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Abstract: This work explores the swimming of ammonoids, cephalopods related to living squids,
octopuses, and nautilids and, like the latter, equipped with a coiled external shell. A mathematical
model is introduced for theoretical ammonoid conchs. The two differential equations of motion (one
for the centre of mass, including the drag force and the added mass coefficient, and one for the roll
angle) are solved numerically for the theoretical conchs, and the results are analysed in terms of
velocity and rocking angle. Destabilising resonances occur when the rocking motion is in phase with
the propelling water jet. It is suggested that the ammonoids partly evolved avoiding the occurrence
of such resonances in their construction.
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1. Introduction

Ammonoids are among the most important fossil groups due to their cosmopolitan
spread, vast geological temporal distribution covering more than 340 million years, and
the large number of taxa [1–3]. Ammonoids were ectocochleate cephalopod molluscs with
(usually) a distinctive spirally coiled shell that served for both buoyancy and defence [4,5].
Not unlike their living relatives, squids and nautiluses, it is thought that they swam back-
wards by funnelling water at high speed from the hyponome, a narrow funnel extending
from the head [6]. Since ammonoids are extinct, many unique body traits that are no
longer common amongst extant cephalopods and lifestyles should be substantiated by
analogic and theoretical modelling. There is a long tradition for mathematically oriented
studies of ammonoid physiology focusing in particular on the enigmatic suture lines which
supported the thin and light shell and were interpreted either as a means to counteract
external pressure (e.g., ref. [7,8]) or as structures unrelated to pressure [9,10]. However,
apart from very recent contributions (e.g., refs. [11–13]) and calculations and measurements
of the drag force [6,14], less attention has been paid to simulating ammonoid swimming
and locomotion. Another reason is that locomotion is crucially linked not only to the
usually well-conserved shell but also to the soft body parts, the funnel and the mantle
cavity. These have little possibility of preservation [15] and, in any case, are largely limited
to muscle scars on the internal shell [15,16]. In fact, the hyponomic footprint is only known
for endocochleate coleoids so far [17].

Recently, 3D analogue models of ammonoids have been constructed to simulate their
swimming [18]. The robots are suitably tuned to obtain neutral buoyancy and are self-
propelled through a built-in electric motor, which generates a water jet from a funnel [18].
These models have the advantage of being virtually complete in simulating the mechanics
of swimming since, in principle, the shape and size of the chosen taxon can be investigated
with a suitable design. Furthermore, the movements of the robotic ammonoids can be
monitored with a camera, accurately measuring the horizontal motion, the rocking angle,
and velocities [18], but designing and reproducing these experiments is not a simple task.

Therefore, to integrate the several research avenues, it would be interesting to develop
a theoretical modelling tool for ammonoid locomotion. This work theoretically investigates
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the mechanics and fluid dynamics of ammonoid swimming. The two canonical equations
of motion for the dynamics of a rigid body are written for the ammonoid movement in
water, one for the acceleration of the centre of mass and the other for the time derivative of
angular velocity around the centre of mass. The differential equations are integrated for
the cases of three models, which differ in the lengths of the soft bodies.

Ammonoids had neutral buoyancy ensured by the equality between nacreous shell
weight and the weight of water displaced by the conch [19]. Therefore, in the absence of
any thrust force, the ammonoid would float without weight. It is, therefore, necessary to
write the equations of motion starting from this null configuration. Although the analogies
to living cephalopods should be considered with care (see ref. [20] for the necessary caveats
in too close an analogy between ammonoids and nautilids), it appears that similar to
nautilids [21] and squids [22], ammonoids swam in two steps, a stage of water intake,
followed by its expulsion through the hyponome to accelerate the body [6]. Since, for
reasons of mechanical stability, the centre of mass must be below the centre of buoyancy [23],
the expulsion of the jet generates a torque whenever the thrust vector does not intercept the
midpoint between the centres of buoyancy and mass [18]. Since only horizontal thrust is
considered here, the generation of the torque occurs if the thrust point from the hyponome
and the midpoint have different heights in the gravity field. Thus, there will always be
misalignment generating the thrust, so the thrust force required for horizontal motion will
imply an adverse rocking motion as a side effect of swimming. As a consequence, stronger
jet propulsion to gain acceleration and speed may have posed an evolutionary dilemma
due to the increased instability [18]. In the following, the equations of motion for the model
ammonoids are written in detail, are numerically integrated, and the results are presented
for selected cases.

