Antimicrobial and Anti-biofilm Activity of Metal and Metal Oxide Nanoparticles

A special issue of Antibiotics (ISSN 2079-6382). This special issue belongs to the section "Antimicrobial Materials and Surfaces".

Deadline for manuscript submissions: closed (30 June 2023) | Viewed by 9745

Special Issue Editors

Development and Innovation Laboratory, Instituto Butantan, Sao Paulo 05503-900, SP, Brazil
Interests: our group has a particular interest in the biotechnological potential of fungi for the obtaining of bioactive compounds and development of metallic nanoparticles, both for applications such as antimicrobial, antitumor or wound healing agents; our expertise is also focused on pre-clinical toxicological assays for pharmaceutical research
Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo 05508-900, SP, Brazil
Interests: antibiotic production by Actinobacteria; biochemical pathways organization

Special Issue Information

Dear Colleagues,

The microbial infections caused by several pathogens and the emergence of cases of resistance to available antimicrobials are constantly increasing, mainly due to gene transfer and/or mutation. In this aspect, microbial biofilms are an additional problem. Despite continuous efforts, the discovery of new antimicrobial compounds has not been able to keep up with demand. In addition to the development of new compounds, new strategies and technologies are very important to offer new possibilities of treatment for microbial infections and biofilms.

Among the nanotechnological approaches for nanomaterials applications, different metal and metal oxide nanoparticles have been obtained, and studies regarding their application as antimicrobial or anti-biofilm agents have been performed.

In this regard, this Special Issue is focused on manuscripts describing the development of potential metal and metal oxide nanoparticles as antimicrobial and anti-biofilm agents, mainly those obtained by biological processes, including a discussion of the protein corona formation, characterization, and biocompatibility.

Submissions with this approach, including association of these nanostructured materials with others antimicrobial agents, mechanism of action, and toxicity, are welcome and encouraged.

Dr. Ana Olívia De Souza
Dr. Gabriel Padilla
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antibiotics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

23 pages, 5931 KiB  
Article
Deploying a Novel Approach to Prepare Silver Nanoparticle Bellamya bengalensis Extract Conjugate Coating on Orthopedic Implant Biomaterial Discs to Prevent Potential Biofilm Formation
by Shafqat Qamer, Fahrudin Che-Hamzah, Norashiqin Misni, Narcisse M. S. Joseph, Nagi A. Al-Haj and Syafinaz Amin-Nordin
Antibiotics 2023, 12(9), 1403; https://doi.org/10.3390/antibiotics12091403 - 03 Sep 2023
Cited by 1 | Viewed by 1231
Abstract
This study is based on the premise of investigating antibacterial activity through a novel conjugate of silver nanoparticles (AgNPs) and antimicrobial peptides (AMPs) in line with a green synthesis approach by developing antimicrobial-coated implants to prevent bacterial resistance. The AMPs were obtained from [...] Read more.
This study is based on the premise of investigating antibacterial activity through a novel conjugate of silver nanoparticles (AgNPs) and antimicrobial peptides (AMPs) in line with a green synthesis approach by developing antimicrobial-coated implants to prevent bacterial resistance. The AMPs were obtained from Bellamya Bengalensis (BB), a freshwater snail, to prepare the nanocomposite conjugate, e.g., AgNPs@BB extract, by making use of UV-Visible spectroscopy. The antimicrobial assessment of AgNPs@BB extract conjugate was performed using the Resazurin Microtiter Assay Method (REMA), followed by the use of three biocompatible implant materials (titanium alloys, Ti 6AL-4V stainless steel 316L, and polyethylene). Finally, the coating was analyzed under confocal microscopy. The results revealed a significant reduction of biofilm formation on the surfaces of implants coated with conjugate (AgNPs@BB extract) in comparison to uncoated implants. For the MTT assay, no significant changes were recorded for the cells grown on the AgNPs/AMP++ sample in high concentrations. Staphylococcus epidermidis, however, showed more prominent growth on all implants in comparison to Staphylococcus aureus. It is evident from the results that Staphylococcus epidermidis is more susceptible to AgNPs@BB extract, while the minimum inhibitory concentration (MIC) value of AgNPs@BB extract conjugates and biosynthesized AgNPs was also on the higher side. This study indicates that AgNPs@BB extract carries antibacterial activity, and concludes that an excessive concentration of AgNPs@BB extract may affect the improved biocompatibility. This study recommends using robust, retentive, and antimicrobial coatings of AgNPs@BB extract for implantable biocompatible materials in accordance with the novel strategy of biomaterial applications. Full article
Show Figures

