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Abstract: The goal of drug discovery is to uncover new molecules with specific chemical properties
that can be used to cure diseases. With the accessibility of machine learning techniques, the approach
used in this search has become a significant component in computer science in recent years. To meet
the Precision Medicine Initiative’s goals and the additional obstacles that they have created, it is vital
to develop strong, consistent, and repeatable computational approaches. Predictive models based on
machine learning are becoming increasingly crucial in preclinical investigations. In discovering novel
pharmaceuticals, this step substantially reduces expenses and research times. The human kinome
contains various kinase enzymes that play vital roles through catalyzing protein phosphorylation.
Interestingly, the dysregulation of kinases causes various human diseases, viz., cancer, cardiovascular
disease, and several neuro-degenerative disorders. Thus, inhibitors of specific kinases can treat those
diseases through blocking their activity as well as restoring normal cellular signaling. This review
article discusses recent advancements in computational drug design algorithms through machine
learning and deep learning and the computational drug design of kinase enzymes. Analyzing the
current state-of-the-art in this sector will offer us a sense of where cheminformatics may evolve in the
near future and the limitations and beneficial outcomes it has produced. The approaches utilized
to model molecular data, the biological problems addressed, and the machine learning algorithms
employed for drug discovery in recent years will be the emphasis of this review.

Keywords: drug design; deep learning; deep generative model

1. Introduction

Traditional drug discovery and development processes are widely recognized for tak-
ing a long time and costing a lot of money. The complete process of developing a new drug
to come into the market takes an average of 10 to 15 years, and an estimated 58.8 billion
dollars had been spent on new drug development as of 2015. For both the biotechnology
and pharmaceutical industries, these figures represent a remarkable 10 percent growth over
previous years. Out of millions of chemical compounds, only 1 percent will proceed to clin-
ical testing. Only 5–10 compounds will typically be tested in the human body. Furthermore,
a 1995–2007 study by the Tufts Center for the Study of Drug Development found that only
11.83 percent of drugs that advance to Phase I of clinical trials were ultimately brought to
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market. Additionally, from 2006 to 2015, only 9.6 percent of drugs undergoing clinical trials
were successful. The exorbitantly high expenditure and failure rates of these traditional
drug discovery processes have forced researchers to find an alternative method. Computer-
aided drug discovery (CADD) algorithms are employed for the fast design of new drugs.
CADD is a specialized branch that uses computational methods to model drug receptor in-
teractions in order to evaluate if a given chemical will attach to a target and, if so, with what
affinity [1]. This methodology has become the most extensively used method for reducing
the number of potential medicinal compounds from a huge library by predicting the activity.
For high-throughput screening, this method requires much less money and time while
maintaining high lead-finding quality. Ligands can bind to receptors in various ways,
including hydrophobic, electrostatic, and hydrogen-bonding interactions. CADD’s main
goal is to screen, optimize, and analyze the compound’s activity against the target. It is a
multi-disciplinary technique that is used by both academic institutions and commercial
pharmaceutical businesses to improve efficacy while minimizing or eliminating negative
effects. A large number of compounds are screened based on structure prediction, target
identification, binding site prediction, protein–ligand interactions, etc. Then, the results are
tallied with the ADMET properties. The ADMET (adsorption, distribution, metabolism,
excretion, and toxicity) properties are screened to increase the success rate and decrease the
time for drug discovery. In this article, we discuss the computational drug design of the
human kinome. The kinome denotes the entire family of protein and lipid kinases, which
are enzymes playing a vital role to regulate cell signaling pathways. By phosphorylating
specific proteins, kinases can control cellular processes, viz., cell division, differentiation,
and death [2]. The dysregulation of kinases promotes various human diseases, includ-
ing cancer, cardiovascular disease, and neuro-degenerative disorders [3]. Hence, kinases
have become a major target for drug discovery as well as development in the entire
pharmaceutical industry.

2. Biological and Computational Terms

• Ligands: Molecules or ions that are coordinated with the central atom or ion in the
coordination compound are called ligands.

• Molecular descriptors: Molecular descriptors are numerical representations of molecule
attributes. Physical and chemical properties of the molecule are numerically repre-
sented by molecular descriptors [4].

• Molecular docking: Docking is a method of molecular modeling that predicts the
preferred orientation of a
ligand when it is bound in an active site of a molecule to form a stable complex [5].

• Molecular dynamics: Molecular dynamics (MD) is a computer simulation method for
analyzing the physical movement of atoms and molecules. The atoms and molecules
are allowed to interact for a fixed period of time, giving a dynamic view of the system.
MD simulation is based on Newton’s second law or the equation of motion.

