Effects of Agrotechnical Factors and Farming Systems on Soil Properties and Plant Productivity

A special issue of Agronomy (ISSN 2073-4395). This special issue belongs to the section "Soil and Plant Nutrition".

Deadline for manuscript submissions: 30 September 2024 | Viewed by 7991

Special Issue Editors


E-Mail Website
Guest Editor
Department of Herbology and Plant Cultivation Techniques, University of Life Sciences, Akademicka 13, 20-950 Lublin, Poland
Interests: agricultural systems; organic farming; agrotechnical factors influencing soil properties and fertility; optimization of agronomic practices

E-Mail Website
Guest Editor
Department of Herbology and Plant Cultivation Techniques, University of Life Sciences, Akademicka 13 Street, 20-950 Lublin, Poland
Interests: agrotechnics of cereal, root and herbal crops; organic farming; soil properties; quality of agricultural produce
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Fertile soil, rich in nutrients and beneficial microorganisms, guarantees high-quality crops. It is also an indicator of the condition of the natural environment, especially in areas and lands subject to anthropopressure. High soil quality is particularly important in sustainable and ecological farming. The level of agricultural technology used, including the type and amount of fertilization, plays an important role in shaping the quality of the soil. Due to the growing consumer demand for high-quality food (including organic food), it is important to properly manage crops, with particular emphasis on the conscious shaping of soil properties. Another important aspect is the monitoring of the condition of soils subjected to broadly understood anthropopressure. Soil health monitoring can help to guarantee the production of healthy and safe food, free from chemical contamination and pathogens. To achieve the goals outlined above, new knowledge is needed on how to improve crop management and soil quality. The new information obtained should be widely disseminated not only in the scientific community, but also easily accessible to agricultural practice, the agricultural advisory industry, processors and other stakeholders.

The Guest Editors invite scientists to share their knowledge about innovative solutions in crop management, with particular emphasis on soil fertility and quality, as well as soil condition monitoring. Both original research papers and thematic reviews are accepted.

Prof. Dr. Cezary A. Kwiatkowski
Dr. Elżbieta Harasim
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Agronomy is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • farming system versus soil quality
  • crop rotation and agrotechnical factors versus soil quality
  • physical and chemical properties of soil
  • soil biological properties and enzymatic activity
  • soil contamination and soil pathogens
  • soil quality versus yield and quality of agricultural crops
  • soil condition monitoring and anthropopressure

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 11718 KiB  
Article
The Stability of Aggregates in Different Amazonian Agroecosystems Is Influenced by the Texture, Acidity, and Availability of Ca and Mg in the Soil
by Alan Ferreira Leite de Lima, Milton César Costa Campos, Joalison de Brito Silva, Witória de Oliveira Araújo, Bruno Campos Mantovanelli, Fernando Gomes de Souza, Raphael Moreira Beirigo, Douglas Marcelo Pinheiro da Silva, Rodrigo Santana Macedo and Flávio Pereira de Oliveira
Agronomy 2024, 14(4), 677; https://doi.org/10.3390/agronomy14040677 - 26 Mar 2024
Viewed by 394
Abstract
The processes of occupation and exploitation in the Amazon have been increasing, and as a consequence, forest areas are being replaced by agroecosystems. As a consequence of this change, changes have been occurring in the soil attributes, and consequently, in the stability of [...] Read more.
The processes of occupation and exploitation in the Amazon have been increasing, and as a consequence, forest areas are being replaced by agroecosystems. As a consequence of this change, changes have been occurring in the soil attributes, and consequently, in the stability of aggregates in these environments. Thus, this work had two objectives: the first was to evaluate the impacts generated by the conversion of forests into agroecosystems on the soil attributes that are related to aggregates, in the southwestern region of the Amazon; the second objective was to evaluate the roles of pedophysical and pedochemical parameters on the stability of soil aggregates. The study was carried out on rural properties located in the southern part of Amazonas State, Brazil. Eight areas under different agroecosystems were selected: in the municipality of Canutama: (i) annatto, (ii) guarana, and (iii) cupuassu; in the municipality of Humaitá: (iv) cassava, (v) agroforestry, and (vi) sugarcane; and in the municipality of Manicoré: (vii) pasture and (viii) native forest. Unformed soil samples were collected from the 0.00–0.10 m layer and analyzed for aggregate stability, bulk density, soil organic carbon, and soil organic carbon stock. Univariate, bivariate, and multivariate analyses were performed. The largest soil aggregations occurred in the annatto, guarana, sugarcane, and pasture agroecosystems. We associate the greater aggregation capacity of soils with factors that are inherent to the cultivated species and soil properties. The first factor corresponds to the adaptability of the Amazonian and grass species and their ability to produce biomass. The second factor is related to the physical and chemical properties of Amazonian soils, largely influenced by the sand fraction, soil organic carbon, soil acidity, and availability of exchangeable Ca and Mg. Full article
Show Figures