Figure 1

31 pages, 52740 KiB  
Article
Synergistic Antibacterial Effects of Amoxicillin and Gold Nanoparticles: A Therapeutic Option to Combat Antibiotic Resistance
by Rosa M. Giráldez-Pérez, Elia M. Grueso, Alfonso Carbonero, Juan Álvarez Márquez, Mirian Gordillo, Edyta Kuliszewska and Rafael Prado-Gotor
Antibiotics 2023, 12(8), 1275; https://doi.org/10.3390/antibiotics12081275 - 02 Aug 2023
Cited by 1 | Viewed by 1671
Abstract
Compacted Au@16-mph-16/DNA-AMOX (NSi) nanosystems were prepared from amoxicillin (AMOX) and precursor Au@16-mph-16 gold nanoparticles (Ni) using a Deoxyribonucleic acid (DNA) biopolymer as a glue. The synthesized nanocarrier was tested on different bacterial strains of Escherichia coli, Staphylococcus aureus, and Streptococcus pneumoniae to [...] Read more.
Compacted Au@16-mph-16/DNA-AMOX (NSi) nanosystems were prepared from amoxicillin (AMOX) and precursor Au@16-mph-16 gold nanoparticles (Ni) using a Deoxyribonucleic acid (DNA) biopolymer as a glue. The synthesized nanocarrier was tested on different bacterial strains of Escherichia coli, Staphylococcus aureus, and Streptococcus pneumoniae to evaluate its effectiveness as an antibiotic as well as its internalization. Synthesis of the nanosystems required previous structural and thermodynamic studies using circular dichroism (CD) and UV-visible techniques to guarantee optimal complex formation and maximal DNA compaction, characteristics which facilitate the correct uptake of the nanocarrier. Two nanocomplexes with different compositions and structures, denoted NS1 and NS2, were prepared, the first involving external Au@16-mph-16 binding and the second partial intercalation. The Ni and NSi nanosystems obtained were characterized via transmission electron microscopy (TEM), zeta potential, and dynamic light scattering (DLS) techniques to measure their charge, aggregation state and hydrodynamic size, and to verify their presence inside the bacteria. From these studies, it was concluded that the zeta potential values for gold nanoparticles, NS1, and NS2 nanosystems were 67.8, −36.7, and −45.1 mV. Moreover, the particle size distribution of the Au@16-mph-16 gold nanoparticles and NS2 nanoformulation was found to be 2.6 nm and 69.0 nm, respectively. However, for NS1 nanoformulation, a bimodal size distribution of 44 nm (95.5%) and 205 nm (4.5%) was found. Minimal inhibitory concentration (MIC) values were determined for the bacteria studied using a microdilution plates assay. The effect on Escherichia coli bacteria was notable, with MIC values of 17 µM for both the NS1 and NS2 nanosystems. The Staphylococcus aureus chart shows a greater inhibition effect of NS2 and NP2 in non-diluted wells, and clearly reveals a great effect on Streptococcus pneumoniae, reaching MIC values of 0.53 µM in more diluted wells. These results are in good agreement with TEM internalization studies of bacteria that reveal significant internalization and damage in Streptococcus pneumoniae. In all the treatments carried out, the antibiotic capacity of gold nanosystems as enhancers of amoxicillin was demonstrated, causing both the precursors and the nanosystems to act very quickly, and thus favoring microbial death with a small amount of antibiotic. Therefore, these gold nanosystems may constitute an effective therapy to combat resistance to antibiotics, in addition to avoiding the secondary effects derived from the administration of high doses of antibiotics. Full article
Show Figures