2. The Model
2.1. Model Geometry

First, a model for the geometry of the ammonoid is built. To maintain broad generality,
a class of ammonoid models is introduced for the analysis that does not correspond to any
specific taxon but is a theoretical epitome which allows for an obvious generalisation. As de-
tailed in Appendix A, the model is built as a logarithmic spiral in three dimensions and has
planispiral (flat) and tightly coiled symmetry [24–26]. All geometrical characteristics of the
shell, such as thickness, are also based on logarithmic increase from the apex. Figure 1b–d
shows the geometry of the ammonoid model resulting from the model construction. From
the point of view of theoretical morphology, this type of geometry would be classified
as advolute (because whorls barely touch without involution) and serpenticone (because
of its large degree of umbilical exposure). The fossil record indicates three types of am-
monoid arrangements regarding the length of the soft body compared to the entire shell
length. Brevidome forms, in which the soft body angle Ψ occupies less than 90◦ of the last
whorl, mesodome forms (90◦ < Ψ < 200◦), and longidome forms (Ψ > 200◦). Palaeozoic
ammonoids show a long-standing trend of increasing Ψ even though the angle is rarely
wider than 360◦ [27], while the (probably) better-built ammonoids populating the Mesozoic
seas (whose morphology was the most altered from the ancestral state of Palaeozoic forms)
are typically mesodome (see, e.g., ref. [28]). Thus, there seems to be a tendency for “large
but moderate” angles Ψ. Note that short-bodied chambers are more typically associated
with oxycone rather than serpenticone forms [18]. Maintaining the same theoretical mor-
phology shape (advolute serpenticone) for the three typologies of ammonoid body lengths
may thus appear as a contrived choice considering the observed theoretical morphospace
for real ammonoids, a choice which, however, is necessary to allow an analysis based on
few constraints. Table 1 summarises the geometrical properties of the three theoretical
ammonoid conchs calculated with the equations described in Appendix A and used as an
input for the dynamical calculations.
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mass; HY is the hyponome. (b) a mesodome form, (c) a longidome form, 𝛼 is the angle, (d,e) ge-
ometry of the mechanical problem showing the forces acting on the shell (weight, buoyancy, and 
thrust) and the angle or rocking, Ω. 
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intake phase of duration 𝑇 , the ammonoid inhaled a certain amount of water to replen-
ish the mantle cavity [22]. During suction, a negative force −𝑆 𝜌 𝑢  is acting, where 𝜌  
is the density of water, 𝑆  is the cross-sectional area through which water enters the man-
tle cavity, and 𝑢   is the velocity of water intake. The acceleration  of the centre of mass 
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Figure 1. Geometry of the ammonoid models generated by the computer script. (a) a brevidome
ammonoid, in which the body is relatively short. CB is the centre of buoyancy; CM is the centre of
mass; HY is the hyponome. (b) a mesodome form, (c) a longidome form, α is the angle, (d,e) geometry
of the mechanical problem showing the forces acting on the shell (weight, buoyancy, and thrust) and
the angle or rocking, Ω.

Table 1. Salient parameters calculated for the three models of ammonoids used as input for the
computation of the ammonoid swimming. The density of the nacreous shell is 2.65 g

cm3 .

