-Lipoic Acid Supplementation on Growth Performance, Liver Histology, Antioxidant and Related Genes Expression of Hybrid Grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂)
by Weibin Huang, Tao Li, Wenshan Cai, Hengyang Song, Hao Liu, Beiping Tan, Shuang Zhang, Menglong Zhou, Yuanzhi Yang and Xiaohui Dong
Antioxidants 2024, 13(1), 88; https://doi.org/10.3390/antiox13010088 - 10 Jan 2024
Viewed by 1032
Abstract
This study aimed to assess the impact of α-lipoic acid on the growth performance, antioxidant capacity and immunity in hybrid groupers (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatus) fed with a high-lipid diet. Groupers (8.97 ± 0.01 g) were fed six different [...] Read more.
This study aimed to assess the impact of α-lipoic acid on the growth performance, antioxidant capacity and immunity in hybrid groupers (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatus) fed with a high-lipid diet. Groupers (8.97 ± 0.01 g) were fed six different diets, with α-lipoic acid content in diets being 0, 400, 800, 1200, 1600, and 2000 mg/kg, named S1, S2, S3, S4, S5, and S6, respectively. The results show that the addition of 2000 mg/kg α-lipoic acid in the diet inhibited the growth, weight gain rate (WGR), and specific growth rate (SGR), which were significantly lower than other groups. In serum, catalase (CAT) and superoxide dismutase (SOD) were significantly higher in the S5 group than in the S1 group. In the liver, CAT, SOD and total antioxidative capacity (T-AOC) levels were significantly increased in α-lipoic acid supplemented groups. α-lipoic acid significantly upregulated liver antioxidant genes sod and cat, anti-inflammatory factor interleukin 10 (il10) and transforming growth factor β (tgfβ) mRNA levels. Conclusion: the addition of 2000 mg/kg of α-lipoic acid inhibits the growth of hybrid groupers. In addition, 400–800 mg/kg α-lipoic acid contents improve the antioxidant capacity of groupers and have a protective effect against high-lipid-diet-induced liver oxidative damage. Full article
(This article belongs to the Special Issue Antioxidants Benefits in Aquaculture 2.0)
Show Figures

Figure 1

14 pages, 2425 KiB  
Article
Dietary β-Glucan Alleviates Antibiotic-Associated Side Effects by Increasing the Levels of Antioxidant Enzyme Activities and Modifying Intestinal Microbiota in Pacific White Shrimp (Litopenaeus vannamei)
by Yanbing Qiao, Fenglu Han, Xuhan Peng, Artur Rombenso and Erchao Li
Antioxidants 2024, 13(1), 52; https://doi.org/10.3390/antiox13010052 - 28 Dec 2023
Viewed by 901
Abstract
Antibiotics and their secondary metabolites are commonly found in aquatic ecosystems, leading to the passive exposure of many aquatic animals to low doses of antibiotics, which can affect their health. However, there is limited information available on how to mitigate the side effects [...] Read more.
Antibiotics and their secondary metabolites are commonly found in aquatic ecosystems, leading to the passive exposure of many aquatic animals to low doses of antibiotics, which can affect their health. However, there is limited information available on how to mitigate the side effects of antibiotics on normal aquatic animals. This study aimed to investigate the potential of dietary β-glucan to alleviate the side effects induced by antibiotics in Pacific white shrimp (Litopenaeus vannamei) (0.37 ± 0.02 g). A six-week feeding trial was conducted with four dietary treatments including a control, 1 g/kg β-glucan (β-glucan), 50 mg/kg oxytetracycline (OTC), and a combination of 50 mg/kg OTC and 1 g/kg β-glucan (Mix) groups. At the end of the trial, the growth performance, intestinal microbial composition, antioxidant capacity, and immune response of the shrimp were assessed. There were no significant differences in growth performance among the groups, but the condition factor of the shrimp in the Mix group was significantly decreased when compared to the control and β-glucan groups. The activities of hepatopancreas catalase (CAT) and serum phenol oxidase in the OTC group were significantly lower than those in the control group. On the other hand, the activities of hepatopancreas superoxide dismutase and CAT enzymes in the β-glucan group were significantly higher than those in the OTC group. The supplementation of β-glucan in combination with antibiotics significantly increased the CAT activity and bacteriolytic activity compared to the OTC and control groups, respectively. Moreover, an analysis of the intestinal microbiota revealed that the Observed_species estimator in the Mix group was significantly higher than that in the control group. Dietary antibiotics significantly increased the abundance of Actinobacteria at the phylum level, but the Mix group showed no significant difference. The supplementation of β-glucan in combination with antibiotics also significantly increased the relative abundance of Meridianimaribacter compared to the control group. Additionally, the synergistic influence of β-glucan with antibiotics increased the beta diversity of intestinal microbiotas. These findings suggest that the supplementation of β-glucan in combination with antibiotics on Pacific white shrimp can alleviate the low antioxidant capacity and immune response caused by antibiotics while enhancing the intestinal microbial composition. This provides a potential solution to mitigate the negative impacts of antibiotics in aquaculture. Full article
(This article belongs to the Special Issue Antioxidants Benefits in Aquaculture 2.0)
Show Figures