3. Importance of Computational Drug Discovery

Drug design, discovery, and development are time-consuming and tedious inter-
disciplinary processes encompassing many different domains of study [6]. Traditional drug
discovery and development are widely recognized for taking a long time and costing a
lot of money, e.g., an average of 10 to 15 years to get to market and costing an estimated
58.8 billion dollars as of 2015 [7,8]. Among 10,000 chemical compounds, only 200–250 will
proceed to clinical testing. Among these 200–250 compounds, 10 will be tested in animals
rather than in the human body. Tufts Center for the Study of Drug Development conducted
a study from 1995 to 2007, which stated that out of all drug molecules that proceed to Phase
I of clinical trials, roughly 11.83 percent are approved for market. The high cost and failure
rates of traditional drug discovery have forced researchers to execute a new path for drug
discovery. CADD has provided a new way to accelerate the drug discovery process.
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4. Process of Drug Discovery

Drug design is a lengthy and time-consuming process. It has several steps from target
discovery to clinical trials. There are several computational methods that can be utilized in
each computational step, starting from target discovery to clinical trials [9].

We have provided a flowchart (Figure 1) of all the computational techniques that help
in different stages of drug discovery. Some impressive computational drug discovery and
development approaches and platforms have been devised and built. Several approaches
and platforms are discussed in this section, including target identification, docking-based
virtual screening, conformation sampling, scoring functions, molecular similarity com-
putation, virtual library design, and sequence-based drug design. These elements are
intertwined, and improvements in one may help the others (Figure 2).

Figure 1. Flowchart of drug design process.

Figure 2. Categories of different computational tools used for drug discovery.

5. Machine Learning and Deep Learning Techniques Used for Drug Discovery

There are numerous molecular modeling and molecular docking techniques that
researchers have been using for a long time. Recent advances in machine learning and
deep learning techniques have significantly accelerated the drug design process. These
techniques are widely used by both academia and industries. These machine learning
algorithms are usually data-hungry and fortunately, there is no dearth of data in the world
today. Lots of relevant chemical and biological datasets are publicly available now for
machine and deep learning models. Machine learning models are being used in drug
discovery for data mining, data analysis, predicting the chemical and physical properties
of molecules, etc. We can divide machine learning techniques into three categories and in
each category we have different types of algorithms. We have given a flowchart of different
categories in Figure 3.
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Figure 3. Flowchart of machine learning techniques.

When we feed a dataset into a machine learning model, generally the dataset is divided
into training and test sets. A training set is used in supervised learning to train models
to produce the desired output. This training dataset has an input and an output and we
approximate a function f(x) over training data points. We use a loss function (Lε) to assess
the model’s correctness, and the parameters are modified using gradient descent until the
error is suitably minimized.

pn+1 = pn −∇Lε

∵ n = number of steps, p = parameter vector

We can divide supervised learning into two categories: (1) classification and (2) regression.
A classification algorithm is used to classify test data and allocate it to certain groups. It
recognizes certain entities in the dataset and makes educated guesses about how those
entities should be labeled or defined. Linear classifiers, support vector machines (SVMs),
decision trees, k-nearest neighbor, and random forest are some of the most common
classification algorithms. To explore the relationship between dependent and independent
variables, regression is used. It is widely used to produce predictions, such as for a
company’s sales revenue. Popular regression algorithms include linear regression, logistical
regression, and polynomial regression.

6. Different Approaches for Computational Drug Discovery

In this section, we will briefly describe some of the computational techniques that
have been widely used in drug discovery.