Type

Angle
of Body
Length

(◦)

Umbilical
Radius

(cm)

Distance
between
Centre of
Mass and

Thrust
Force Γ

(cm)

Distance
between
Centre of
Mass and
Centre of

Buoyancy γ

(cm)

Angle
between the
Centre of the
Mass-Thrust
Line and the
Horizontal

α

Moment of
Inertia

I (cm2g)

Mass of
Soft Parts

(g)

Mass of
Shell

(g)

Volume
(cm3)

brevi 116 6.48 5.53 1.100 19.15 1.00× 103 36.60 46.30 80.6

meso 200 6.89 6.76 0.493 −27.96 1.21× 103 50.76 19.89 71.1

longi 380 6.33 5.95 0.112 30.01 1.23× 103 67.21 16.48 79.9

2.2. Fluid Dynamical Model for Swimming

Once the geometrical model is built, the equations of motion for ammonoid swimming
are calculated. The similarity to other extant cephalopods indicates that during the intake
phase of duration TIN , the ammonoid inhaled a certain amount of water to replenish the
mantle cavity [22]. During suction, a negative force −Sinρwu2

in is acting, where ρw is the
density of water, Sin is the cross-sectional area through which water enters the mantle
cavity, and uin is the velocity of water intake. The acceleration dU

dt of the centre of mass
during this phase is thus from Newton’s equation

[M + Madd]
dU
dt

= − Sinρwu2
in −

1
2

KDρwU2 (1)

where U is the horizontal velocity of the ammonoid centre of mass with respect to stationary
water, M is the ammonoid mass, Madd is the added mass due to the change in water field
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velocity, which in turn can be written as Madd = χ ρwV where V is the ammonoid volume
and χ is the added mass coefficient. The second term on the right-hand side of Equation (1)
indicating the drag resistance is the product of the Bernoulli dynamic pressure 1

2 ρwU2

and a complex term KD involving the areas of the surfaces moving in water, and the
coefficient of drag for those surfaces. The authors of ref. [29] write KD = A CD where CD
is a drag coefficient which depends on the aspect ratio (i.e., width divided by height, see
Figure 1) and A is the effective area, which as a first approximation may also be written
as A ≈ V

2
3 accounting for both frontal and lateral areas. In this work, the problem is split

into frontal and lateral drag. Thus, KD = 2SextCSF + S f rontCF where Sext is the area of the
ammonoid seen laterally, S f ront is the area seen from the front, CSF and CF are, respectively,
the skin friction and front drag coefficients [30]. While skin friction is typically on the order
≈ 10−3 − 10−1 depending on the surface roughness, the front drag is close to unity [31].
Similar to the drag calculated in ref. [6], this functional form also depends on the aspect
ratio and turns out to be comparable in magnitude.

After the intake phase, the cephalopod uses the jet from the hyponome to propel the
shell forward. This second phase of duration TJET < TIN is described by the equation

[M + Madd]
dU
dt

= J − 1
2

KDρwU2 (2)

where J = Soutρwu2
out is the thrust force, Sout is the cross-section of the hyponome and

uout > uin is the speed at which water is expelled from the hyponome to gain thrust. The
volume of water withdrawn in the first phase must be equal to the volume of water expelled
in the second or

SinuinTin = SoutuoutTout = VMAX (3)

where VMAX is the maximum water volume that can be stored in the mantle cavity, which is
assumed to be a fraction µ of the soft body volume Vso f t, i.e., VMAX = µ Vso f t. It is assumed
that ammonoid flats neutrally due to buoyancy force, or M = ρwV, and thus there is no
vertical movement (the ammonoids probably also used the jet to govern vertical motion,
but here we shall concern ourselves with horizontal displacement only).

We now come to the rocking motion due to the torque generated during the thrust.
When the ammonoid is at rest, the centre of mass is below and on the same vertical line
as the centre of buoyancy, which provides mechanical stability. In this condition, the line
between the centre of mass and the ammonoid hyponome makes an angle Ω0 with the
horizontal (Figure 1e). During the thrust phase, a torque is generated, which makes it
revolve around the centre of mass. When the two centres are no longer along the same
vertical line, gravity opposes the jet-generated torque.

