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Abstract: A brief review of the theory of the rigid rotor and its application to microwave spectroscopy
is given. By careful selection of examples, procedures are given for the analysis of successively more
complicated spectra, and the theory is extended to the harmonic nonrigid rotor and anharmonic
nonrigid rotor when needed. The microwave spectra of carbon monoxide, and of some alkali halides,
provide excellent examples for analysis and for student exercises.
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1. Introduction

Microwave radiation corresponds to the frequency range from approximately 0.3 to
300 GHz and is important in modern satellite and cell phone communication. Microwaves
lie between radio waves of lower frequency and infrared radiation of higher frequency and
have a wavelength from 0.001 to 1 m [1]. Microwave spectroscopy gives information about
the dipole moment and moments of inertia of a gas-phase molecule because the photon
energies correspond to transitions between different rotational levels [2]. Radio telescopes
can measure this radiation in space, supporting accurate estimates of the age of the universe
through the cosmic microwave background, detecting the presence of small molecules in
cosmic dust clouds, and inferring the presence of dark matter by measuring the rotational
speed of galaxies via the hydrogen line at 21 cm. On Earth, microwave spectrometers have
made their way into a few undergraduate laboratories [3,4], as have specialized computer
programs for their prediction and analysis [5–8]. In some cases, Fourier-transform infrared
spectrometers can be used to observe rotational bands [9]. The simplest spectra to analyze
are molecules containing only two atoms. If performed correctly, very accurate bond
distances, devoid of solvent or crystal packing effects, can be calculated.

2. Basic Theory

A diatomic molecule can be regarded as two masses, m1 and m2, separated by a
distance r. If we assume that the distance r is fixed, then we refer to this as the rigid rotor
approximation. This problem can be shown to be equivalent to a single mass µ rotating
at the same distance r about an origin located at the center of mass of the molecule. This
reduced mass µ is given as follows:

µ =
m1m2

m1 + m2
. (1)

The moment of inertia of this system, I, is given by

I = µr2. (2)
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The Schrödinger equation, applied to this system, gives the well-known energy
levels [10]:

E = BJ(J + 1), (3)

where J is the rotational quantum number, and B is the rotational constant, given by

B =
}2

2I
=

h2

8π2 I
, (4)

where h is Planck’s constant. The solution of the Schrödinger equation is rather tedious and
is skipped in many texts [11]. The energy levels are 2J + 1-fold degenerate, corresponding
to different values of a second quantum number m. The quantum numbers J and m are
analogous to l and ml discussed in the solution to the hydrogen atom, since the solution
is the same. Because the selection rule for rotational transitions [12–14] is ∆J = ±1, and
because we normally deal with absorption (J corresponds to the lower state), the transitions
are observed at

∆E = hυ = 2B(J + 1). (5)

A series of equally spaced lines, separated by 2B, should be observed. The rotational
constant is often reported as a frequency (B/h, Hz) or as a wavenumber (B/hc, cm−1). We
shall refer to this simplest possible model (Equation (3)) as Model 0. Because B depends on
the moment of inertia, and thus the mass of the atoms, different isotopologues will have
different values of the rotational constant.

The above treatment is the deepest extent to which many texts treat the rotational
spectroscopy of a diatomic molecule [15–18]. This simple approach does work for some
diatomic molecules in which only the lowest vibrational level is significantly populated. We
shall see below that the centrifugal distortion term and the vibration–rotation interaction
are also needed to understand other spectra. Other texts acknowledge the existence of
one [19,20] or both [10,21,22] of these terms, but without derivation. We provide these
derivations below.

3. Materials and Methods

Zielinski advocates for the recreation of the laws of nature “through discovery and
exploration the order that we see” [23]. We concur with this approach. The aim below
is to present initially very simple spectra from the literature, followed by progressively
more complicated spectra, in order to introduce concepts and tools on an as-needed basis.
Microsoft Excel [24] with Solver [25] was used to analyze the spectra in each case, with the
spreadsheets given as Supporting Information.

4. Results
4.1. Carbon Monoxide (CO)

The microwave spectrum of carbon monoxide was measured by Gilliam, Johnson,
and Gordy [26]. Transitions were observed at 115,270.56 ± 0.25 MHz for 12C16O and at
110,201.1 ± 0.4 MHz for 13C16O (isotopically enriched to 14% 13C). The X-ray crystal
structure of carbon monoxide gives a distance of 1.0629 Å [27,28]. Using this distance,
the predicted value of 2B of the lighter isotopologue is 130,500 MHz (see Supplemen-
tary Material, Excel file CO.xlsx). The agreement between the predicted value of 2B and
the observed value (to within 15%) suggests that the observed transition corresponds to
J = 0→J = 1. This illustrates one method for assigning J, which is normally the first
step. If we have two or more isotopologues, then we can check the isotopic assignments
by comparing the ratio of the rotational constants to the inverse of the ratio of the re-
duced masses, assuming the bond length of the isotopologues is the same. In this case,
B12/B13 = 1.04600, whereas µ13/µ12 = 1.04612. The agreement is reasonable. The bond
distances are calculated to be 1.130895 Å (12C16O) and 1.130832 Å (13C16O). These differ
from each other slightly because they correspond to the first vibrational state r0, and they
differ from those reported in ref. [26] because of the slightly smaller value of Planck’s
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constant used therein. Carbon monoxide has a longer bond length in the gas phase than in
the solid.

The two pedagogical goals achieved here are (1) demonstrating the assignment of rota-
tional quantum number J using extraspectroscopic information (XRD), and (2) confirming
isotopologue assignment by comparing B ratios to µ ratios.

