Innovative and Sustainable Ingredients for Redefining Aquaculture Feeds

A special issue of Animals (ISSN 2076-2615). This special issue belongs to the section "Aquatic Animals".

Deadline for manuscript submissions: closed (7 April 2024) | Viewed by 7221

Special Issue Editors


E-Mail Website
Guest Editor
Department of Biology and Geology, Ceimar-University of Almería, 04120 Almería, Spain
Interests: fish nutrition and digestive physiology; alternative protein ingredients; algae and microalgae

E-Mail Website
Guest Editor
Departamento de Biología y Geología, Campus de Excelencia Internacional CEIMAR, Universidad de Almería, 04120 Almería, Spain
Interests: aquaculture nutrition; digestive enzymes; alternative ingredients; protein evaluation; algae; feed additives; aquafeeds

Special Issue Information

Dear Colleagues,

Aquaculture is the fastest growing food production industry today, with an outstanding contribution to one of the greatest global challenges, which is to feed the 9.6 billion people who will inhabit the world by the year 2050. This fact makes the current reliance of the aquaculture industry on feeds produced from wild-caught fish unsustainable. Therefore, and despite the important efforts focused on finding and testing alternative ingredients able to reduce the dependency on regular ingredients carried out, developing sustainable and nutritious aquafeeds still remains one of the greatest challenges in aquaculture.

In this regard, the aim of this Special Issue is to publish high-quality papers concerning innovative and sustainable ingredients able to not only supply an adequate nutritional value, but also be available at industrial scale, as well as economically affordable. Therefore, we invite the submission of recent findings, in the form of original research articles or reviews, on fish nutrition oriented toward improving growth and general status of the animals as well as recent findings about biotechnological treatment focus to improve their nutrient quality and bioavailability that allow the optimization of feed and raw materials.

Dr. Antonio Jesús Vizcaíno Torres
Dr. Francisco Javier Alarcón López
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Animals is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • aquafeeds
  • marine fish
  • alternative ingredients
  • bioactive compounds
  • nutrients
  • fish nutrition
  • sustainability

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 819 KiB  
Article
Assessment of Full-Fat Tenebrio molitor as Feed Ingredient for Solea senegalensis: Effects on Growth Performance and Lipid Profile
by Ismael Hachero-Cruzado, Mónica B. Betancor, Antonio Jesús Coronel-Dominguez, Manuel Manchado and Francisco Javier Alarcón-López
Animals 2024, 14(4), 595; https://doi.org/10.3390/ani14040595 - 11 Feb 2024
Viewed by 745
Abstract
Tenebrio molitor (TM) is considered as one of the most promising protein sources for replacing fish meal in aquafeeds, among other things because it is rich in protein, a good source of micronutrients and has a low carbon footprint and land use. However, [...] Read more.
Tenebrio molitor (TM) is considered as one of the most promising protein sources for replacing fish meal in aquafeeds, among other things because it is rich in protein, a good source of micronutrients and has a low carbon footprint and land use. However, the main drawback of TM is its fatty acid profile, in particular its low content of n-3 PUFA. This study evaluates the effects of partially replacing plant or marine-derived with full-fat TM meal at two different levels on growth performance and lipid profiles of Senegalese sole (Solea senegalensis). For this purpose, a control diet (CTRL) and four experimental isoproteic (53%) and isolipidic (16%) diets were formulated containing 5 and 10% TM meal replacing mostly fish meal (FM5 and FM10), or 10 and 15% TM meal replacing mostly plant meal (PP10 and PP15). Fish (215 g) were fed at 1% of their body weight for 98 days. The final body weight of fish fed the experimental diets containing TM meal was not different from that of fish fed the CTRL diet (289 g). However, the inclusion of TM meal resulted in a gradual improvement in growth rate and feed efficiency in both cases (replacement of fish or plant meals), and significant differences in specific growth rate (SGR) were observed between fish fed the CTRL diet (SGR = 0.30% day−1) and those fed diets with the highest TM meal content (PP15; SGR = 0.35% day−1). The experimental groups did not show any differences in the protein content of the muscle (19.6% w/w). However, significant differences were observed in the total lipid content of the muscle, with the FM10, PP10, and PP15 groups having the lowest muscle lipid contents (2.2% ww). These fish also showed the lowest neutral lipid content in muscle (6.6% dw), but no differences were observed in the total phospholipid content (2.6% dw). Regarding the fatty acid profile, fish fed FM10, PP10 and PP15 had lower levels of linoleic acid (18:2n-6) and higher levels of oleic acid (18:1n-9) in liver and muscle compared to fish fed CTRL. However, no differences were found between fish fed CTRL and TM-based diets for docosahexaenoic acid (22:6n-3) and total n-3 PUFA in liver and muscle. In conclusion, our study demonstrated that full-fat TM inclusion up to 15% in S. senegalensis diets had no negative effects or even some positive effects on fish survival, growth performance, nutrient utilization and flesh quality. Full article
Show Figures