The equations for the linear movement of the centre of mass are complemented with
the equations for the rotation of the shell around the centre of mass at an angle Ω with
respect to the equilibrium position (i.e. when the centre of buoyancy is on the same vertical
line as the centre of mass and Ω = Ω0) namely

I d2Ω
dt2 =

−Γ Sinρwu2
insin(Ω0 + Ω)− γM gsin Ω− π CR ρwR4[ 2

5 R + τ
]( dΩ

dt

)2 (4)

for the intake phase and

I
d2Ω
dt2 = J Γsin(Ω0 + Ω)− γ M gsin Ω− π CR ρwR4

[
2
5

R + τ

](
dΩ
dt

)2
(5)

for the thrust phase. In these equations, I is the moment of inertia, Γ is the distance between
the centre of mass and the hyponome at the ventral aperture from which water is expelled,
γ is the distance between the centres of mass and buoyancy (Figure 1e), CR is a rotational
drag factor which is expected to be comparable to the skin friction coefficient CSF (see also
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Appendix B). The peculiar form of the last term in both Equations (4) and (5) derives from
the integration of the total torque and considering that the rotation velocity is proportional
to the distance from the centre of mass (Appendix B).

3. Model Results

Equations (1)–(5) are numerically integrated over time to simulate ammonoid swim-
ming. The values for the fluid-dynamical parameters (Table 2) are taken within the range of
plausible values observed in modern cephalopods. Thus, the velocity of 50 cm/s used in the
calculations for the water jet expelled by the hyponome is compatible with those observed
in squids [22] (see also the calculations with jet increased at 1.5 m/s in the Supplementary
Materials). A midpoint algorithm with a time step of 0.005 s is used for the integration
of the equations of motion. The validity of the calculations is checked empirically by
comparing the results obtained with different time steps. Differences are unnoticeable for
time steps smaller than about 0.05 s.

Table 2. Salient fluid-dynamical parameters are used as input for the computation of the ammonoid
swimming. Jet pulse durations are close to 1 s for every examined case (to be precise, it is 0.97 s,
0.85 s, and 0.96 s for the brevidome, mesodome, and longidome models, respectively).

Name
Drag

Coefficient,
Frontal

Drag
Coefficient,

Skin Friction

Drag
Coefficient,
Rotational

Added Mass
Coefficient

Jet Speed
(cm/s)

Hyponome
Area (cm2)

Fraction of the
Maximum

Water Volume
Storable in the
Mantle Cavity

Symbol CF CSF CR χ uout Sout µ

Value 0.5 0.016 0.016 0.5 50 0.25 0.15

Figure 2 shows the calculated acceleration of the centre of mass, its velocity, and the
angle Ω. As anticipated, three ammonoid models are introduced: a brevidome (short body
compared to the length of the last whorl), a mesodome (body length nearly as long as the last
whorl) and a longidome form (long body). Examining the results from the brevidome model
first, notice the positive acceleration (of the order of 0.05 m/s2 with the present input data)
corresponding to the pulses from the hyponome followed by small, longer deceleration. The
impulsive velocity shows a nearly linear increase followed by slower deceleration dominated
by the drag force. The velocity reached at each peak, however, is limited by the duration of the
pulse rather than by the drag force. The rocking motion is demonstrated by the fluctuations
of the angle Ω with respect to the equilibrium angle Ω = 0. As a result of the thrust, the shell
rotates less than 2◦ with these input data and then exhibits damped oscillations of higher fre-
quency, which will be analysed shortly. (Figure S3 of the Supplementary Materials also shows
the ammonoid displacement and the Reynolds number). These results compare well with
measurements from analogic 3D models of ammonoids propelled by an internal funnelling
mechanism. Petermann and Ritterbush [18,32] present data for the horizontal velocity (their
Figure 6A) and angular velocity (their Figure 8B of ref. [18]) for a 3D serpenticone model
with geometrical characteristics and size similar to those used here. If their analogue model
is perturbed with a single jet pulse lasting 1 s (close to the one used here, see Table 2),
a maximum velocity of about 0.2 m/s is reached, which decays with damping time in
the order of 6 to 8 s. Slightly longer decay times are shown by the present calculations
(about 10 to 12 s), indicating a lower modelled circular drag coefficient. The presence of
ribs and other ornamentations will also affect circular drag in real ammonoids. In the case
of multiple jet pulses, the “build-up” of horizontal speed shown in Figure 2 replicates a
similar pattern observed with experimental 3D models well [18,32]. Thus, even considering
the differences between the analogic and numerical models, the theoretical data calculated
here are in good agreement with those measured for several consecutive pulses, which
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indicates that the modelling may be a good starting point for future calculations with more
complex conch shapes.
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Figure 2. Results of the calculations with the ammonoid model presented as the variation in time of
the acceleration, velocity, and rocking angle. The results for jet speed of 0.5 m/s are presented for the
brevidome ammonoid model (first column), for the mesodome (middle column) and the longidome
(right column). Positive rocking angles denote the aperture downwards upon rotation (i.e., clockwise
in the image of Figure 1). See Supplementary Figure S1 for the results with jet speed increased to
1.5 m/s.