Figure 1

23 pages, 1205 KiB  
Article
The Effects of Incorporating Caraway into a Multi-Cropping Farming System on the Crops and the Overall Agroecosystem
by Aušra Rudinskienė, Aušra Marcinkevičienė, Rimantas Velička and Vaida Steponavičienė
Agronomy 2024, 14(3), 625; https://doi.org/10.3390/agronomy14030625 - 20 Mar 2024
Viewed by 572
Abstract
The scientific aim of this article is to investigate the potential benefits of implementing a multi-cropping system, specifically focusing on the incorporation of caraway, to improve soil agrochemical and biological properties, prevent soil degradation and erosion, and ultimately enhance soil quality and health [...] Read more.
The scientific aim of this article is to investigate the potential benefits of implementing a multi-cropping system, specifically focusing on the incorporation of caraway, to improve soil agrochemical and biological properties, prevent soil degradation and erosion, and ultimately enhance soil quality and health to better adapt to climate change. This study aims to provide valuable insights into the comparative analysis of various soil parameters and biological indicators to showcase the promising perspectives and importance of perennial crop production for improving soil quality and agricultural sustainability. These crops are designed to provide multiple benefits simultaneously, including improved yields, enhanced ecosystem services, and reduced environmental effects. However, an integrated assessment of their overall effects on the agroecosystem is crucial to understand their potential benefits and trade-offs. The field experiment was conducted over three consecutive vegetative seasons (2017 to 2021) at the Experimental Station of Vytautas Magnus University Agriculture Academy (VMU AA) in Kaunas district, Lithuania. The experimental site is located at 54°53′7.5″ N latitude and 23°50′18.11″ E longitude. The treatments within a replicate were multi-cropping systems of sole crops (spring barley (1), spring wheat (2), pea (3), caraway (4)), binary crops (spring barley–caraway (5), spring wheat–caraway (6), pea–caraway (7)), and trinary crops (spring barley–caraway–white clover (8), spring wheat–caraway–white clover (9), pea–caraway–white clover (10)) crops. However, an integrated assessment of their impact on the agroecosystem is needed to understand their potential benefits and processes. To determine the complex interactions between indicators, the interrelationships between indicators, and the strength of impacts, this study applied an integrated assessment approach using the comprehensive assessment index (CEI). The CEI values showed that integrating caraway (Carum carvi L.) into multi-cropping systems can have several positive effects. The effect of the binary spring barley and caraway and the trinary spring barley, caraway, and white clover crops on the agroecosystem is positively higher than that of the other comparative sole, binary, and trinary crops. Caraway, after spring wheat together with white clover, has a higher positive effect on the agroecosystem than caraway without white clover. Specifically, this study addresses key aspects, such as soil health, nutrient cycling, weed management, and overall agricultural sustainability, within the context of multi-cropping practices. By evaluating the effects of these cropping systems on soil agrochemical properties and ecosystem dynamics, the research provides valuable insights into sustainable agricultural practices that promote environmental conservation and long-term soil health. Full article
Show Figures