Figure 1

14 pages, 2221 KiB  
Article
Evaluation of In Vitro Protein Hydrolysis in Seven Insects Approved by the EU for Use as a Protein Alternative in Aquaculture
by María Rodríguez-Rodríguez, María José Sánchez-Muros, María del Carmen Vargas-García, Agnes Timea Varga, Dmitri Fabrikov and Fernando G. Barroso
Animals 2024, 14(1), 96; https://doi.org/10.3390/ani14010096 - 27 Dec 2023
Viewed by 763
Abstract
Rapid population growth is leading to an increase in the demand for high-quality protein such as fish, which has led to a large increase in aquaculture. However, fish feed is dependent on fishmeal. It is necessary to explore more sustainable protein alternatives that [...] Read more.
Rapid population growth is leading to an increase in the demand for high-quality protein such as fish, which has led to a large increase in aquaculture. However, fish feed is dependent on fishmeal. It is necessary to explore more sustainable protein alternatives that can meet the needs of fish. Insects, due to their high protein content and good amino acid profiles, could be a successful alternative to fishmeal and soybean meal traditionally used in sectors such as aquaculture. In this work, seven species of insects (Hermetia illucens, Tenebrio molitor, Acheta domestica, Alphitobius diaperinus, Gryllodes sigillatus, Gryllus assimilis, and Musca domestica) approved by the European Union (UE) for use as feed for farmed animals (aquaculture, poultry, and pigs) were studied. Their proximate composition, hydrolysis of organic matter (OMd), hydrolysis of crude protein (CPd), degree of hydrolysis (DH/NH2 and DH/100 g DM), and total hydrolysis (TH) were analyzed. The results showed that Tenebrio molitor had digestibility similar to that of fishmeal, while Acheta domestica and Hermetia illucens provided similar digestibility to that of soybean meal. The acid detergent fiber (ADF) data were negatively correlated with all protein digestibility variables. The differences in the degree of hydrolysis (DH) results and the similarity in total hydrolysis (TH) results could indicate the slowing effects of ADF on protein digestibility. Further in vivo studies are needed. Full article
Show Figures