4.2. Alkali Halides

The alkali metal to halogen distances in the alkali halides in both the crystal and
gas-phase, as measured by X-ray [29] and/or electron diffraction [30], respectively, are
given in Table 1. Even though the crystal measurements are at a lower temperature, the
distances are longer than the gas phase by an average of 12% for the NaCl-like structures
and 17% for the CsCl-like structures. The major reason is that in the gas phase, the atoms
only have one nearest neighbor, whereas in the solid, the atoms have six (NaCl-like) or eight
(CsCl-like) equidistant nearest neighbors. The missing gas-phase results can be estimated
for the purposes of predicting the rotational constants if needed.

Table 1. The MX distance in alkali halides (M = Li, Na, K, Rb, Cs; X = F, Cl, Br, I).

MX R (Å) 1 R (Å) 4 Ratio

LiF 2.0086

LiCl 2.56477

LiBr 2.7506

LiI 3.000

NaF 2.310

NaCl 2.8203 2.51 1.124

NaBr 2.98662 2.64 1.131

NaI 3.2364 2.90 1.116

KF 2.6735

KCl 3.14647 2.79 1.128

KBr 3.3000 2.94 1.122

KI 3.53278 3.23 1.093

RbF 2.82

RbCl 3.2905 2.89 1.139

RbBr 3.427 3.06 1.120

RbI 3.671 3.26 1.126

CsF 3.004

CsCl 3.51 2 3.06 1.147

3.5706 3 1.167

CsBr 3.7118 3 3.14 1.182

CsI 3.9549 3 3.41 1.159
1 X-ray diffraction (NaCl-like). 2 450 ◦C. 3 X-ray diffraction (CsCl-like). 4 Electron diffraction (gas), 1000–1300 ◦C.

4.3. Cesium Iodide (CsI)

Both cesium and iodine are monoisotopic, so complications from multiple isotopo-
logues are avoided. The predicted value of 2B from the electron diffraction value is
1340 MHz (see Supplementary Material, Excel file CsI.xlsx). The spectrum of cesium iodide
in the region 22–26 GHz was measured [31] at 640 ◦C, and the frequencies observed (error
0.1 MHz) are given in Figure 1. Inspection of the nine frequencies (n = 9) demonstrates that
there appear to be three major groupings (clusters) of frequencies. One-dimensional cluster
analysis has recently been applied by the author to confirm this [32]. This tells us that the
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primary variation in the spectra is due to three distinct values of an independent variable,
which we identify as J.
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Figure 1. The spectrum of cesium iodide (Grouping 0), and the cluster averages for k = 3.

We now turn to determining J for these clusters. The cluster averages (MHz) for
N = 3 are given as 22,600, 23,942, and 25,387, with differences of 1343 and 1445 (average
1394 ± 51). The predicted value of 2B is 1340 MHz, and it is therefore reasonable to
assume that these clusters are due to successive values of J. The differences between the
highest frequency datum (head) of each cluster are 1414.14 and 1414.13 MHz. Dividing
the k = 3 cluster averages by 1340 MHz gives 16.87, 17.87, and 18.94, which suggests that
these bands should be assigned as J = 16, 17, and 18, respectively. However, dividing the
cluster averages by the average separation between clusters gives 16.21, 17.18, and 18.22,
suggesting J = 15, 16, and 17, respectively. Dividing the heads by the head difference gives
16.00431, 17.00432, and 18.00431, which would suggest that this is the most accurate way to
estimate the correct values of J + 1 (J = 15, 16, and 17).

The two pedagogical goals achieved here are (1) introducing the utility of cluster anal-
ysis, and (2) if more than one value if J is believed to be present, comparing the assignment
of J using cluster averages/predicted 2B (extraspectroscopic), cluster averages/cluster
differences, and head/head difference (preferred).

With the rotational quantum numbers J assigned, we may now calculate the effective
rotational constants for each point of the spectrum. These are shown in Figure 2. The varia-
tion within each frequency cluster (or effective rotational constants) is not yet explained;
however, it appears quite regular. Cluster analysis may also be carried on the effective
rotational constants to show that there are four clusters [32]. There is also a very slight
decrease in effective rotational constant with increasing J. We must return to the theory to
explain this.
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5. Advanced Theory

A diatomic molecule can vibrate as well as rotate. If the oscillation is harmonic, then
for small oscillations x about the internuclear distance re, the Schrödinger equation is

− }2

2µ

d2ψ

dx2 +
1
2

kx2ψ = Eψ, (6)

where k is the spring constant. If we scale x by the constant α1/2 to give the dimensionless
ξ, where

α = (
kµ

}2 )
1/2, (7)

then the solutions to Equation (6) are a product of a Gaussian and a Hermite
polynomial Hv:

ψ(ξ) = Hv(ξ)e−
ξ2
2 , (8)

where v is the vibrational quantum number [33]. The energy levels are given by

Ev = }ω(v +
1
2
) = hν(v +

1
2
), (9)

where ω = (k/µ)1/2. The energy levels of the molecule as a whole (ignoring electronic
states) are the sum of the vibrational and rotational terms:

Ev,J = hν

(
v +

1
2

)
+ BJ(J + 1). (10)

If the molecule is not a harmonic oscillator, but still obeys the Born–Oppenheimer ap-
proximation, then the potential can be written as a general function U(r). The Schrödinger
equation can still be separated into rotational and vibrational components, and the solu-
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tions to the rotational component are still the familiar spherical harmonics. The radial
equation becomes

1
r2

d
dr

(
r2 dR

dr

)
+

2µ

}2 (E−U(r))R− J(J + 1)
r2 R = 0. (11)