6.1. Structure-Based Drug Discovery

Drug design began approximately three decades ago with the utilization of the 3D
structure information of proteins and DNA. Structure-based drug design is one of the oldest
drug design techniques. Recent advancements in proteomics, genomics, and bioinformatics
have given us the 3D structures of huge numbers of proteins. Recently, Deepmind has
released AlphaFold, an AI system that can predict a protein 3D structure from its amino
acid sequence [10]. AlphaFold has predicted the 3D structure of all the human proteins. The
availability of a huge number of target protein 3D structures has significantly accelerated
the processes in SBDD (Figure 4). Molecular docking and molecular dynamics are the
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two computational methods that were traditionally used for a long time in SBDD. Now,
advancements in deep learning and cloud computing have given new directions to SBDD
protocols (Figure 5). A huge amount of 3D structure data has forced us towards data-
driven structure-based drug discovery. The Protein Data Bank (PDB) [11] is the world’s
largest repository of bio-molecule structure data derived mostly from X-ray crystallog-
raphy and nuclear magnetic resonance (NMR) techniques. The Protein Data Bank had
2058 structures deposited in 1998. Since then, the number of structures deposited has
increased by 7.5 percent each year, totaling 188,923 in 2014. For years, the exploitation
of this wealth of structural data has been the cornerstone of structure-based medication
creation in academia and the pharmaceutical sector. Proteins are dynamic macro-molecules
by nature. The first step of SBDD after identifying a target protein is finding the binding
pocket of the target protein. The binding pocket is the cavity where a small molecule will
be bound to obtain the desired result. Therefore, it is important to identify the binding
site of the target protein. There are few computational methods that can find the binding
sites of a molecule. These methods use the interaction energy and van der Waals (vdW)
forces for binding site mapping. An energy-based technique for predicting binding sites is
Q-SiteFinder [12]. The next phase is hit discovery, which is carried out by docking chemical
libraries into the target protein’s binding cavity. Molecular docking is a technique that
has been used for the virtual simulation of molecular interactions. Molecular docking has
been widely used in SBDD. This method predicts the conformation and binding of ligands
within a target active site with excellent precision [13,14]. Molecular docking gives binding
energies and ranks the ligands in a dataset according to different scoring functions. As a
result, studying a protein’s interaction with a small molecule, or simply identifying its bind-
ing site, requires more than a structural snapshot. Molecular dynamics (MD) simulations
are the widely used methods to understand a protein’s behavior. MD is used to calculate
the trajectory of conformations as a function of time using Newtonian mechanics and force
fields such as Amber [15] or CHARMm [16]. There are some MD applications, such as free
energy perturbation (FEP) methods [17], molecular mechanics/Poisson–Boltzmann surface
area (MM/PBSA) [18], and linear interaction energy (LIE) [19], which have been used for
free energy calculations to check the correlation of experimental and calculated binding
affinities of small molecules to proteins. These methods can then be utilized to predict
binding affinities in a computer simulation. Now, deep learning is trying to replace all the
techniques that have been used for a long time in SBDD. Deep learning is used for protein–
ligand binding site prediction [20], protein–ligand binding affinity prediction [21], etc. If the
structure of a protein is not known for some reason, then we can use homology modeling.
Homology modeling is used to build a protein model after identifying a structural template
protein with a similar sequence, aligning their sequences, using aligned region coordi-
nates, predicting missing atom coordinates of the target, model building, and refinement.
MODELER [22] and SWISS-MODEL [23] are two widely used programs for homology.

6.2. Ligand-Based Drug Discovery

Ligand-based drug design is used when we do not have the necessary information
about the 3D structure of a molecule. It relies on the knowledge that molecules bind to
the biological target of interest. LBDD is based on the similar property principal, which
states that similarly structured molecules have similar biochemical properties. LBDD
uses different methods for describing the features of small molecules using computational
algorithms. We use molecular descriptors to encode the structural and physicochemical
properties of a molecule. These encoded properties are generally the weight, logP, volume,
geometry, surface area, ring content, rotatable bond, interatomic distance, bond distance,
atom types, planner and non-planner system, electronegativity, polarizability, solubility,
symmetry, atom distribution, topological charge indices, functional group composition,
aromaticity indices, dipole moment, etc. The QSAR method and pharmacophore modeling
are two methods that have been widely used in LBDD. Pharmacophore modeling is used
to find and extract potential interactions between a ligand–receptor complex. This model
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can then be further used to design new molecular entities that interact with the target.
The most common method that has been used in LBDD is QSAR. QSAR is a regression or
classification model. In QSAR, we generally predict the bioactivity of a chemical compound
according to the molecular descriptor that we feed into the model.

Figure 4. Categories of structure-based drug design.

6.2.1. QSAR of Ligand-Based Drug Discovery

QSAR modeling has a number of steps:

(1) Curated chemical dataset.
(2) Creation of molecular descriptor.
(3) Split dataset into training and testing datasets. Build QSAR model.
(4) Validation of QSAR model and virtual design of ligand.
(5) Predict the best ligand and test the QSAR model’s accuracy.
(6) Experiment to validate the compound [24–28].
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Figure 5. Categories of various tools regarding structure-based drug design.

In QSAR modeling, it is very important to choose the right molecular descriptor and
develop an efficient mathematical relationship between the descriptors and the biological
activity. Molecular descriptors are a crucial part of this QSAR method. Recent software
advancements have made it possible to generate enormous numbers of molecular descrip-
tors for use in QSAR procedures. Selecting an appropriate descriptor [29,30] is crucial
for further analysis. We can use different types of molecular descriptor to explore the
link between structure and bio-activity. For a small dataset, it may be that we can obtain
spurious connections [31]. Therefore, we have to be cautious. We can build a QSAR model
using various techniques (multi-linear regression, support vector machine, artificial neural
network, random forest, etc.). We can perform different regression techniques and evaluate
model performance using different performance metrics such as the correlation coefficients,
ROC curve, F1 score, R2 or RMES values, kappa statistic, or Matthew’s correlation coeffi-
cient [32]. Assessing how the errors or correlations relate to repeat measurements from the
modeled experimental assay can help us understand the model’s true predictive capability.