Graphical abstract

17 pages, 3284 KiB  
Article
Evaluation of Methanotroph (Methylococcus capsulatus, Bath) Bacteria Protein as an Alternative to Fish Meal in the Diet of Juvenile American Eel (Anguilla rostrata)
by Wenqi Lu, Haixia Yu, Ying Liang and Shaowei Zhai
Animals 2023, 13(4), 681; https://doi.org/10.3390/ani13040681 - 15 Feb 2023
Cited by 9 | Viewed by 1720
Abstract
This study was conducted to evaluate the effects of replacing fish meal (FM) with methanotroph (Methylococcus capsulatus, Bath) bacteria protein (MBP) in the diets of the juvenile American eel (Anguilla rostrata). Trial fish were randomly divided into the MBP0 [...] Read more.
This study was conducted to evaluate the effects of replacing fish meal (FM) with methanotroph (Methylococcus capsulatus, Bath) bacteria protein (MBP) in the diets of the juvenile American eel (Anguilla rostrata). Trial fish were randomly divided into the MBP0 group, MBP6 group, MBP12 group, and MBP18 group fed the diets with MBP replacing FM at levels of 0, 6%, 12%, and 18%, respectively. The trial lasted for ten weeks. There were no significant differences in weight gain or feed utilization among the MBP0, MBP6, and MBP12 groups (except for the feeding rate in the MBP12 group). Compared with the MBP0 group, the D-lactate level and diamine oxidase activity in the serum were significantly elevated in the MBP12 and MBP18 groups. In terms of non-specific immunity parameters in serum, the alkaline phosphatase activity was significantly decreased in the MBP18 group, and the complement 3 level was significantly elevated in the MBP12 and MBP18 groups. The activities of lipase and protease in the intestine were significantly decreased in the MBP12 and MBP18 groups. Compared with the MBP0 group, the total antioxidant capacity and activities of superoxide dismutase, catalase, and glutathione peroxidase in the intestine were significantly decreased in the MBP18 group, while the malondialdehyde level was significantly increased. The villus height, muscular thickness, and microvillus density were significantly decreased in the MBP12 and MBP18 groups. There were no significant differences in the foresaid parameters between the MBP0 group and the MBP6 group. The intestinal microbiota of the MBP6 group was beneficially regulated to maintain similar growth and health status with the MBP0 group. The adverse effects on the intestinal microbiota were reflected in the MBP18 group. In conclusion, MBP could successfully replace 6% of FM in the diet without adversely affecting the growth performance, serum biochemical parameters, and intestinal health of juvenile American eels. Full article
Show Figures

Figure 1

23 pages, 3126 KiB  
Article
A Novel Approach in the Development of Larval Largemouth Bass Micropterus salmoides Diets Using Largemouth Bass Muscle Hydrolysates as the Protein Source
by Giovanni S. Molinari, Michal Wojno, Genciana Terova, Macdonald Wick, Hayden Riley, Jeffrey T. Caminiti and Karolina Kwasek
Animals 2023, 13(3), 373; https://doi.org/10.3390/ani13030373 - 21 Jan 2023
Cited by 1 | Viewed by 1396
Abstract
This study’s objectives were to determine the effect of Largemouth Bass (LMB) muscle hydrolysates obtained using same-species digestive enzymes and the degree of LMB muscle hydrolysis when included in the first feeds of growth performance and survival, skeletal development, intestinal peptide uptake, and [...] Read more.
This study’s objectives were to determine the effect of Largemouth Bass (LMB) muscle hydrolysates obtained using same-species digestive enzymes and the degree of LMB muscle hydrolysis when included in the first feeds of growth performance and survival, skeletal development, intestinal peptide uptake, and muscle-free amino acid composition of larval LMB. LMB muscle was mixed with digestive enzymes from adult LMB, and hydrolyzed for 1.5, 3, and 6 h, respectively. Five diets were produced, the intact diet containing non-hydrolyzed muscle and four diets with 37% muscle hydrolysate inclusion. Those diets were characterized by their level of each hydrolysate (presented as a ratio of 1.5, 3, and 6 Ts hydrolysates): 1:1:1, 1:3:6, 1:3:1, 6:3:1 for diets A, B, C, and D, respectively. To account for gut development, one group of larval LMB was fed a weekly series of diets B, C, and D to provide an increasing molecular weight profile throughout development. This group was compared against others that received either; (1) diets D, C, and B; (2) diet A; or (3) intact diet. The initial inclusion of the hydrolysates significantly improved the total length of the larval LMB; however, neither the hydrolysate inclusion nor the series of dietary molecular weight profiles improved the overall growth of larval LMB. The inclusion of hydrolysates significantly decreased the occurrence of skeletal deformities. The degree of hydrolysis did not have a significant effect on the parameters measured, except for intestinal peptide uptake, which was increased in the group that received the most hydrolyzed diet at the final time of sampling. The lack of overall growth improvement suggests that while the hydrolysates improve the initial growth performance, further research is necessary to determine the optimal molecular weight profile, hydrolysate inclusion level, and physical properties of feeds for larval LMB. Full article
Show Figures