The last term is related to the potential energy associated with a “centrifugal” force [34]
due to angular momentum J. With the substitution

R(r) =
1
r

S(r) (12)

Equation (11) may be simplified to

d2S
dr2 +

2µ

}2

{
E−U(r)− }2 J(J + 1)

2µr2

}
S = 0. (13)

If we consider a harmonic oscillator

U(r) =
1
2
(r− re)

2 (14)

then we may transform the independent variable

x = r− re, (15)

and Equation (13) becomes

d2S
dx2 +

2µ

}2

{
E− 1

2
kx2 − }2 J(J + 1)

2µ(re + x)2

}
S = 0. (16)

If x is small and can be ignored in the denominator of the last term, then Equation (16) becomes

d2S
dx2 +

2µ

}2

{
E− 1

2
kx2 − }2 J(J + 1)

2µr2
e

}
S = 0. (17)

This is simply the harmonic oscillator equation with the rotational energy separated out,
and the energy will simply be the sum of the rotational and vibrational terms:

Ev,J = hνe(v +
1
2
) + Be J(J + 1). (18)

We note that the vibrational frequency νe and rotational constant Be correspond to the
minimum in the potential energy (the subscript e refers to equilibrium).

What happens if x becomes too large to ignore? In this case, Equation (16) is equivalent to

d2S
dx2 +

2µ

}2

{
E− 1

2
kx2 − }2 J(J + 1)

2µr2
e

(
1 +

x
re

)−2
}

S = 0 (19)

which can be approximated, as long as |x| < re, as

d2S
dx2 +

2µ

}2

{
E− 1

2
kx2 − }2 J(J + 1)

2µr2
e

(
1− 2

(
x
re

)
+ 3
(

x
re

)2
+ . . .

)}
S = 0. (20)
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One way to solve this problem is by using perturbation theory on the zeroth-order harmonic
oscillator equation, which we will discuss later. We examine an alternate approach. If the
infinite series is truncated after the linear or quadratic terms, we obtain

d2S
dx2 +

2µ

}2

{
E− }2 J(J + 1)

2µr2
e
− 1

2
kx2 +

2}2 J(J + 1)
2µr2

e

x
re

}
S = 0 (21)

and

d2S
dx2 +

2µ

}2

{
E− }2 J(J + 1)

2µr2
e
− 1

2
kx2 +

2}2 J(J + 1)
2µr2

e

x
re
− 3}2 J(J + 1)

2µr2
e

(
x
re

)2
}

S = 0. (22)

Both of these equations are exactly soluble, because the effective potential is still quadratic.
Equation (21) becomes (after rearranging and completing the square)

d2S
dx2 +

2µ

}2

{
E− }2 J(J+1)

2I − 1
2 kx2 + 2}2 J(J+1)

2Ire
x
}

S = d2S
dx2 +

2µ

}2

{
E− }2 J(J+1)

2I − 1
2 k
(

x2 − 2}2 J(J+1)
Ikre

x
)}

S

= d2S
dx2 +

2µ

}2

{
E− }2 J(J+1)

2I − 1
2 k
(

x2 − 2}2 J(J+1)
Ikre

x + }4 J2(J+1)2

I2k2r2
e
− }4 J2(J+1)2

I2k2r2
e

)}
S

= d2S
dx2 +

2µ
}2

{
E− }2 J(J+1)

2I + }4 J2(J+1)2

2I2kr2
e
− 1

2 k
(

x− }2 J(J+1)
Ikre

)2
}

S = 0.

(23)

If we substitute

y = x− δ1, δ1 =
}2 J(J + 1)

Ikre
, (24)

then we obtain

d2S
dy2 +

2µ

}2

{
E− }2 J(J + 1)

2I
+

}4 J2(J + 1)2

2I2kr2
e
− 1

2
ky2

}
S = 0. (25)

This is just the normal harmonic oscillator equation with usual solution, except an extra
term is taken out, which is formally identified as the centrifugal distortion term [35]:

DJ2(J + 1)2 =
}4 J2(J + 1)2

2I2kr2
e

. (26)

The harmonic oscillator solutions are no longer centered about x = 0, but increase with
rotational constant by δ1.

If we now include the quadratic term as well, Equation (22) becomes

d2S
dy2 +

2µ

}2

{
E− }2 J(J + 1)

2I
+

}4 J2(J + 1)2

2I2kr2
e
− 1

2
ky2 − 3}2 J(J + 1)

2µr2
e

(
y + δ1

re

)2
}

S = 0. (27)

Expanding and collecting terms, we obtain

d2S
dy2 +

2µ

}2

{
E− }2 J(J + 1)

2I
+

}4 J2(J + 1)2

2I2kr2
e
− 1

2

(
k +

3}2 J(J + 1)
Ir2

e

)
y2 − 3}4 J2(J + 1)2

kI2r3
e

y− 3}6 J3(J + 1)3

2k2 I3r4
e

}
S = 0. (28)

If we let

k′ = k +
3}2 J(J + 1)

Ir2
e

, (29)

then
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d2S
dy2 + 2µ

}2

{
E− }2 J(J+1)

2I + }4 J2(J+1)2

2I2kr2
e
− 3}6 J3(J+1)3

2k2 I3r4
e
− 1

2 k′
(

y2 + 6}4 J2(J+1)2

k′kI2r3
e

y + 9}8 J4(J+1)4

k′2k2 I4r6
e

)
+ 9}8 J4(J+1)4

2k′k2 I4r6
e

}
S = 0.