6.2.2. Pharmacophore Modeling

Pharmacophore modeling is an important technique in ligand-based drug design
used to identify the key structural features or chemical properties required for a ligand
to interact with a specific receptor or target. The goal is to develop a model representing
the common features of a set of active ligands that bind to the same target. The process of
pharmacophore modeling typically involves several steps:
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(1) Selection of a set of active ligands: A set of active ligands known to bind to the target
of interest is selected. These ligands may come from experimental data or from virtual
screening studies.

(2) Structural alignment of ligands: The ligands in the set are structurally aligned based
on common features such as functional groups or rings.

(3) Identification of pharmacophoric features: The aligned ligands are analyzed to iden-
tify common pharmacophoric features, usually functional groups or other chemical
properties important for ligand binding to the target. Examples of pharmacophoric
features include hydrogen bond acceptors, hydrogen bond donors, aromatic rings,
and hydrophobic regions.

(4) Generation of a pharmacophore model: The pharmacophoric features identified in
step 3 are used to generate a pharmacophore model, which is a three-dimensional
representation of the common features required for ligand binding to the target. The
model may be visualized using software programs that allow for manipulation and
refinement of the model.

(5) Validation of the pharmacophore model: The pharmacophore model is validated
using techniques such as molecular docking or virtual screening to test whether the
model can accurately predict the binding affinity of new ligands to the target.

Once a pharmacophore model has been generated and validated, it can be used to
guide the design of new ligands with improved binding affinity and selectivity for the
target of interest. Ligands can be designed by modifying existing ligands to optimize their
interaction with the pharmacophoric features identified in the model, or by using the model
to screen virtual compound libraries for molecules that fit the pharmacophore.

6.3. System-Based Drug Discovery

The goal of systems-based drug development is to take a comprehensive look at the
genome, proteome, and interaction among them, as well as how chemicals might positively
or adversely affect their action [33,34]. When we undertake computational drug design,
we generally find a target protein first and then we try to find an inhibitor of the protein,
but this protein is a chemical entity that interacts with other proteins and makes a protein–
protein interaction network. When proteins are interacting with each other, that protein
feels a mutual chemical effect with interacting proteins. In system-based based drug design,
researchers are trying to inhibit an interaction module rather than one single protein. This
may be a module in an interaction network or proteins in a particular metabolic pathway. A
new field called network medicine has emerged because of the advancement in multiohmics
data analysis and the study of networks in biology. Networks in biology are important
because it has been seen that complex diseases are result of the interaction of multiple
proteins or genetic entities [35]. It has been seen that proteins that are involved in the same
disease have a tendency to interact with each other [35]. Network medicine is relatively
new field and researchers are working on it. In a protein interaction network we try to find
a disease module and build a suitable drug to inhibit this module. A disease module is
basically a sub-graph in a protein–protein interaction network. When we choose to inhibit a
disease module, we basically try to inhibit multiple proteins at a time. Designing a suitable
drug molecule that can inhibit this disease module is not an easy job. Off-target binding is
a major problem in drug discovery when we try to inhibit one protein. Now, when we are
trying to inhibit multiple proteins at a time, off-target binding increases with the number of
proteins in the disease module. As an effect of off-target binding, side effects increase.

7. Drug Molecule Design

Deep generative modeling has revolutionized our thinking for creative work, resulting
in autonomous systems that generate creative visuals, music, and writing. Now, researchers
are using deep generative modeling approaches to generate and optimize molecules,
inspired by these accomplishments (Table 1). Deep generative models are used to design
lead molecules, minimizing the amount of time and money spent in the lab downstream,
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creating and characterizing bad leads. In this section, we examine the ever-changing
landscape of proposed models and representation systems. For generative approaches,
there are two key avenues. The first is deep generative models (DGMs), which use deep
learning approaches to model data distribution. The second is combinatorial optimization
methods (COMs), which make greater use of heuristic procedures to obtain the desired
result. The difference between DGMs and COMs comes in dealing with structure data.
In DGMs, we obtain a continuous latent representation, whereas COMs use optimization
techniques to search directly from the structured data space. Autoregressive models (ARs),
variational autoencoders (VAEs), normalizing flows (NFs), generative adversarial networks
(GANs), diffusion models, and energy-based models (EBMs) are some of the models used
in deep generative models. Reinforcement learning (RL), Bayesian optimization (BO), the
genetic algorithm (GA), Monte Carlo tree search (MCTS), and Markov chain Monte Carlo
(MCMC) are some examples that are used in combinatorial optimization methods. We will
give a brief description of each type of method. After examining part of each technique’s
mathematical underpinnings, we draw high-level linkages and comparisons with other
strategies, as well as giving the advantages and disadvantages of each method.