Graphical abstract

18 pages, 4153 KiB  
Article
Immobilization of ZnO-TiO2 Nanocomposite into Polyimidazolium Amphiphilic Chitosan Film, Targeting Improving Its Antimicrobial and Antibiofilm Applications
by Wesam Abd El-Fattah, Mohammad Y. Alfaifi, Jafar Alkabli, Heba A. Ramadan, Ali A. Shati, Serag Eldin I. Elbehairi, Reda F. M. Elshaarawy, Islam Kamal and Moustafa M. Saleh
Antibiotics 2023, 12(7), 1110; https://doi.org/10.3390/antibiotics12071110 - 27 Jun 2023
Cited by 3 | Viewed by 1268
Abstract
This study presents a green protocol for the fabrication of a multifunctional smart nanobiocomposite (NBC) (ZnO-PIACSB-TiO2) for secure antimicrobial and antibiofilm applications. First, shrimp shells were upgraded to a polyimidazolium amphiphilic chitosan Schiff base (PIACSB) through a series of physicochemical processes. [...] Read more.
This study presents a green protocol for the fabrication of a multifunctional smart nanobiocomposite (NBC) (ZnO-PIACSB-TiO2) for secure antimicrobial and antibiofilm applications. First, shrimp shells were upgraded to a polyimidazolium amphiphilic chitosan Schiff base (PIACSB) through a series of physicochemical processes. After that, the PIACSB was used as an encapsulating and coating agent to manufacture a hybrid NBC in situ by co-encapsulating ZnONPs and TiO2NPs. The physicochemical and visual characteristics of the new NBC were investigated by spectral, microscopic, electrical, and thermal methods. The antimicrobial indices revealed that the newly synthesized, PIACSB-coated TiO2–ZnO nanocomposite is an exciting antibiotic due to its amazing antimicrobial activity (MIC/MBC→0.34/0.68 μg/mL, 0.20/0.40 μg/mL, and 0.15/0.30 μg/mL working against S. aureus, E. coli, and P. aeruginosa, respectively) and antifungal capabilities. Additionally, ZnO-PIACSB-TiO2 is a potential fighter of bacterial biofilms, with the results being superior to those of the positive control (Cipro), which worked against S. aureus (only 8.7% ± 1.9 biofilm growth), E. coli (only 1.4% ± 1.1 biofilm growth), and P. aeruginosa (only 0.85% ± 1.3 biofilm growth). Meanwhile, the NBC exhibits excellent biocompatibility, as evidenced by its IC50 values against both L929 and HSF (135 and 143 µg/mL), which are significantly higher than those of the MIC doses (0.24–24.85 µg/mL) that work against all tested microbes, as well as the uncoated nanocomposite (IC50 = 19.36 ± 2.04 and 23.48 ± 1.56 µg/mL). These findings imply that the new PIACSB-coated nanocomposite film may offer promising multifunctional food packaging additives to address the customer demand for safe, eco-friendly food products with outstanding antimicrobial and antibiofilm capabilities. Full article
Show Figures

Figure 1

21 pages, 6871 KiB  
Article
Antibacterial and Antibiofilm Activity of Chemically and Biologically Synthesized Silver Nanoparticles
by Karen Verduzco-Chavira, Alba Adriana Vallejo-Cardona, Angélica Sofía González-Garibay, Omar Ricardo Torres-González, Iván Moisés Sánchez-Hernández, Jose Miguel Flores-Fernández and Eduardo Padilla-Camberos
Antibiotics 2023, 12(7), 1084; https://doi.org/10.3390/antibiotics12071084 - 21 Jun 2023
Viewed by 1185
Abstract
Bacterial biofilms are a significant problem in the food industry, as they are difficult to eradicate and represent a threat to consumer health. Currently, nanoparticles as an alternative to traditional chemical disinfectants have garnered much attention due to their broad-spectrum antibacterial activity and [...] Read more.
Bacterial biofilms are a significant problem in the food industry, as they are difficult to eradicate and represent a threat to consumer health. Currently, nanoparticles as an alternative to traditional chemical disinfectants have garnered much attention due to their broad-spectrum antibacterial activity and low toxicity. In this study, silver nanoparticles (AgNPs) were synthesized by a biological method using a Jacaranda mimosifolia flower aqueous extract and by a chemical method, and the factors affecting both syntheses were optimized. The nanoparticles were characterized by Ultraviolet–visible (UV–Vis) spectrophotometry, Fourier-transform infrared spectroscopy (FTIR), Dynamic light scattering (DLS), X-ray diffraction (XRD), and Transmission electron microscopy (TEM) with a spherical and uniform shape. The antibacterial and antibiofilm formation activity was carried out on bacterial species of Pseudomonas aeruginosa and Staphylococcus aureus with the capacity to form biofilm. The minimum inhibitory concentration was 117.5 μg/mL for the chemical and 5.3 μg/mL for the biological nanoparticles. Both types of nanoparticles showed antibiofilm activity in the qualitative Congo red test and in the quantitative microplate test. Antibiofilm activity tests on fresh lettuce showed that biological nanoparticles decreased the population of S. aureus and P. aeruginosa by 0.63 and 2.38 logarithms, respectively, while chemical nanoparticles had little microbial reduction. In conclusion, the biologically synthesized nanoparticles showed greater antibiofilm activity. Therefore, these results suggest their potential application in the formulation of sanitizing products for the food and healthcare industries. Full article
Show Figures