(30)

If we substitute

z = y + δ2, δ2 =
3}4 J2(J + 1)2

k′kI2r3
e

(31)

then we obtain

d2S
dz2 +

2µ

}2

{
E− }2 J(J + 1)

2I
+

}4 J2(J + 1)2

2I2kr2
e
− 3}6 J3(J + 1)3

2k2 I3r4
e

+
9}8 J4(J + 1)4

2k′k2 I4r6
e
− 1

2
k′z2

}
S = 0. (32)

Some third- and fourth-order (in J(J + 1)) pure rotational terms have been subtracted out,
and we are left with the usual harmonic oscillator problem, but with a different force
constant k′. The main effect is on the vibrational energy levels:

Ev = }
(

k′
µ

)1/2
(v +

1
2
) = }

(
k
µ

)1/2(
1 +

3}2 J(J + 1)
kIr2

e

)1/2

(v +
1
2
), (33)

and, therefore, this effect is called the vibration–rotation interaction. It can be approximated as

Ev = hνe

(
1 +

3}2 J(J + 1)
2kIr2

e
− 9}4 J2(J + 1)2

8k2 I2r4
e

+ · · ·
)(

v +
1
2

)
= hνe

(
v +

1
2

)
+ hνe

3}2

2kIr2
e

J(J + 1)
(

v +
1
2

)
+ · · · . (34)

We may let

αe = hνe
3}2

2kIr2
e

. (35)

When combined with the significant rotational terms, we obtain

Ev,J = hνe

(
v +

1
2

)
+ Be J(J + 1)− DJ2(J + 1)2 + αe J(J + 1)

(
v +

1
2

)
. (36)

If we let the effective rotational constant for vibrational level v be

Bv = Be + αe

(
v +

1
2

)
, (37)

then we can see that each vibrational level will have a different effective rotational constant,
and that the effective rotational constants are approximately evenly spaced. [36] Although
Equation (35) predicts that αe is positive, in practice it is negative because of anharmonicity
(below). The variation in the effective rotational constant, as seen in Figure 2, is thus
explained as being due to the vibrational quantum number v.

Alternatively, we may apply perturbation theory to the harmonic oscillator, with the
following perturbation:

H(1) =
}2

2µ

J(J + 1)

(re + x)2 +
1
3!

U(3)x3 +
1
4!

U(4)x4 + · · · . (38)

First-order perturbation theory will have no contribution from terms of odd order in x. The
first-order correction to the energy (from terms of even order in x) is
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E(1)
v,J =

}2

2I
J(J + 1) +

3}3

2Ir2
e (kµ)1/2 J(J + 1)

(
v +

1
2

)
+

(
1
4!

U(4) +
4}2

2Ir4
e

J(J + 1)
)

f
(

v +
1
2

)
+ · · · . (39)

where f is a quadratic function in v + 1
2 . The second-order correction to the energy con-

tains the centrifugal distortion correction (from the linear term in x), a vibrational anhar-
monicity term involving (U(3))2(v + 1

2 )
2, and additional terms involving J(J + 1)(v + 1

2 )
j,

j = 1− 4 [34,37]. The j = 1 term here is usually larger than the corresponding first-order
term and is opposite in sign, explaining why αe is usually negative. The first-order correc-
tion involving the quadratic function f and the j = 2 term of the second-order correction
can be related to γe below.

The pedagogical goal achieved here is to show what happens to the energy levels
when the molecule cannot be treated as a harmonic oscillator and rigid rotor, in order to
explain some of the finer structure in the spectra of alkali halides.

6. More Results
6.1. Cesium Iodide (CsI, Reprise)

Returning to Figure 2, it is now clear that the four clusters represent different vibra-
tional states, and we assign them to v = 0− 3, with the highest frequency corresponding to
v = 0. We may either model the effective rotational constants via Equation (37), or model
the rotation spectra itself using Model 1:

∆Ev,J = 2Be(J + 1)− 2αe(J + 1)
(

v +
1
2

)
. (40)

These will give slightly different results under equal weighting least squares. We
obtain Be = 708.266 and αe = 2.040 MHz, sum of squares error (SSE) = 0.7213 (Model 1,
Table 2). In Figure 3, the error in this model is plotted as a function of the quantum numbers
v and J. The error is up to five times the estimated error (0.1 MHz) in each individual
measurement, which suggests that improvements can be made to the model. In addition,
the error appears to have a quadratic dependence on v and a linear dependence on J.
Model 1 may be improved by adding a quadratic term in v + 1

2 to give Model 2:

∆Ev,J = 2Be(J + 1)− 2αe(J + 1)
(

v +
1
2

)
− 2γe(J + 1)

(
v +

1
2

)2
, (41)

or by adding a centrifugal distortion term to give Model 3:

∆Ev,J = 2Be(J + 1)− 2αe(J + 1)
(

v +
1
2

)
− 2De(J + 1)3. (42)

Table 2. Model parameters for cesium iodide (MHz) (133Cs127I, n = 9).

Model Be αe γe De
1 SSE

1 708.266 2.040 n/a n/a 0.7213

2 708.269 2.045 0.0015 n/a 0.6840

3 708.280 2.040 n/a 25.7 0.5194

4 708.362 2.043 0.0011 162 0.0102
1 Centrifugal distortion constants have been multiplied by 106.
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Figure 3. The residual plots of four different models for the microwave spectrum of cesium iodide.