Table 1. Methods for generative model.

Architecture Representation Dataset References

VAE SMILES ZINC [36]

VAE SMILES ZINC [37]

VAE SMILES ZINC [38]

VAE SMILES ZINC/QM9 [39]

VAE SMILES ChEMBL [40]

VAE SMILES ChEMBL [40]

VAE SMILES ChEMBL23 [41]

GVAE CFG (SMILES) ZINC [42]

GVAE CFG (custom) PSC [43,44]

SD-VAE CFG (custom) ZINC [45]

CVAE Graph ZINC/CEPDB [46]

VAE Graph ZINC/QM9 [47]

VAE Graph ZINC+PubChem [48]

MHG-VAE Graph (MHG) ZINC [49]

JT-VAE Graph (operation) ZINC [50]

JT-VAE Graph (operation) ZINC [51]

VAE Graph (Tensor) ZINC [52]

VAE Graph (Tensor) ZINC/QM9 [53]

VAE Graph (Tensor) ZINC [54]

CVAE 3D density ZINC [55]

VAE 3D wave transform ZINC [56]

VAE+RL MPNN+graph ops ZINC [57]

GAN SMILES GBD-17 [58]

GAN (ANC) SMILES ZINC/CHEMDIV [59]

GAN (ATNC) SMILES ZINC/CHEMDIV [60]

GAN MACCS (166 bit) MCF-7 [61]

sGAN MACCS (166 bit) L1000 [62]
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Table 1. Cont.

Architecture Representation Dataset References

GAN Graph (tensors) QM9 [63,64]

CycleGAN Graph operation ZINC [65]

RNN SMILES ChEMBL [66]

RNN SMILES ChEMBL [67]

RNN SMILES ChEMBL [68]

RNN SMILES ChEMBL [69]

RNN SMILES ChEMBL [70]

RNN SMILES ChEMBL [71]

RNN SMILES ChEMBL [72]

RNN Graph operations ChEMBL [73]

RNN RG+SMILES ChEMBL [74]

RNN SMILES ZINC [75]

RNN SMILES ZINC [76]

RNN SMILES ZINC [77]

RNN SMILES ZINC [78]

RNN SMILES DRD2 [79]

RNN SMILES PubChemQC [80]

RNN SMILES GDB-13 [81]

AAE MACCS (166 bit) MCF-7 [82]

AAE SMILES HCEP [83]

GCPN Graph ZINC [84]

CCM-AAE Graph (tensors) QM9 [85]

BMI SMILES PubChem [86]

Methods for Deep Generative Model

Various deep learning techniques have been used for molecule generation, but the
generative adversarial network and variational autoencoder are the two most common
models. In this section, we will discuss various generative models.

Autoencoders (AEs) are neural networks that comprise two parts: one is the encoder
and other is the decoder. The encoder reduces the dimension of the training sample to
a latent vector and the decoder tries to reconstruct the input from latent representation.
We train this AE to learn to reduce the reconstruction loss [87]. In VAEs (variational
autoencoders), we use a probabilistic encoder and decoder. The encoder is a neural network
that takes inputs (x) and provides a hidden representation z as an output. z has fewer
dimensions than x. The encoder transforms the data it receives into a set of means and
standard deviations or the parameters of a multivariate statistical distribution. Then, we
sample points from this distribution and feed them to the decoder. The decoder tries to
reconstruct the data (Figure 6). The objective function used for training has two terms;
one is used for penalizing reconstruction errors and another is used for restricting the
parameters encoded to be close to a normal distribution [88]. The loss function of the
VAE is

‖ x− x̂ ‖2 +KL[N(µx, σx), N(0, I)]
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Figure 6. Flowchart of VAE architecture.

Figure 7. Flowchart of GAN architecture.

Generative adversarial networks (GANs) [89] have two components: one is the gener-
ator and the other is the discriminator. We train the generator (G) to generate a new sample
and the discriminator (D) tries to classify examples as either real (from the domain) or fake
(generated). The generator tries to fool the discriminator and the discriminator tries to beat
the generator by performing correct classification between real and fake data. Therefore,
the generator and discriminator play a game and the game goes on until it reaches an
equilibrium point (Figure 7). The loss function used in a GAN is

min
G

max
D

L(D; G) = Ex∼pdata [logD(x)] + Ez∼p(z)[log(1− D(G(z))]

GANs sometimes face problems like mode collapse. To avoid this, f-GAN [90] and
Wasserstein-GAN [91] adopt techniques such as f-divergence for measuring the distribution
distance and Wasserstein distance between distributions, respectively. There are other types
of GAN, such as cyclic-GAN, StyleGAN, and StyleGAN2, which have been used widely in
picture generation.