The present approach dealing directly with ammonoid swimming offers the possibility
to investigate the differences from brevi- to longidome profiles. Like the brevidome, the
mesodome and longidome ammonoid models are also constructed. From the brevidome
form, the length of the soft body is increased, keeping the size of the ammonoid model
nearly constant. Small adjustments may be necessary since an increase in the length of
the soft part starting from the neutrally buoyant brevidome ammonoid would result in a
model with negative buoyancy, which can be compensated by slightly reducing the shell
thickness τ0 and ornamentation s0 for the extra weight (see Appendix A).

Note from Figure 2 that the accelerations and magnitudes of velocity pulses for the
three ammonoid models are similar, which is understandable considering that since the
ammonoid volume is kept the same for the three models, its mass M = ρwV = Mshell +
Mso f t is also constant. Note that the increase in soft body mass implies a less frequent
jet pulse, as the volume VMAX of the mantle increases with the body mass. However, the
behaviour of the rocking angle develops a much different pattern in the three models.
First, oscillations around the equilibrium position decrease in frequency from brevidome
to longidome models. This can be understood based on the data calculated in Table 2,
which shows that while the moment of inertia is comparable for the three ammonoids
(due to similar mass and radius, being I ≈ αMR2 where α is a dimensionless factor), the
length γ between the centres of mass and buoyancy decreases dramatically (by one order
of magnitude) from the brevidome to the longidome forms. The geometrical reason is
that a longer, soft body mass lifts the centre of mass while the centre of buoyancy remains
approximately fixed. The frequency of oscillation for rocking motion around the centre of

mass is from Equation (5) approximately ν ≈ 1
2π

(
γM

I g
) 1

2 ≈ 1
2π

(γg/α)
1
2

R , and because the
radius R changes little for the three ammonoid models, it follows that the rocking frequency
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for the three models under study scales approximately like ∝ γ
1
2 as the dominant factor,

being higher for large γ and thus shorter body lengths, as the simulations show directly.
A second important observation is that not only the frequency but also the magnitude

of the rocking angle increases with the length of the soft body. Table 2 summarises the
maximum excursions for the speed, the rocking angle, and the period of oscillations for
the three model ammonoids. As Table 3 and Figure 2 show, the maximum rocking angle,
which is less than 2◦ for the brevidome model, increases to nearly 8◦ and 30◦ for meso
and longidome models, respectively. This indicates that the expansion of the soft body
(which, among other possible evolutionary advantages, may have ensured greater water
intake for the thrust) implied much larger instability and rocking oscillation, which in turn
probably resulted in a dynamical drawback and an evolutionary dilemma. As apparent
from Figure 2 and Table 2, the period of the ammonoid oscillations around the centre
of mass increase (decrease in frequency) as a function of the body mass. Therefore, the
hydrodynamical instability in the sense of ref. [18] increases with body length. Since the less
stable morphologies are more sensitive to the direction of the jet from the hyponome, it is
evident that not only will the torque acting to re-establish the equilibrium configuration be
lower in the unstable forms, but the probability that the direction of the jetting falls outside
the segment between the centres of mass and buoyancy will be higher. As discussed, this is
the most important factor in rocking creation.