Model 2 removes the quadratic dependence of the error on v, (Be = 708.269,
αe = 2.045, γe = 0.0015 MHz, SSE = 0.6840), whereas Model 3 keeps it (Be = 708.280, αe = 2.040,
De = 2.57 × 10−5 MHz, SSE = 0.5194). The error is reduced to an acceptable level only by
including both terms (Model 4):

∆Ev,J = 2Be(J + 1)− 2αe(J + 1)
(

v +
1
2

)
− 2γe(J + 1)

(
v +

1
2

)2
− 2De(J + 1)3, (43)

which gives a much lower SSE (Be = 708.362, αe = 2.043, γe = 0.0011, De = 1.62 × 10−4 MHz,
SSE = 0.0102). The estimated Cs-I bond distance is 3.3151 Å, which is about 0.1 Å shorter
than the electron diffraction result. This microwave result corresponds to re, whereas
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the electron diffraction result would be a Boltzmann average over many vibrational and
rotational states. Even so, each unit increase in vibrational quantum number adds only
about 0.005 Å to rv for CsI.

The pedagogical goals achieved here show that for CsI, (1) the most important ex-
tension to the simplest model is to include the vibrational number dependence of the
effective rotational constants via Model 1, (2) they demonstrate how to assign vibrational
quantum numbers, and (3) the incorporation of either the De and γe terms lead to an approx-
imately equal (but small) reduction in error, whereas incorporation of both leads to a much
better fit.

6.2. Cesium Bromide (CsBr)

Bromine has two isotopes in approximately a 1:1 ratio, so two isotopologues should be
observable in natural samples. The predicted value of 2B from the electron diffraction value
is 2100 MHz (see Supplementary Material, Excel file CsBr.xlsx). The spectrum of cesium
bromide in the region 21–26 GHz was measured [31] at 690 ◦C, and the frequencies observed
(error 0.1–0.2 MHz) are given in Figure 4. Inspection of the 24 frequencies demonstrates
that there are three clusters of frequencies centered at 21,382, 23,334, and 25,630 MHz [32].
The average difference of these is 2124 ± 150 MHz. The highest frequency per cluster
differences is 2113 ± 45 MHz. These all suggest transitions corresponding to J = 9, 10,
and 11.
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Figure 4. The microwave spectrum of cesium bromide, and the 3-cluster averages.

When the effective rotational constants (×2) are plotted (Figure 5), it can be seen
that they naturally divide themselves into two series of equally spaced progressions,
with the exception of a point at 2137.4 MHz corresponding to the observed frequency at
25,648.95 MHz. Fitting of these to Equation (37) gives Be values of 1081.27 and 1064.51 MHz.
This was performed by fitting the data to both isotopologues and choosing the smaller of
the two sum-of-squared errors. The deviation in 2B for the “wrong” isotopologue is an
approximately constant 33 MHz. This procedure also enables separation by isotopologue.
The isotopologue mass ratio is 1.015736, and the Be ratio is 1.015744, an agreement to
five significant figures. This is strong evidence that the higher frequency progression
(Isotopologue 1) is 133Cs79Br, and the lower frequency progression (Isotopologue 2) is
133Cs81Br. We can analyze these progressions separately. Using Model 1, the residual error
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for 133Cs79Br is plotted in Figure 6. The “bad” point corresponds to v = 3, J = 11. While a
Q-test on the residuals can be used to exclude this point, it is important to note that this
point appears to be 10 MHz too high. We suspect that this is a printing error, and that this
value should actually be 25,638.95 MHz instead of 25,648.95 MHz. We will use this value
henceforth as it reduces the SSE 20-fold. The results of fitting to all four models are given in
Table 3. In all cases, the Be ratio matches the expected isotopic mass ratio by five significant
figures. For Model 4, the re values for the two isotopologues, 3.072274 and 3.072287 Å, are
in excellent agreement.
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Figure 5. The effective rotational constants (×2) of cesium bromide. Different J values are off-
set by 0.2 units. The orange points are the original spectrum, the blue points are separation
into isotopologues.

Table 3. Model parameters for cesium bromide (MHz) (133Cs79Br, n = 17; 133Cs81Br, n = 7).

Model Be αe γe De
1 SSE

133Cs79Br 1 1081.242 3.692 n/a n/a 3.998

2 1081.283 3.720 0.0033 n/a 1.426

3 1081.281 3.692 n/a −0.162 2.520

4 1081.313 3.718 0.0030 −0.138 0.361
133Cs81Br 1 1064.512 3.617 n/a n/a 0.263

2 1064.521 3.632 0.0032 n/a 0.177

3 1064.538 3.618 n/a −0.097 0.130

4 1064.552 3.635 0.0037 −0.107 0.018
1 Centrifugal distortion constants have been multiplied by 106.
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The pedagogical goals achieved here show that for CsBr, calculating effective rotational
constants using Model 1 can (1) help assign points to different isotopologues, (2) identify
a “bad” point, and (3) confirm isotopologue assignments by a calculation of Be ratios.

6.3. Cesium Chloride (CsCl)

Chlorine has two isotopes in approximately a 3:1 ratio, so two isotopologues should be
observable in natural samples. The predicted value of 2B from the electron diffraction value
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is 4000 MHz (See Supplementary Materials, Excel file CsCl.xlsx). The spectrum of cesium
chloride in the region 24.3–25.4 GHz was measured [38] at 715 ◦C, and the frequencies
observed (error 1.5 MHz) are given in Figure 7. Inspection of the eight frequencies demon-
strates that there appears to be just one major grouping of frequencies. The estimated value
of 2B suggests transitions corresponding to J = 5. There are two apparent gaps at about
24,450 and 24,880 MHz, which appear to be due to a missing transition and a break between
two vibrational progressions, respectively. We note that because we do not have multiple
values of J, there is no way to estimate the centrifugal distortion constant. We also note
that the error in each measurement is fairly large compared to the previous two cesium
salts analyzed.
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Figure 7. The microwave spectrum of cesium chloride, and separation into isotopologues. The orange
points are the original spectrum, the blue points are separation into isotopologues.