Graphical abstract

15 pages, 4380 KiB  
Article
Ferrous Ion Alleviates Lipid Deposition and Inflammatory Responses Caused by a High Cottonseed Meal Diet by Modulating Hepatic Iron Transport Homeostasis and Controlling Ferroptosis in Juvenile Ctenopharyngodon idellus
by Hengchen Liu, Shiyou Chen, Yan Lin, Wenqiang Jiang, Yongfeng Zhao, Siyue Lu, Linghong Miao and Xianping Ge
Antioxidants 2023, 12(11), 1968; https://doi.org/10.3390/antiox12111968 - 06 Nov 2023
Viewed by 1499
Abstract
To investigate the mechanisms through which ferrous ion (Fe2+) addition improves the utilization of a cottonseed meal (CSM) diet, two experimental diets with equal nitrogen and energy content (low-cottonseed meal (LCM) and high-cottonseed meal (HCM) diets, respectively) containing 16.31% and 38.46% [...] Read more.
To investigate the mechanisms through which ferrous ion (Fe2+) addition improves the utilization of a cottonseed meal (CSM) diet, two experimental diets with equal nitrogen and energy content (low-cottonseed meal (LCM) and high-cottonseed meal (HCM) diets, respectively) containing 16.31% and 38.46% CSM were prepared. Additionally, the HCM diet was supplemented with graded levels of FeSO4·7H2O to establish two different Fe2+ supplementation groups (HCM + 0.2%Fe2+ and HCM + 0.4%Fe2+). Juvenile Ctenopharyngodon idellus (grass carps) (5.0 ± 0.5 g) were fed one of these four diets (HCM, LCM, HCM + 0.2%Fe2+ and HCM + 0.4%Fe2+ diets) for eight weeks. Our findings revealed that the HCM diet significantly increased lipid peroxide (LPO) concentration and the expression of lipogenic genes, e.g., sterol regulatory element binding transcription factor 1 (srebp1) and stearoyl-CoA desaturase (scd), leading to excessive lipid droplet deposition in the liver (p < 0.05). However, these effects were significantly reduced in the HCM + 0.2%Fe2+ and HCM + 0.4%Fe2+ groups (p < 0.05). Plasma high-density lipoprotein (HDL) concentration was also significantly lower in the HCM and HCM + 0.2%Fe2+ groups compared to the LCM group (p < 0.05), whereas low-density lipoprotein (LDL) concentration was significantly higher in the HCM + 0.2%Fe2+ and HCM + 0.4%Fe2+ groups than in the LCM group (p < 0.05). Furthermore, the plasma levels of liver functional indices, including alkaline phosphatase (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and glucose (GLU), were significantly lower in the HCM + 0.4%Fe2+ group (p < 0.05). Regarding the expression of genes related to iron transport regulation, transferrin 2 (tfr2) expression in the HCM group and Fe2+ supplementation groups were significantly suppressed compared to the LCM group (p < 0.05). The addition of 0.4% Fe2+ in the HCM diet activated hepcidin expression and suppressed ferroportin-1 (fpn1) expression (p < 0.05). Compared to the LCM group, the expression of genes associated with ferroptosis and inflammation, including acyl-CoA synthetase long-chain family member 4b (acsl4b), lysophosphatidylcholine acyltransferase 3 (lpcat3), cyclooxygenase (cox), interleukin 1β (il-1β), and nuclear factor kappa b (nfκb), were significantly increased in the HCM group (p < 0.05), whereas Fe2+ supplementation in the HCM diet significantly inhibited their expression (p < 0.05) and significantly suppressed lipoxygenase (lox) expression (p < 0.05). Compared with the HCM group without Fe2+ supplementation, Fe2+ supplementation in the HCM diet significantly upregulated the expression of genes associated with ferroptosis, such as heat shock protein beta-associated protein1 (hspbap1), glutamate cysteine ligase (gcl), and glutathione peroxidase 4a (gpx4a) (p < 0.05), and significantly decreased the expression of the inflammation-related genes interleukin 15/10 (il-15/il-10) (p < 0.05). In conclusion, FeSO4·7H2O supplementation in the HCM diet maintained iron transport and homeostasis in the liver of juvenile grass carps, thus reducing the occurrence of ferroptosis and alleviating hepatic lipid deposition and inflammatory responses caused by high dietary CSM contents. Full article
(This article belongs to the Special Issue Antioxidants Benefits in Aquaculture 2.0)
Show Figures