Table 3. Some of the salient results from the model.

Type Maximum Speed
cm
s

Maximum
Rocking Angle

(◦)

Period of
Oscillation (s)

Hydrostatic
Qualitative
Assessment

brevi 3.3 1.75 0.58 stable

meso 4.3 6.20 1.22 intermediate

longi 4.6 22.60 2.27 unstable

As a further insight into the hydrodynamical instability, the calculations are made
by varying the jet velocity for the three models rather than holding it constant, as in the
previous figure. Figure 3 shows the absolute value of the oscillation angle |Ω| averaged in
time as a function of the dimensionless ratio η = TIN+TOUT

Π between the total time taken
for one thrust cycle and the characteristic period of oscillation around the centre of mass

Π = 1
ν = 2π

(
γM

I g
)− 1

2 . Note the occurrence of natural resonances in correspondence with
particular jet frequency values which manifest as a strong increase in the rocking angle
and occurring when the thrust period is near the period of natural rocking. It is suggested
that ammonoids avoided thrust cycles at such resonances. This criterion may be useful
in constraining the thrust frequency in ammonoid swimming once the shell geometry
estimates the natural oscillation frequency.
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Figure 3. Stability analysis for the three models of brevidome, mesodome, and longidome ammonoids.
The analysis is presented in terms of the time average of the deviation of the rocking angle from
the equilibrium as a function of the dimensionless thrust period η = TIN+TOUT

Π , where Π is the
characteristic period of oscillation. This kind of arrangement shows the presence of resonances. The
result depends little on the drag coefficient (see Figure S2 of Supplementary Materials).

Many studies on ammonoid locomotion concentrate on drag as the most important
feature driving the evolution of the group. However, although drag is a necessary factor to
infer the movement of the ammonoid in water [29], its dependence on the velocity squared
implies that it becomes effective at high velocities. Thus, it acts more strongly to limit the
maximum speed of the ammonoid rather than its average velocity. With the coefficients
given in Tables 1 and 2, the maximum velocity that would be reached at a constant jet
speed is about 10.2 cm/s (i.e., about 0.9 shell diameters per second) or 4–5 times larger than
the speed averaged on several pulses from the current models (average velocities from
Figure 2). Drag is even less important during the phases of thrust when the goal is to reach
high acceleration rather than high speed. Under such circumstances, the total mass of the
ammonoid shell must have been a key parameter for evolutionary improvement.

It is therefore concluded that the whole construction of the ammonoid shell was at
least in part aimed at (i) reducing the shell mass and thus its thickness (hence the problems
of shell reinforcement and the need for complex suture lines [7], and (ii) reducing the
rocking movement and the possibility of resonances between the pulsating jet and the
characteristic rocking motion of the shell. Thus, avoiding a thrust cycle in correspondence
with a resonance would have provided better stability during swimming. This may have
been achieved during evolution by keeping the centres of mass and buoyancy far apart, as
in the brevidome ammonoids, although this implies a shorter body length and reduced



Foss. Stud. 2023, 1 42

thrust (as assumed here). On the other hand, increasing the body length and decreasing
the weight of the ammonoid by promoting a thinner shell would have caused severe
rocking motion. A possible compromise was reached with mesodome ammonoids in the
Mesozoic with much lower rocking compared to longidome ammonoids while maintaining
a sufficiently long body. It should be kept in mind, however, that reconstructing the shifts in
the morphology over geological time based solely on functional morphology for locomotion
can be a simplistic approach (see, for example, the discussion of ref. [33] on the shift in
morphology of ammonoids across the end-Triassic mass extinction). Note also that the
animal could have partially compensated for the effect of rocking with the appropriate
movement of the hyponome and, more in general, with the soft body parts. Although this
remains somehow speculative, it could imply that rocking had a less dramatic effect.