An autoregressive (AR) model forecasts future behavior using data from the past.
When there is a correlation between the values in a time series, it is useful for predicting
future behavior from past data. In fact, the word autoregressive comes from the fact
that it only utilizes past data to model behavior. We also use this AR model for graph
structure data. We assume that the graph structure data have d subcomponents and
such subcomponents can have underlying dependence. For molecular graph data, the
subcomponents can be nodes and bonds. The joint distribution of x is learned by factorizing
it as the product of d subcomponent likelihoods, as shown below

P(x) =
d

∏
i=1

P(xi | x1, x2, ..., xi−1)
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ARs model the joint distribution in an autoregressive or sequential fashion, anticipat-
ing the next subcomponent based on the previous subcomponents (either heuristically or
with domain knowledge). A recurrent neural network is an example of an AR model.

Normalizing flows map a simple probability distribution to a complex one (learned
from data). Take X as the input variable and Y as the latent variable, both of dimension
n. The bijective function f that maps X and Y should be deterministic and invertible such
that X = f (Y) and Y = f−1(X). Using a change of variables, we obtain p(x) as:

pX(x) = pY( f−1(x))
∣∣∣det

(∂ f−1(x)
∂x

)∣∣∣
The determinant should be easily computable and differentiable. It is called a nor-

malizing flow because applying the invertible transformation using a change of variables
produces a normalized probability density and the invertible transformation can be com-
posed together to generate more complex transformations, which would also have an
invertible property. Multiple bijector functions can be composed together to produce more
complex distributions by repeatedly applying a change of variables.

p(x) = pY[ f−1
1 ( f−1

0 (x))]
∣∣det[J f−1

1
]
∣∣∣∣det[J f−1

0
]
∣∣

where J f−1
n

is the determinant of the Jacobian matrix of f−1
n and x can be found using

f0( f1(y)). The loss function is given as:

l = −log pY[ f−1
1 ( f−1

0 (x))]−∑
i

log|det[J f−1
i
]|

Diffusion models systematically add Gaussian noise to the training data points and
learn to recover the data from noisy training data. After training the model, we can generate
data from random noise data. Unlike VAEs, we aim to model a series of noise distributions
in a Markov chain and reverse the noise from the data in a successive manner.

The training process is split into two steps: a forward diffusion process and learning to
reverse the added noise systematically. The forward diffusion process can be represented
as a Markov chain of T steps, and since it is a Markov chain, the probability density at any
given time t can be computed using only the probability density at t− 1. The resultant
probability distribution is isotropic Gaussian noise.

q(xt|xt−1) = N (xt;
√

1− βt xt−1, βt I)

For the reverse process, construction of data (t-1) from noise (t) requires information
in respect of all previous states, to which we do not have access; hence, the neural network
is trained to approximate pθ(xt−1|xt) using learned parameters θ.

pθ(xt−1|xt) = N
(
xt−1; µθ(xt, t), ∑

θ

(xt, t)
)

The loss function of the diffusion models is

L = Eq

(
− logp(xT)−∑

t≥1
log

pθ(xt−1|xt)

q(xt|xt−1)

)
Similarly, there are other generative models, e.g., energy-based models (EBMs).