Figure 1

16 pages, 2833 KiB  
Article
Microbiome–Metabolomic Analysis Reveals Beneficial Effects of Dietary Kelp Resistant Starch on Intestinal Functions of Hybrid Snakeheads (Channa maculata ♀ × Channa argus ♂)
by Shaodan Wang, Zhiheng Zuo, Bin Ye, Li Zhang, Yanbo Cheng, Shaolin Xie, Jixing Zou and Guohuan Xu
Antioxidants 2023, 12(8), 1631; https://doi.org/10.3390/antiox12081631 - 18 Aug 2023
Viewed by 1432
Abstract
The benefits of resistant starch on hypoglycemia, obesity prevention, antioxidant status and the alleviation of metabolic syndrome have received considerable attention. In this study, we explored how dietary kelp resistant starch (KRS) enhances intestinal morphology and function through a microbiome–metabolomic analysis. Hybrid snakeheads [...] Read more.
The benefits of resistant starch on hypoglycemia, obesity prevention, antioxidant status and the alleviation of metabolic syndrome have received considerable attention. In this study, we explored how dietary kelp resistant starch (KRS) enhances intestinal morphology and function through a microbiome–metabolomic analysis. Hybrid snakeheads (initial weight: 11.4 ± 0.15 g) were fed experimental diets for 60 days. Fish were fed a basic wheat starch diet and the KRS diet. Dietary KRS improved intestinal morphology and enhanced intestinal antioxidant and digestive capabilities, as evidenced by decreased intestinal damage and upregulated intestinal biochemical markers. The microbiome analysis showed that KRS administration elevated the proportion of butyrate-producing bacteria and the abundance of beneficial bacteria that increases insulin sensitivity. Furthermore, significant alterations in metabolic profiles were observed to mainly associate with the amino acid metabolism (particularly arginine production), the metabolism of cofactors and vitamins, fat metabolism, glutathione metabolism, and the biosynthesis of other secondary metabolites. Additionally, alterations in intestinal microbiota composition were significantly associated with metabolites. Collectively, changes in intestinal microbiota and metabolite profiles produced by the replacement of common starch with dietary KRS appears to play an important role in the development of intestinal metabolism, thus leading to improved intestinal function and homeostasis. Full article
(This article belongs to the Special Issue Antioxidants Benefits in Aquaculture 2.0)
Show Figures