Figure 1

19 pages, 3108 KiB  
Article
Sedeveria pink ruby Extract-Mediated Synthesis of Gold and Silver Nanoparticles and Their Bioactivity against Livestock Pathogens and in Different Cell Lines
by Palaniselvam Kuppusamy, Sujung Kim, Sung-Jo Kim, Myunghum Park and Ki-Duk Song
Antibiotics 2023, 12(3), 507; https://doi.org/10.3390/antibiotics12030507 - 03 Mar 2023
Viewed by 1395
Abstract
Biological synthesis of metal nanoparticles has a significant impact in developing sustainable technologies for human, animal, and environmental safety. In this study, we synthesized gold and silver nanoparticles (NPs) using Sedeveria pink ruby (SP) extract and characterized them using UV–visible spectrophotometry, FESEM-EDX, HR-TEM, [...] Read more.
Biological synthesis of metal nanoparticles has a significant impact in developing sustainable technologies for human, animal, and environmental safety. In this study, we synthesized gold and silver nanoparticles (NPs) using Sedeveria pink ruby (SP) extract and characterized them using UV–visible spectrophotometry, FESEM-EDX, HR-TEM, XRD, and FT-IR spectroscopy. Furthermore, antimicrobial and antioxidant activities and cytotoxicity of the synthesized NPs were evaluated. UV–visible absorption spectra showed λmax at 531 and 410 nm, corresponding to the presence of SP gold NPs (SP-AuNPs) and SP silver NPs (SP-AgNPs). Most NPs were spherical and a few were triangular rods, measuring 5–30 and 10–40 nm, respectively. EDX elemental composition analysis revealed that SP-AuNPs and SP-AgNPs accounted for >60% and 30% of NPs, respectively. Additionally, some organic moieties were present, likely derived from various metabolites in the natural plant extract, which acted as stabilizing and reducing agents. Next, the antimicrobial activity of the NPs against pathogenic microbes was tested. SP-AgNPs showed potent antibacterial activity against Escherichia coli and Yersinia pseudotuberculosis. Moreover, at moderate and low concentrations, both NPs exhibited weak cytotoxicity in chicken fibroblasts (DF-1) and macrophages (HD11) as well as human intestinal cancer cells (HT-29). Meanwhile, at high concentrations, the NPs exhibited strong cytotoxicity in both chicken and human cell lines. Therefore, the synthesized SP-AuNPs and SP-AgNPs may act as promising materials to treat poultry diseases. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

49 pages, 5949 KiB  
Review
Nanosilver: An Old Antibacterial Agent with Great Promise in the Fight against Antibiotic Resistance
by Kyra G. Kaiser, Victoire Delattre, Victoria J. Frost, Gregory W. Buck, Julianne V. Phu, Timea G. Fernandez and Ioana E. Pavel
Antibiotics 2023, 12(8), 1264; https://doi.org/10.3390/antibiotics12081264 - 31 Jul 2023
Cited by 7 | Viewed by 2469
Abstract
Antibiotic resistance in bacteria is a major problem worldwide that costs 55 billion USD annually for extended hospitalization, resource utilization, and additional treatment expenditures in the United States. This review examines the roles and forms of silver (e.g., bulk Ag, silver salts (AgNO [...] Read more.
Antibiotic resistance in bacteria is a major problem worldwide that costs 55 billion USD annually for extended hospitalization, resource utilization, and additional treatment expenditures in the United States. This review examines the roles and forms of silver (e.g., bulk Ag, silver salts (AgNO3), and colloidal Ag) from antiquity to the present, and its eventual incorporation as silver nanoparticles (AgNPs) in numerous antibacterial consumer products and biomedical applications. The AgNP fabrication methods, physicochemical properties, and antibacterial mechanisms in Gram-positive and Gram-negative bacterial models are covered. The emphasis is on the problematic ESKAPE pathogens and the antibiotic-resistant pathogens of the greatest human health concern according to the World Health Organization. This review delineates the differences between each bacterial model, the role of the physicochemical properties of AgNPs in the interaction with pathogens, and the subsequent damage of AgNPs and Ag+ released by AgNPs on structural cellular components. In closing, the processes of antibiotic resistance attainment and how novel AgNP–antibiotic conjugates may synergistically reduce the growth of antibiotic-resistant pathogens are presented in light of promising examples, where antibiotic efficacy alone is decreased. Full article
Show Figures

Graphical abstract

Back to TopTop