8. Design of Kinase Inhibitors Using CADD

This section will discuss the progress of designing kinase inhibitors using CADD.
Significant research has been performed on the design of kinase inhibitors using computer-
aided drug design (CADD) techniques. CADD techniques have allowed for identifying
potential inhibitors and optimizing their structures more efficiently and cost-effectively
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than traditional experimental methods. Researchers have used various CADD techniques
to design kinase inhibitors, including molecular docking, virtual screening, molecular
dynamics simulations, and machine learning algorithms. These techniques have been used
to predict potential inhibitors’ binding affinity, selectivity, and pharmacokinetic properties,
and to optimize their chemical structures to improve their efficacy and safety. Overall,
using CADD techniques in the design of kinase inhibitors has led to significant advances
in drug discovery and has enabled the development of targeted and effective drugs for
treating various diseases. Ongoing research in this field is focused on developing new
CADD techniques and optimizing existing ones to accelerate the drug discovery process
further and improve the success rates of clinical trials. Several studies have shown the
successful application of CADD techniques in designing kinase inhibitors for treating
cancer, inflammation, and other diseases. One study published in the Journal of Medicinal
Chemistry used molecular docking and molecular dynamics simulations to design potent
and selective inhibitors of the receptor tyrosine kinase, c-Met [92]. The inhibitors showed
high binding affinity and selectivity for c-Met and inhibited the growth of cancer cells in
vitro. Another study published in ACS Chemical Biology used a combination of virtual
screening and molecular dynamics simulations to design selective inhibitors of the protein
kinase, Aurora-A [93]. The inhibitors showed high binding affinity and selectivity for
Aurora-A and inhibited the growth of cancer cells in vitro. Additionally, CADD techniques
have been used to identify and optimize inhibitors of other kinases, such as EGFR, BRAF,
and PI3K, which are commonly mutated in various types of cancer. One example of a
successful application of CADD techniques in kinase inhibitor design is the development
of Imatinib, a drug used to treat chronic myeloid leukemia (CML) [94]. Imatinib was
developed by Novartis in the early 2000s using molecular modeling and crystallography to
design a small molecule inhibitor that specifically targeted the BCR-ABL kinase associated
with CML [95]. Imatinib has since become a first-line therapy for CML and has also
shown promising results in other cancers. Another example of the application of CADD
techniques in kinase inhibitor design is the development of ABL kinase inhibitors for
the treatment of non-small cell lung cancer (NSCLC). Researchers have used molecular
docking and molecular dynamics simulations to design inhibitors that can target the
mutant forms of ABL kinase that are associated with NSCLC. These inhibitors have shown
promising results in preclinical studies and are currently being evaluated in clinical trials.
One study used molecular docking and virtual screening to identify potential inhibitors
of the Janus kinase 3 (JAK3) enzyme, which is involved in autoimmune diseases. The
researchers identified several compounds with high binding affinity and selectivity for
JAK3, which were then experimentally validated as potent inhibitors [96]. In another
study, researchers used molecular dynamics simulations to study the binding of potential
inhibitors to the protein kinase p38, which is involved in inflammation [97]. The simulations
provided insights into the stability and flexibility of the inhibitor–target complex, which
were used to optimize the chemical structure of the inhibitor. One example is a study
published in the Journal of Medicinal Chemistry, which used molecular docking and
virtual screening to identify potential inhibitors of the protein kinase A (PKA) enzyme.
The researchers screened a large database of compounds and identified several potential
inhibitors with high binding affinity for PKA. The compounds were then experimentally
validated and shown to be effective inhibitors of PKA activity. In another study, published
in ACS Chemical Biology, researchers used molecular dynamics simulations to study the
binding of potential inhibitors to the epidermal growth factor receptor (EGFR), which
is involved in cancer. The simulations provided insights into the interactions between
the inhibitor and the receptor, which were used to optimize the chemical structure of
the inhibitor. The optimized inhibitor was shown to be more potent than the original
compound in inhibiting EGFR activity. Another study used virtual screening to identify
potential inhibitors of the protein kinase B (AKT) enzyme, which is involved in cancer [98].
The researchers screened a library of over 2 million compounds and identified several
potential inhibitors with high binding affinity for AKT. The most promising compound
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was then optimized using structure-based design, resulting in a potent and selective AKT
inhibitor [98]. In another study, researchers used molecular dynamics simulations to study
the binding of potential inhibitors to the protein kinase CK2, which is involved in various
cancers [99]. The simulations provided insights into the binding mechanism and stability
of the inhibitor–target complex, which were used to optimize the chemical structure of
the inhibitor. Molecular dynamics has also been used to identify potential inhibitors of
the protein kinase Cdc7, which is involved in cancer cell proliferation [100]. These studies
demonstrate the power of CADD techniques in the design of kinase inhibitors, allowing for
the identification and optimization of compounds with high binding affinity and selectivity.
These techniques can significantly accelerate the drug discovery process and lead to the
development of more effective and targeted drugs for the treatment of various diseases.
As computational power and simulation methods continue to improve, it is expected that
CADD techniques will become even more powerful in the design of new drugs to treat a
wide range of diseases.

9. Evaluation Methods for Different Machine Learning and Deep Learning Generative
Techniques for Drug Design

Molecule generation evaluation methods provide insight into model performance
depending on the type of evaluation metric used (Table 2), and some of these methods
could also be used for the loss function of back-propagation. Different evaluation methods
produce different classes of results of varying impacts and it is important to understand
the various evaluation methods and choose the right one in order to benchmark a deep
learning model for the goal in mind.

Table 2. ML performance evaluation methods.

ML Models Performance Analysis Metric

Linear regression RMSE

Logistic regression RMSE

SVM Accuracy or F-1 score

Q-learning Cumulative reward

R-learning IQM on performance profiles

9.1. Simple Numeric Methods

These are simple numeric evaluation methods based on the generated molecules and
training dataset molecules.
Validity [101] is the ratio of valid molecules to the total number of molecules in the generated
molecules dataset. A valid molecule is one where all atoms’ corresponding bonds match their
valency and validity estimates the model’s ability to learn the valency of atoms.