Figure 1

15 pages, 3453 KiB  
Communication
Crop Conversion from Annual to Perennials: An Effective Strategy to Affect Soil Multifunctionality
by Panpan Liu, Dong Wang, Yue Li, Ji Liu, Yongxing Cui, Guopeng Liang, Chaoqun Wang, Chao Wang, Daryl L. Moorhead and Ji Chen
Agronomy 2024, 14(3), 594; https://doi.org/10.3390/agronomy14030594 - 15 Mar 2024
Viewed by 518
Abstract
Although crop conversion from annual to perennial crops has been considered as one path towards climate-smart and resource-efficient agriculture, the effects of this conversion on soil multifunctionality and biomass yields remain unclear. The objective of the study is to enhance soil multifunctionality while [...] Read more.
Although crop conversion from annual to perennial crops has been considered as one path towards climate-smart and resource-efficient agriculture, the effects of this conversion on soil multifunctionality and biomass yields remain unclear. The objective of the study is to enhance soil multifunctionality while exerting a marginal influence on farmer income. Here, we investigated the effects of annual winter wheat (Triticum aestivum L.) and two perennial crops (a grass (Lolium perenne L.), a legume (Medicago sativa L.), and their mixture) on soil multifunctionality and biomass yield on the Yellow River floodplain. Soil multifunctionality was assessed by the capacity of water regulation and the multifunctionality of carbon (C), nitrogen (N), and phosphorus (P) cycles. C cycle multifunctionality index is the average of β-xylosidase, β-cellobiosidase, and β-1, 4-glucosidase. N cycle multifunctionality index is the average of L-leucine aminopeptidase and β-1, 4-N-acetyl-glucosaminidase, and acid phosphatase represented (and dominated) P cycle functions. The results showed that perennial crops enhanced soil multifunctionality by 207% for L. perenne, 311% for M. sativa, and 438% for L. perenne + M. sativa, compared with annual winter wheat (T. aestivum). The effect of perennial crops on soil multifunctionality increased with infiltration rate, dissolved organic C, microbial biomass C, and extracellular enzymatic activities for both C and N acquisition. However, we observed that perennial crops had a lower biomass yield than annual crop. Therefore, the transition of agricultural landscapes to perennials needs to take into account the balance between environmental protection and food security, as well as environmental heterogeneity, to promote sustainable agricultural development. Full article
Show Figures

Figure 1

15 pages, 5052 KiB  
Article
Soil Microbiome of Abandoned Plaggic Podzol of Different-Aged Fallow Lands and Native Podzol in South Taiga (Leningrad Region)
by Anton Lavrishchev, Andrey Litvinovich, Evgeny Abakumov, Anastasia Kimeklis, Grigory Gladkov, Evgeny Andronov and Vyacheslav Polyakov
Agronomy 2024, 14(3), 429; https://doi.org/10.3390/agronomy14030429 - 22 Feb 2024
Viewed by 551
Abstract
The soil microbiome is composed of various communities that play an important role in the existence of ecosystem services and the sustainable functioning of ecosystems under high anthropogenic loads. The transition of soils to a fallow state and their subsequent transformation lead to [...] Read more.
The soil microbiome is composed of various communities that play an important role in the existence of ecosystem services and the sustainable functioning of ecosystems under high anthropogenic loads. The transition of soils to a fallow state and their subsequent transformation lead to a notable alteration in the taxonomic composition of the soil microbiome, impacting the biochemical processes within the soil and its fertility levels. The object of this study comprised different-aged fallow soils of the southern taiga in the vicinity of Ban’kovo village, Leningrad region. The method comprising the high-throughput sequencing of 16S rRNA gene fragments using an Illumina MiSEQ sequencer was used to analyze the microbial community. The general processing of sequences was carried out with the dada2 (v1.14.1) package. It was found that the morphological organization of fallow soils has significant differences from the native podzol. In fallow soils, there are signs of leaching expressed in the accumulation of leached mineral particles, which indicates the degradation of the fallow–arable horizon. At the same time, there is a decrease in the content of P2O5 and K2O and an increase in the content of N-NH4 and N-NO3 in fallow soil. The analysis of alpha diversity index values showed that the highest level of alpha diversity in the microbial community is characteristic of 40-year-old soil, the alpha diversity index decreased with the increasing time of the fallow state, and the lowest alpha diversity index was observed in the native podzol. According to the values of the beta diversity index, a high correlation between the soil microbiome and the physicochemical characteristics of the soil was revealed, which indicates the formation of functional specialization in the studied microbial communities. As a result of the study of the taxonomic composition of microbial communities in fallow soils, it was found that the most represented microbial communities in fallow soils belong to Nitrosomonadaceae (Pseudomonadota), Mycobacterium (Actinobacteria), Nitrospira (Nitrospirota), and Luteolibacter (Verrucomicrobiota). The duration of post-agrogenic transformation is the leading factor influencing the changes in microbial communities; so, with an increase in the time that soils were in a fallow state, an increase in the oligotrophic microbial community was observed. Full article
Show Figures