Figure 1

18 pages, 2399 KiB  
Article
Evaluation of Spray-Dried Bovine Hemoglobin Powder as a Dietary Animal Protein Source in Nile Tilapia, Oreochromis niloticus
by Shimaa A. Amer, Mahmoud Farahat, Tarek Khamis, Samar A. Abdo, Elsayed M. Younis, Abdel-Wahab A. Abdel-Warith, Rehab Reda, Sozan A. Ali, Simon J. Davies and Rowida E. Ibrahim
Animals 2022, 12(22), 3206; https://doi.org/10.3390/ani12223206 - 18 Nov 2022
Cited by 13 | Viewed by 1898
Abstract
The present study evaluated the potential effects of dietary inclusion of spray-dried bovine hemoglobin powder (SDBH) on the growth, gene expression of peptide and amino acid transporters, insulin growth factor-1 (IGF-1) and myostatin, digestive enzymes activity, intestinal histomorphology and immune [...] Read more.
The present study evaluated the potential effects of dietary inclusion of spray-dried bovine hemoglobin powder (SDBH) on the growth, gene expression of peptide and amino acid transporters, insulin growth factor-1 (IGF-1) and myostatin, digestive enzymes activity, intestinal histomorphology and immune status, immune-related gene expression, and economic efficiency in Nile tilapia, Oreochromis niloticus. Two hundred twenty-five fingerlings (32.38 ± 0.05 g/fish) were distributed into five treatments with five dietary inclusion levels of SDBH: 0, 2.5, 5, 7.5, and 10% for a ten-week feeding period. Dietary inclusion of SDBH linearly increased the final body weight (FBW), total weight gain (TWG), specific growth rate (SGR), and protein efficiency ratio (PER). Additionally, a linear decrease in feed conversion ratio (FCR) and daily feed intake relative to the daily BW was reported in the highest inclusion levels (7.5 and 10%). Dietary inclusion of SDBH was associated with a significant increase in the intestinal villous height (VH), villous width (VW), villous height: crypt depth ratio (VH: CD), and muscle coat thickness (MCT), with the highest values reported in SDBH7.5 group. Increased serum growth hormone levels and decreased serum leptin hormone levels were also reported by increasing the SDBH level. The serum glucose level was decreased in the SDBH7.5 and SDBH10 groups. The digestive enzymes’ activity (amylase and protease) was increased by increasing the SDBH inclusion level. An up-regulation in the expression of peptide and amino acid transporters, IGF-1, and down-regulation of myostatin was reported in the SDBH2.5 to SDBH7.5 groups. Spleen sections showed more lymphoid elements, especially in the SDBH2.5 and SDBH7.5 groups. The SDBH inclusion increased the serum lysozyme activity, nitric oxide (NO), and complement 3 (C3) levels, with the highest values recorded in the SDBH5 group. The phagocytic % and the phagocytic index were increased by increasing the SDBH inclusion %. The expressions of immune-related genes (transforming growth factor-beta (TGF-β), Toll-like receptor 2 (TLR2), and interleukin 10 (IL10)) were up-regulated by SDBH inclusion with the highest expression in the SDBH5 group. Economically, the feed costs and feed costs/kg gain were linearly decreased in the SDBH7.5 and SDBH10 diets. In conclusion, spray-dried bovine hemoglobin powder could be used as a protein source for up to 10% of the diets of Nile tilapia for better growth and immune status of fish. Full article
Show Figures

Figure 1

Back to TopTop