Under the assumption that the head of each progression corresponds to v = 0, we find
that the higher frequency progression is well described by Model 1, with Be = 2113.31 and
αe = 9.96, whereas the lower frequency progression gives Be = 2071.45 and αe = 9.60 (all
MHz). The expected mass ratio is 1.04468, but the Be ratio is 1.02020. Therefore, the
vibrational assignments are incorrect, and we must revise our assumption. It is unlikely
that we would miss the head of the progression of the heavier isotopologue, as it falls
within the range of other observed bands, so we assume that we have assigned this correctly
and that we have misassigned the lighter isotopologue because it falls out of the observed
range. With this model, any misassignment of v results in the same αe, but different Be. The
following Be ratios are calculated for head assignments v = 1–5: 1.025, 1.029, 1.034, 1.039,
and 1.044. This suggests that the assignments of the lighter isotopologue correspond to
v = 5–8 instead of v = 0–3, and that the isotopologues are 133Cs35Cl and 133Cs37Cl. This was
confirmed by a later measurement at 720 ◦C [31], where the missing transitions (v = 0–4)
were seen. The newer results were all systematically lower in frequency by 30 MHz, but
the precision was improved to 0.1–0.5 MHz (Figure 8). The model parameters are given in
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Table 4. For Model 2, the re values for the two isotopologues, 2.906337 and 2.906362 Å, are
in excellent agreement.
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Figure 8. Comparison of microwave spectra of cesium chloride from two sources (Grouping 0
(orange) [38], Grouping 1 (blue) [31]).

Table 4. Model parameters for cesium chloride (MHz).

Model Be αe γe SSE

133Cs35Cl [38], n = 4 1 2163.119 9.963 n/a 0.115

[31], n = 9 1 2161.029 10.021 n/a 4.195

2 2161.152 10.10 0.0091 0.522
133Cs37Cl [38], n = 4 1 2071.458 9.600 n/a 8.940

2 2071.155 9.238 −0.0703 0.002

[31], n = 3 1 2068.713 9.436 n/a 0.035

2 2068.682 9.378 −0.0192 exact

The pedagogical goal achieved here is showing that the vibrational assignments should
always be checked by comparison of the predicted Be ratios.

6.4. Cesium Fluoride (CsF)

Fluorine is monoisotopic. The predicted value of 2B from the electron diffraction value
is 10,000 MHz (See Supplementary Materials, Excel file CsF.xlsx). The spectra of cesium
fluoride in the region 21.4–22.1 GHz was measured [31] at 700 ◦C, and the frequencies
observed (error 0.2–1.0 MHz) are given in Figure 9. Inspection of the five frequencies
demonstrates that there appears to be just one major grouping of frequencies. The ob-
served spectrum corresponds to J = 1, v = 0–4. Fitting gives Be = 5527.123, αe = 35.072
(Model 1), and Be = 5527.259, αe = 35.218, γe = 0.0279 (Model 2), all MHz. The bond distance
re is 2.3454 Å. This problem makes an excellent student exercise (Appendix A) without the
complicating effects of multiple J and/or isotopes.
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Figure 9. The microwave spectrum of cesium fluoride.

6.5. Rubidium Iodide (RbI)

Rubidium has two isotopes, 85Rb and 87Rb, present in approximately a 3:1 ratio. The
predicted value of 2B from electron diffraction is 1880 MHz (see Supplementary Materials,
Excel file RbI.xlsx). The spectra of rubidium iodide in the region 21.5–25.6 GHz was
measured [31] at 660 ◦C, and the frequencies observed (error 0.1–0.2 MHz) are given in
Figure 10. Inspection of the 13 frequencies demonstrates that there appears to be three
major groupings (clusters) of frequencies. The centers of the clusters are at 21,617.58,
23,464.75, and 25,238.83 MHz, with an average difference of 1810(37) MHz. The average
difference between the highest frequency components is 1965(80) MHz. Using the estimated
2B or cluster averages would suggest either J = 10, 11, 12 (Assignment # 2) or J = 11, 12,
13 (Assignment #1), whereas using the highest frequency differences (assuming v = 0)
would suggest J = 10, 11, 12, with an anomaly for J = 11. While the preference is for
J = 10, 11, 12, the assignment is somewhat less definitive, so we have plotted the effective
rotational constants for both scenarios (Figure 11). For assignment #1, all 13 points are still
visible in nine subclusters, apparently in two vibrational progressions. This would imply
that the centrifugal distortion constants are quite large, and that there are at least four
points with the same v, but with multiple values of J. In addition, the Be ratio is 1.009306.
For assignment #2, only 10 clusters are visible, and these can (barely) be separated into
two vibrational progressions with a Be ratio of 1.013951. The expected mass ratio is 1.013961,
which agrees with the second assignment to five significant figures. We therefore assume
that the transitions are as assignment #2. The effective rotational constants for J = 11
correspond to v = 1–2, not to v = 0–1, which explains why the highest frequency method for
J determination did not work as well.

What would happen if we assumed that the spectrum was due to a single isotopologue,
but that some lines were doubled due to some unknown effect? In that case, we may analyze
the effective rotational constants as usual using Model 1. The residual error of this model
is shown in Figure 12. There is a clear separation of the residual into two groups with
this double assignment, and the least-squares process tries to fit both, resulting in a fairly
large error. If we eliminate all points currently assigned to v = 4–6 (Model 1 Elim 1), the
error drops significantly, and one set of the excluded points fits the expected residual error
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pattern. We can then re-include those points in the fit (Model 1 Elim 2). The points excluded
belong to a second species. We then re-assign the vibrational quantum numbers of the
second species to obtain a reasonable Be ratio, from v = 4–6 (1.000736) to v = 0–2 (1.013950).
We then proceed as usual to obtain re of 3.176993 and 3.176997 Å for the two isotopologues
(Table 5).