Figure 1

14 pages, 1225 KiB  
Article
Exploring the Potential of Wood Vinegar: Chemical Composition and Biological Effects on Crops and Pests
by Giuseppina Iacomino, Mohamed Idbella, Alessia Staropoli, Bruno Nanni, Tomaso Bertoli, Francesco Vinale and Giuliano Bonanomi
Agronomy 2024, 14(1), 114; https://doi.org/10.3390/agronomy14010114 - 02 Jan 2024
Viewed by 2047
Abstract
Wood vinegar is a by-product of the pyrolysis of organic raw materials. In this study, we investigated the chemical composition and biological activity of industrial wood vinegar derived from the pyrolysis of wood pruning waste. The composition of wood vinegar was characterized using [...] Read more.
Wood vinegar is a by-product of the pyrolysis of organic raw materials. In this study, we investigated the chemical composition and biological activity of industrial wood vinegar derived from the pyrolysis of wood pruning waste. The composition of wood vinegar was characterized using liquid chromatography (LC) and gas chromatography–mass spectrometry (GC-MS). Wood vinegar bioactivity was tested against Bactrocera oleae under field conditions in an olive grove for two years. Furthermore, wood vinegar was applied in a greenhouse experiment with strawberry plants and in a strawberry field infested with the nematode Meloidogyne incognita. Finally, a seed root length bioassay was performed to evaluate the phytotoxicity or biostimulation of wood vinegar on Eruca sativa, Lactuca sativa, Lens culinaryis, Lolium multiflorum, and Solanum lycopersicum. Our results showed that wood vinegar had a pH of 3.2, with high concentrations of acetic acid (27,840.16 mg L−1) and phenols (54.00 mg L−1). No repellent effect against B. oleae was observed when wood vinegar was applied as an aerosol in olive groves. On strawberry plants in greenhouse conditions, wood vinegar showed phytotoxic effects at high concentrations, resulting in a decrease in the total yield of the plants. In the field, at a 1% concentration, wood vinegar led to a significant 15% reduction in the infection caused by M. incognita in strawberry plants. Finally, in the in vitro crop bioassay, wood vinegar demonstrated remarkable phytotoxicity effects at high concentrations while promoting root growth when diluted. The efficacy of wood vinegar displayed considerable variability based on concentration and delivery system, emphasizing the need for careful evaluation when considering its application, particularly in diverse crops and production systems. Full article
Show Figures

Figure 1

12 pages, 1965 KiB  
Article
Rice Straw Mulch Installation in a Vineyard Improves Weed Control and Modifies Soil Characteristics
by Diego Gómez de Barreda, Inmaculada Bautista, Vicente Castell and Antonio Lidón
Agronomy 2023, 13(12), 3068; https://doi.org/10.3390/agronomy13123068 - 15 Dec 2023
Cited by 1 | Viewed by 858
Abstract
After harvesting rice paddy fields, rice straw is a significant problem due to uncontrolled CO2 emissions when the straw is burned. One solution to this problem is to use this rice by-product for mulching planting lines of fruit trees or vineyards with [...] Read more.
After harvesting rice paddy fields, rice straw is a significant problem due to uncontrolled CO2 emissions when the straw is burned. One solution to this problem is to use this rice by-product for mulching planting lines of fruit trees or vineyards with the purpose of controlling weeds and improving soil characteristics. A 3-year experiment was conducted at the Polytechnic University of Valencia (Spain) demonstration vineyard, where rice-straw mulch was installed at three rates in 2021, 24.0, 43.1, and 63.1 t ha−1, and in 2022, 25.0, 37.5, and 50.0 t ha−1. Weeds were mainly controlled with the highest treatment rate (50.0–63.1 t ha−1), as the time of the year for mulch installation is decisive for achieving different weed control rates. On average, mulch decreased soil bulk density (5.4%), and increased the soil organic carbon (24.3%) and water-soluble organic carbon (24.3%) compared to bare soil. Soil temperature changes were observed due to the mulch treatment, with soil temperature lower in bare soil than in mulched soil during the cold season, and higher during the warm season. This effect was highly dependent on the mulch application rate. Soil moisture content was also higher under the mulch treatment, showing a mulch-rate response during the four seasons of the year. The changes in the physical and biological soil properties induced a higher soil respiration rate when mulched soil was compared to bare soil. This study concludes that the use of rice straw as a mulch had positive effects on weed control and soil properties, although three factors concerning mulch management were paramount: rate, the timing of installation, and replacement rate. Full article
Show Figures