4. Conclusions

Much work remains to be done to understand the locomotion of ammonoids. As a
contribution to the exploration of this fascinating research area, this work theoretically
investigated the physics of ammonoid swimming using coupled equations for mechanics
and fluid dynamics. The equations of motion for an ammonoid model have been presented
in detail. The model calculates numerically the physical and fluid-dynamical behaviour of a
swimming ammonoid in terms of the acceleration, velocity, rocking angle, angular velocity,
and distance reached as a function of time. Evidently, like for any model, the detailed
results depend on the input parameters, which should ultimately be constrained with
the data measured from ammonoid shells. According to the calculations, the movement
gives rise to very large oscillation angles, especially for longidome ammonoids, which are
characterised by very close centres of mass and buoyancy. The calculated behaviour is in
line with 3D-printed analogic models of swimming ammonoids.

As a first application, the model indicates that resonances in the rocking angle can
occur when the thrust frequency becomes close to the resonance frequency for rocking,
which can constrain the possible thrust frequency. Ammonoids exhibit a wide variety
of forms (planispiral ammonoids had different aspect ratios, ornamentation, and shape,
and not all ammonoids were planispiral) and dimensions, from a few millimetres to
1 m-size giants. Consequently, solutions to the equations of motion can be expected to
offer a variety of outcomes dependent on the shape and characteristics of the shell and
the volume of the ammonoid. Moreover, not all possibilities have been explored, even for
the model ammonoids presented here. For example, the direction of thrust was chosen
horizontally to gain backward swimming. However, it is possible that ammonoids could
point the hyponome in different directions for at least two purposes. One was to migrate
vertically along the water column. The other was to reduce the rocking motion by aiming
the hyponomic jet vector in a direction close to the midpoint between the centres of mass
and buoyancy. Solutions for idealised ammonoids like those proposed in this work are
relatively fast to calculate. Therefore, a variety of different forms and situations could be
explored in future work, with the expectation that they may be a valuable complement
to those based on the more precise (but necessarily restricted in number) study of the
swimming of analogic ammonoid shells.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/fossils1010004/s1, Figure S1: The same as Figure 2 of the main
paper, with jet speed increased from 0.5 m/s to 1.5 m/s;. Figure S2: The same as Figure 3 of the main
paper, with front drag coefficient increased from 0.5 to 1;. Figure S3: The Reynolds number and the
ammonoid displacement for the input data as in Table I of the main text.
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Appendix A. The Model Ammonoid

The model ammonoid for a serpenticone geometry employed in this work is calculated
based on the “classical” logarithmic spiral for distance r(θ) from the umbilical centre [25,26,34].

r(θ) = a ebθ

where θ is the apical angle (Figure 1), and the constants a and b are chosen to provide
realistic shapes. It is assumed that the other geometrical and physical constants scale in a
similar way as a function of the angle θ. Thus, the shell thickness is assumed to change as

τ(θ) = τ0 ebθ

and similarly, the aperture width is

w(θ) = w0 ebθ

and the aperture height is

δ(θ) = r(θ)− r(θ − 2π) = a ebθ
(

1− e−2π
)

from which the cross-section area A is calculated as

A(θ) = K w(θ) δ(θ)

where K is a geometrical factor (K = π for an aperture of ellipsoidal shape), while the
perimeter Π may be, in general, a complex function of δ(θ) and w(θ); for an ellipse,
Ramanujian’s formula can be used

Π(θ) = π(w(θ) + δ(θ))

(
1 +

3l2

10 + (4− 3l2)
0.5

)

where l = [w(θ)− δ(θ)]/[w(θ) + δ(θ)].
The shell mass is thus

Mshell = ρshell

∫ Θ

0
dθ rm(θ) τ(θ) [Π(θ) + s(θ)]

where Θ is the maximum θ to which the shell ends, ρshell is the shell density (nacre), and

rm(θ) =
1
2

aebθ
[
1 + e−2πb

]
is the distance in the middle of the opening, while

s(θ) = s0 ebθ

is a correction term for the mass due to septa and ornamentation (for simplicity, this is
accounted for in a continuous way as an extra thickness, even though septa and ornamen-
tation such as ribs are evidently periodical). The soft body mass in the living chamber
occupies an angle Λ of the phragmocone, and so