The pedagogical goals achieved here show that that, for RbI, (1) plotting effective
rotational constants for different J assignments can assist in determining J, and (2) plotting
residuals can help identify incorrect assumptions.

Table 5. Model parameters for rubidium iodide (MHz) (85Rb127I, n = 10; 87Rb127I, n = 3).

Model Be αe γe De
1 SSE

85Rb127I 1 984.221 3.261 n/a n/a 1.013

2 984.245 3.284 0.0033 n/a 0.237

3 984.307 3.259 n/a 289 0.644

4 984.236 3.279 0.0027 −81 0.113
87Rb127I 1 970.681 3.204 n/a n/a 0.014

2 970.672 3.188 −0.0056 n/a exact
1 Centrifugal distortion constants have been multiplied by 106.
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Figure 10. The microwave spectrum of rubidium iodide, and the 3-cluster averages.
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6.6. Rubidium Bromide (RbBr)

Because both rubidium and bromine are diisotopic, there may be a total of four iso-
topologues that could be observed. The predicted value of 2B from electron diffraction is
2650 MHz (see Supplementary Materials, Excel file RbBr.xlsx). The spectrum of rubidium
bromide in the region 22.5–26.0 GHz was measured [31] at 730 ◦C, and the frequencies ob-
served (error 0.1 MHz) are given in Figure 13. Inspection of the 12 frequencies demonstrates
that there appear to be two major groupings (clusters) of frequencies, a single frequency at
22,752.29 MHz and a cluster centered at 25,285.29 MHz. The cluster difference is 2533 MHz,
but the highest frequency components differ by 2843.70 MHz. Using the estimated 2B
suggests either J = 7,8 or J = 8,9. Using the cluster average would suggest J = 8,9, whereas
using the highest frequency differences (assuming v = 0) would suggest J = 7,8. With the
highest frequency differences usually being more accurate, and along with the 2B clustering
favoring this as well, we assign these to J = 7,8, with three different vibrational progressions
(Figure 14).

The lightest isotopologue (85Rb79Br) is also the most abundant. The mass ratios for the
heavier isotopologues are 1.011195 (87Rb79Br), 1.012963 (85Rb81Br), and 1.024452 (87Rb81Br).
The Be ratios for Model 1 are calculated as 1.011188 and 1.012955 and for Model 2 as
1.011202 and 1.012965, which demonstrate that the other two isotopologues observed are
87Rb79Br and 85Rb81Br (Table 6). The values of re are calculated as 2.944776, 2.944820, and
2.944823 Å.

The pedagogical goal achieved here shows that, for RbBr, more than two isotopologues
can be successfully analyzed.
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Figure 14. The rotational constants of rubidium bromide. The orange points are the original spectrum,
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Table 6. Model parameters for rubidium bromide (MHz) (85Rb79Br, n = 6; 87Rb79Br, n = 3; 85Rb81Br,
n = 3).

Model Be αe γe De
1 SSE

85Rb79Br 1 1424.768 5.542 n/a n/a 0.432

2 1424.798 5.583 0.0086 n/a 0.041

3 1424.822 5.538 n/a −0.79 0.268

4 1424.822 5.576 0.0076 −0.40 0.005
87Rb79Br 1 1409.003 5.456 n/a n/a 0.011

2 1409.014 5.478 0.0072 n/a exact
85Rb81Br 1 1406.546 5.450 n/a n/a 0.020

2 1406.562 5.479 0.0097 n/a exact
1 Centrifugal distortion constants have been multiplied by 106.

6.7. Potassium Iodide (KI)

Potassium has two isotopes, 39K and 41K, present in approximately a 14:1 ratio. The
predicted value of 2B from electron diffraction is 3300 MHz (see Supplementary Materials,
Excel file KI.xlsx). The spectrum of potassium iodide in the region 18–26 GHz was
measured [31] at 690 ◦C, and the frequencies observed (error 0.1–0.3 MHz) are given
in Figure 15. Inspection of the 14 frequencies demonstrates that there appears to be
three major groupings (clusters) of frequencies. Analysis of this spectrum is left for the
reader as a more challenging exercise (Appendix B). The results for 39K127I are Model 1,
Be = 1824.840, αe = 7.941 MHz; Model 2, Be = 1824.962, αe = 8.047, γe = −0.0141 MHz;
Model 3, Be = 1825.023, αe = 7.944, De = 0.0022 MHz; Model 4, Be = 1825.059, αe = 8.040,
γe = −0.0130, De = 0.0013 MHz. The value of re is calculated as 3.047776 Å. The value of r0
for the heavier isotopologue 41K127I can be calculated as 3.051148 Å.
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6.8. Potassium Chloride (KCl)

Potassium chloride has four naturally occurring isotopologues: 39K35Cl (70.65%),
39K37Cl (22.61%), 41K35Cl (5.10%), 41K37Cl (1.63%). The predicted value of 2B from electron
diffraction is 7100 MHz (see Supplementary Materials, Excel file KCl.xlsx). The spectra of
potassium chloride in the region 22.4–23.2 GHz was measured [39] at 715 ◦C, and the four
frequencies observed (error 10 MHz) could either correspond to a vibrational progression,
with a gap, or possibly to a mixture of up to four isotopologues. This determination is left
to the reader (see Appendix C). A more precise spectrum was measured [40] at 700 ◦C and
is also left as an exercise (see Appendix D).