Figure 1

26 pages, 1507 KiB  
Article
Land Valuation Systems in Relation to Water Retention
by Josef Slaboch and Michal Malý
Agronomy 2023, 13(12), 2978; https://doi.org/10.3390/agronomy13122978 - 01 Dec 2023
Viewed by 675
Abstract
This article uses a derived econometric model to estimate the impact of the physical properties of soil on its retention capacity and, subsequently, the impact of retention capacity on production potential. This is an important aspect considering climate change impacts, which are affecting [...] Read more.
This article uses a derived econometric model to estimate the impact of the physical properties of soil on its retention capacity and, subsequently, the impact of retention capacity on production potential. This is an important aspect considering climate change impacts, which are affecting food production across the world. An investigation of academic publications shows that very few studies address opportunities to price rainwater in relation to agricultural production. As such, the objective of the submitted article is to use soil physical property spatial data to create an econometric model. The econometric model itself determines the intensity and direction of action of the soil’s physical properties on the ability of the soil to hold rainwater. The results demonstrate the positive effect of physical properties such as porosity and humus content. Important information for farming practice is the relatively pronounced influence of soil acidity (pH) on its retention capacity, which is mainly the result of its effect on soil biogeochemical processes. The most significant variable in terms of the extent of action is the depth of the soil profile, which is in line with general assumptions. The actual evaluation of soil retention capacity was undertaken using an option with the use of a sensitivity analysis. In order to include the non-production function of the soil (retention capacity), we conclude for individual enhanced quality soil ecological units an increased price of 1–12%. These conclusions are particularly valuable because some soils may have a low production potential while also being highly valuable for their particular location in terms of their non-production potential (typically desirable floodwater retention, etc.). Considering climate change, this is a particularly topical issue. The use of enhanced-quality soil ecological units is reflected in a wide range of fields through legislative processes—determining rural land protection class and, especially in the tax obligations of agricultural entities, farming agricultural land. Full article
Show Figures

Figure 1

17 pages, 2904 KiB  
Article
Effects of Nitrogen Supply on Dry Matter Accumulation, Water-Nitrogen Use Efficiency and Grain Yield of Soybean (Glycine max L.) under Different Mulching Methods
by Xin Wang, Wangyang Li, Jiaqi An, Hongzhao Shi, Zijun Tang, Xiao Zhao, Jinjin Guo, Lin Jin, Youzhen Xiang, Zhijun Li and Fucang Zhang
Agronomy 2023, 13(2), 606; https://doi.org/10.3390/agronomy13020606 - 20 Feb 2023
Cited by 5 | Viewed by 1518
Abstract
In dryland agriculture, mulching methods and nitrogen application have been extensively adopted to improve water and nitrogen use efficiency and increase crop yield. However, there has been a scarcity of research on the combined effects of mulching types and nitrogen application on the [...] Read more.
In dryland agriculture, mulching methods and nitrogen application have been extensively adopted to improve water and nitrogen use efficiency and increase crop yield. However, there has been a scarcity of research on the combined effects of mulching types and nitrogen application on the growth and yield of soybean (Glycine max L.). In the present study, four nitrogen levels (N0: 0 kg N ha−1, N1: 60 kg N ha−1, N2: 120 kg N ha−1, N3: 180 kg N ha−1) and four mulching methods (NM: no mulching, SM: straw mulching, FM: film mulching, SFM: straw and film mulching) were set so as to evaluate the effects of mulching methods and nitrogen application on dry matter accumulation, grain yield, water-nitrogen use efficiency, and economic benefits of soybean in Northwest China from 2021 to 2022. The results show that the dry matter accumulation, yield formation, water and nitrogen use efficiency, and economic benefits of soybean were improved under different mulching methods (SM, FM, and SFM) and nitrogen applications (N1-N3), and that the effect is the best when the nitrogen application rate is N2 and the mulching method is FM. As such, a conclusion could be drawn that suitable nitrogen application (120 kg ha−1) combined with film mulching was beneficial for the utilization of rainwater resources and soybean production in the dryland of Northwest China. Full article
Show Figures

Figure 1

Back to TopTop