Mso f t = ρw

∫ Θ

Θ−Λ
dθ rm(θ) A(θ)
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while the ammonoid volume is

V =
∫ Θ

0
dθ A(θ) rm(θ)

Once the mass distribution due to both the shell and the soft body is known, the
positions of the centre of mass and the centre of buoyancy (which is the centre of mass of
water displaced by the ammonoid volume) and the moment of inertia with respect to the
centre of mass are calculated with standard equations from rigid body mechanics. The
moment of inertia is calculated as

I = ρw

∫ Θ

Θ−Λ
dθ r3

m(θ) A(θ) + ρshell

∫ Θ

0
dθ r3

m(θ) τ(θ) [Π(θ) + s(θ)]

where the first term on the right-hand side is due to the soft body, and the second term is
the contribution from the shell.

Ammonoids were probably near neutral buoyancy [34]. Therefore, the resulting model
ammonoid should pass the test of neutral buoyancy (i.e., Mshell + Mso f t = ρwV ) within
5%. Note that the possible role of aptychi (plates closing the aperture, ref [35]) that may
have affected the weight distribution is not considered as their mobility and position in
lifetime are still poorly understood.

Table A1. Parameters used as input for the generation of the model ammonoids.

Type a (cm) b (1/rad) τ0 (cm) w0 (cm) s0 (cm)

brevi 0.4 0.09 0.003 0.16 0.0012

meso 0.4 0.09 0.0016 0.16 0.0011

longi 0.4 0.09 0.0010 0.16 0.0010

Appendix B. Calculation of the Rotational Drag Term in Equations (4) and (5)

The last term on the right-hand side of Equation (4) is a rotational drag term that
opposes the rotation of the shell against ambient water. It has been approximated as follows.
Imagining the ammonoid shell as a flat cylinder disk of radius R and thickness τ revolving
around an axis passing through its centre and perpendicular to the two bases, the velocity
of one point at the surface of the cylinder and distance r from the centre of the cylinder is

v(r) = r
dΩ
dt

where dΩ
dt is the angular velocity of the cylinder. The rotational drag derives from two

contributions: the force exerted on the two circular faces (the bases of the cylinder), each of
area S = πR2, and the one exerted on the surface height of the cylinder, of area 2πR τ.

To calculate the first contribution, consider a stripe of length dr on the two bases
of the thin cylinder exposed to water. Considering the two bases, this area is equal to
2× 2 π r dr and is subjected to a drag torque of the form dT1 = r× f orce. Because the force
is equal to 1

2 CR ρw v2(r) times the exposed area, where CR is a rotational drag coefficient
that we assume independent of the velocity, it follows that

dT1 = 4 π r2 dr
1
2

CR ρw v2(r) = 2 π r4
(

dΩ
dt

)2
CR ρwdr

and integrating

T1 =
2
5

π R5
(

dΩ
dt

)2
CR ρw
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The external part of the cylinder opposes a torque given by

T2 = 2πR× R τ
1
2

C
R

ρwR2
(

dΩ
dt

)2
= πR4τ CR ρw

(
dΩ
dt

)2

and so the two terms together give a drag torque equal to

T = T1 + T2 = π CR ρwR4
[

2
5

R + τ

](
dΩ
dt

)2

which is the equation used on the right-hand side of Equation (4) in the main text.
It should be emphasised that this approach to rotational resistance is approximate in

many ways. First, as the local rotational speed increases from the umbilicus to the outer
parts of the shell, the speed-dependent drag coefficient also changes. Second, the water
velocity field due to the shell translation will interfere with the rotation field, resulting in a
complex pattern of velocity. Third, rotation does not necessarily occur around the centre of
mass, as the drag resistance is not uniform. Finally, the ornament that many ammonoids
held on the shell greatly affected the frictional resistance during swimming, both in terms
of translational and rotational resistance [36].
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