6.9. Sodium Chloride (NaCl)

Sodium is monoisotopic. The predicted value of 2B from electron diffraction is
11,600 MHz (see Supplementary Materials, Excel file NaCl.xlsx). The spectrum of sodium
chloride in the region 25.0–26.1 GHz was measured [38] at 775 ◦C, and the seven frequencies
observed (error 0.75 MHz) correspond to two vibrational progressions. The assignment is
left to the reader (Appendix E).

7. Conclusions

The microwave spectra of CO, CsI, CsBr, CsCl, CsF, RbI, RbBr, KI, KCl, and NaCl
are presented and procedures for their analysis are discussed. By the use of either addi-
tional information (electron or X-ray diffraction) or by cluster analysis of the spectra, the
approximate value of 2B can be determined, followed by the assignment of the frequencies
to rotational quantum number J (Model 0). Once assigned, effective rotational constants
for each transition can be assigned to specific vibrational quantum numbers v and/or
isotopologues, to obtain the rotational constant Be, bond length re, and vibration–rotation
interaction constant αe (Model 1). In some cases, other spectroscopic constants (De, γe) can
be determined.
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Appendix A. Analysis of the Microwave Spectrum of Cesium Fluoride (CsF)

The microwave spectrum of cesium fluoride in the range 21.4–23.0 GHz has transitions
at 22,038.51, 21,898.21, 21,757.58, 21,617.09, and 21,477.5 MHz. X-ray diffraction of cesium
fluoride gives a Cs-F distance of 3.004 Å. X-ray diffraction typically gives M-X distances
that are 15–20% longer than gas-phase electron diffraction for the alkali halides. (a) Predict
the value of 2B that should be observed. (b) Assign the observed transitions to definite
rotational and vibrational quantum numbers. (c) Calculate Be and αe. (d) Give a precise
value of re.

[Ans: (a) 10 GHz (b) J = 1, v = 0–4 (c) Model 2 (MHz): Be = 5527.259, αe = 35.218 (d)
re = 2.3454 Å]

Appendix B. Analysis of the Microwave Spectrum of Potassium Iodide (KI)

The microwave spectrum of potassium iodide in the range 18–26 GHz has transitions at
18,129.61, 18,209.77, 21,036.78, 21,184.73, 21,279.07, 21,373.63, 21,563.91, 21,659.38, 21,755.19,
21,851.32, 25,157.04, 25,268.95, 25,380.71, and 25,492.81 MHz. Electron diffraction gives
a K-I distance of 3.23 Å. (a) Predict the value of 2B that should be observed. (b) Assign
the transitions to definite isotopologues, rotational and vibrational quantum numbers.
(c) Calculate Be, αe, γe, De where possible. (d) Give a precise value of re.

[Ans: (a) 3.3 GHz (b) All due to 39K127I (J = 4, v = 0,1; J = 5, v = 0–3, 5–7; J = 6, v = 0–3) ex-
cept 21,036.78 MHz (41K127I, J = 5, v = 0) (c) 39K127I Model 4 (MHz): Be = 1825.059, αe = 8.040,
γe = −0.013, De = 0.00129 (d) re = 3.047776 Å]

Appendix C. Analysis of the Microwave Spectrum of Potassium Chloride (KCl)

A low-resolution (10 MHz) microwave spectrum of potassium chloride gives transi-
tions at 23,066, 22,918, 22,646, and 22,504 MHz, corresponding to J = 2→3. By calculating
spectroscopic parameters and isotopologue mass ratios, determine whether these tran-
sitions are more likely due to a vibrational progression of a single isotopologue or to a
mixture of isotopologues.

[Ans: vibrational progression of a single isotopologue with a missing point J = 2,
v = 0,1,3,4; Model 2 (MHz): Be = 3858.1, αe = 27.2, γe = 0.7]

Appendix D. Analysis of the Microwave Spectrum of Potassium Chloride (KCl)

A medium resolution (<3 MHz) microwave spectrum of potassium chloride gives
transitions at 22,278.0, 22,410.3, 22,644.0, 22,785.2, 22,925.4, and 23,067.5 MHz, correspond-
ing to J = 2→3. By calculating spectroscopic parameters and isotopologue mass ratios,
determine whether these transitions are more likely due to a vibrational progression of a
single isotopologue or to a mixture of isotopologues.

https://www.mdpi.com/article/10.3390/spectroscj1010002/s1
https://www.mdpi.com/article/10.3390/spectroscj1010002/s1
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[Ans: mixture of two isotopologues 39K35Cl (head 23,067.5 MHz, v = 0–3) and 39K37Cl
(head 22,410.3, v = 0,1), Model 1 (MHz): 39K35Cl, Be = 3856.278, αe = 23.512; 39K37Cl,
Be = 3746.075, αe = 22.050 (d) re = 2.6667Å]

Appendix E. Analysis of the Microwave Spectrum of Sodium Chloride (NaCl)

A medium-resolution (0.75 MHz) microwave spectrum of sodium chloride gives
transitions at 25,120.3, 25,307.5, 25,473.9, 25,493.9, 25,666.5, 25,857.6, and 26,051.1 MHz,
corresponding to J = 1→2. How many isotopologues do you expect to observe? Assign the
spectra and calculate the appropriate molecular constants.

[Ans: Two, 23Na35Cl, head 26,051.1 MHz, v = 0–4 and 23Na37Cl, head 25,493.9 MHz,
v = 0–2. Model 1 (MHz): 23Na35Cl, Be = 6536.70, αe = 48.07; 23Na37Cl, Be = 6396.86, αe = 46.7
(d) re = 2.3609 Å]
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