Figure 1

15 pages, 4954 KiB  
Article
Dietary Supplementation of Chlorella vulgaris Effectively Enhanced the Intestinal Antioxidant Capacity and Immune Status of Micropterus salmoides
by Heng Yu, Xianping Ge, Dongyu Huang, Chunyu Xue, Mingchun Ren and Hualiang Liang
Antioxidants 2023, 12(8), 1565; https://doi.org/10.3390/antiox12081565 - 04 Aug 2023
Cited by 1 | Viewed by 1563
Abstract
An M. salmoides fish meal diet was supplemented with 0 (CHL0, Control), 38 (CHL38), 76 (CHL76), 114 (CHL114), and 152 (CHL152) mg/kg C. vulgaris for 60 days, and their serum and intestinal samples were analyzed. The results showed that the albumin (ALB) and [...] Read more.
An M. salmoides fish meal diet was supplemented with 0 (CHL0, Control), 38 (CHL38), 76 (CHL76), 114 (CHL114), and 152 (CHL152) mg/kg C. vulgaris for 60 days, and their serum and intestinal samples were analyzed. The results showed that the albumin (ALB) and total protein (TP) contents were observably enhanced in the CHL76 group compared with the Control group. The intestinal glutathione (GSH) and glutathione peroxidase (GSH-Px) contents were enhanced significantly in the CHL76 group, while the total antioxidant capacity (T-AOC) was enhanced in the CHL38 group, compared with the Control group. However, supplementation of >76 g/kg C. vulgaris significantly inhibited the superoxide dismutase (SOD) activity in the intestines of M. salmoides. Moreover, the malondialdehyde (MDA) content was observably dropped in the CHL-supplemented groups compared with the Control group. Transcriptome analysis of the CHL76 and Control groups displayed a total of 1384 differentially expressed genes (DEGs). KEGG analysis revealed that these DEGs were enriched in apoptosis, cytokine–cytokine receptor interaction, tight junction (TJ), and phagosome signaling pathways, which were associated with improved intestinal immunity in the CHL76 group. Additionally, the DEGs enriched in the above pathways were also correlated with the antioxidant parameters, such as catalase (CAT), GSH, GSH-Px, SOD, T-AOC, and MDA. Therefore, our study found that dietary supplementation of C. vulgaris effectively enhanced the intestinal antioxidant capacity of M. salmoides by increasing antioxidant enzyme activity and decreasing MDA content. Additionally, dietary supplementation of C. vulgaris improved the intestinal immune status of M. salmoides by reducing proapoptotic and proinflammatory factors, increasing intestinal TJs- and phagosome-related genes expressions, and increasing the serum ALB and TP contents. Lastly, quadratic regression analysis of the serum biochemical indices (ALB and TP) and intestinal antioxidant parameters (GSH-Px and GSH) revealed that the optimal supplemental level of C. vulgaris in the M. salmoides diet was 58.25–77.7 g/kg. Full article
(This article belongs to the Special Issue Antioxidants Benefits in Aquaculture 2.0)
Show Figures

Figure 1

16 pages, 2938 KiB  
Article
The Benefits of Nanosized Magnesium Oxide in Fish Megalobrama amblycephala: Evidence in Growth Performance, Redox Defense, Glucose Metabolism, and Magnesium Homeostasis
by Ling Zhang, Zishang Liu, Ying Deng, Chaofan He, Wenbin Liu and Xiangfei Li
Antioxidants 2023, 12(7), 1350; https://doi.org/10.3390/antiox12071350 - 27 Jun 2023
Viewed by 1333
Abstract
This study evaluated the effects of dietary magnesium oxide nanoparticles (MgO NPs) on the growth, redox defense, glucose metabolism, and magnesium homeostasis in blunt snout bream. Fish (12.42 ± 0.33 g) were fed seven diets containing graded levels of MgO NPs (0, 60, [...] Read more.
This study evaluated the effects of dietary magnesium oxide nanoparticles (MgO NPs) on the growth, redox defense, glucose metabolism, and magnesium homeostasis in blunt snout bream. Fish (12.42 ± 0.33 g) were fed seven diets containing graded levels of MgO NPs (0, 60, 120, 240, 480, 960, and 1920 mg/kg) for 12 weeks. Whole-body Mg retention decreased significantly as the dietary Mg increased. As dietary MgO NPs levels reached 120 mg/kg, the growth performance and feed utilization remarkably improved. When added at 240 mg/kg, oxidative stress was significantly reduced evidenced by the increased Mn-sod transcription and the decreased CAT and GSH-Px activities and the MDA content. Meanwhile, it enhanced glucose transport, glycolysis, and glycogen synthesis, while inhibiting gluconeogenesis, as was characterized by the increased transcriptions of glut2, gk, and pk, and the decreased transcriptions of fbpase and g6pase. In addition, the supplementation of 120 mg/kg MgO NPs promoted Mg transport marked by a significant increase in the protein expressions of TRMP7, S41A3, and CNNM1. In conclusion, the moderate supplementation of MgO NPs improved the growth performance, reduced hepatic oxidative stress, and promoted glucose transport, glycolysis, glycogen synthesis, and magnesium homeostasis in fish while inhibiting glu. Full article
(This article belongs to the Special Issue Antioxidants Benefits in Aquaculture 2.0)
Show Figures

Figure 1

Back to TopTop