Validity =
|valid molecules|

|total generated molecules|

Novelty [101] is the ratio of molecules that do not appear in the training set to the total
number of molecules in the generated molecules dataset. It estimates the ability of the
model to tap into the unknown chemical space.

Novelty =
|novel molecules|

|total generated molecules|
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Uniqueness [101] is the ratio of unique molecules to the total number of molecules in the
generated molecules dataset. It estimates the generative repetitiveness of a model and a
high unique score is ideal.

Uniqueness =
|unique molecules|

|total generated molecules|

Diversity [102] is classified into two categories: internal diversity (IntDiv) and external
diversity (ExtDiv). IntDiv is the measure of similarity between molecules in the generated
molecules dataset. ExtDiv is the measure of similarity between molecules in the generated
molecules dataset and the training dataset. It uses the power (p) mean of the pairwise
Tanimoto similarity (S) between the generated (G) dataset and the training (T) dataset.

IntDiv = 1− p

√
1
|G|2 ∑

g1,g2∈G
S(g1, g2)p

ExtDiv = 1− p

√
1

|G||T| ∑
g∈G,t∈T

S(g, t)p

9.2. Probabilistic Distribution Methods

Evaluation methods that compare the probability distributions of the training and
generated molecules dataset.
Kullback–Leibler Divergence (KL-Divergence) [103] is a measure of the statistical dis-
tance between two probability distributions of various physicochemical descriptors from
the training and generated molecules datasets. A low KLD for any descriptor implies the
model has successfully learned its distribution. The formula for KLD for a descriptor (D)
between the generated (G) and training (T) distribution is shown:

DKL(G, T; D) = ∑
i

G(i) log
G(i)
T(i)

Frechet ChemNet Distance (FCD) [104] uses the means (µ) and covariances (C) of the
features of the training (T) and generated (G) datasets from the penultimate layer of
ChemNet. Lower values are better as they imply the distributions are closer.

FCD(G,T) =|| µG − µT ||2 + Tr(CG + CT − 2(CGCT)
1/2)

9.3. Optimization Evaluation Methods

Optimization methods are used to generate molecules with specific properties. Fol-
lowing are some properties that are optimized and only require the molecule as input:

1. Synthetic accessibility score (SAS) [105] is a value used to estimate the ease of
synthesis of a molecule. A low score implies ease in the synthesis of the drug-like
molecule. Its range is from 0 to 10.

2. Quantitative Estimate of Drug-likeness (QED) [106] is used to calculate the drug-
likeness of a molecule using descriptors from various drugs in the market, and is
calculated by taking the geometric mean of all the desirable functions, each corre-
sponding to different descriptors. Its range is from 0 to 1.

3. Octanol–water partition coefficient (LogP) [107] is used to calculate how hydropho-
bic/hydrophilic a molecule is. Its range is on average from −3 to 7.

log(Poct/wat) = log10

(
solute unionized

octanol

solute unionized
water

)
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4. Topological polar surface area (TPSA) [108] calculates the molecular polar surface
area of the polar atoms, which provides insight into the transport properties of drugs.

5. GuacaMol [103] is a benchmarking suite for drug-like molecules that uses 5 distribution-
learning benchmarks (novelty, validity, uniqueness, KLD, and FCD) and 20 goal-
directed benchmarks (e.g., Scaffold Hop, Valsartan SMARTS, Celecoxib rediscovery,
Albuterol similarity, Median molecules, Osimertinib MPO).

6. Vina [109] is a scoring function that measures the protein–ligand binding affinity by
summing the important energy factors in protein–ligand binding.

7. Celecoxib rediscovery [110] is a rediscovery method that attempts to rediscover the
target molecule when removed from the training dataset. Its range lies from 0 to 1.

9.4. 3D Similarity Methods

In the 3D space, one molecule could have many conformations and it is essential to
find the right conformation as the protein binding pocket is structure-based. Hence, we
need a specific conformation for the targeted protein pocket.
Root-mean-squared deviation [111] calculates the 3D alignment similarity between two
molecule conformations from training set R ∈ R3xn and generated molecule R′ ∈ R3xn. R′

is found by rotating and translating the original conformation Rg to obtain RMSD(R,R’).

RMSD(R, R′) =

√
1
n

n

∑
i=1
|| Ri − R′i ||2

SHApeFeaTure Similarity (SHAFTS) [112] uses a hybrid similarity method using molecular
shape and chemical groups appended by pharmacophore features for 3D similarity calculation.
The hybrid similarity has two parts: shape-density overlap (ShapeScore) is the intersection
between two molecules A and B, which is the sum of the overlap integrals of single atomic
shape-densities for which a Gaussian function was used. dij is the interatomic distance.

VAB = ∑
i∈A

∑
j∈B

∫
d~rρi(~r)ρj(~r)

ShapeScore =
VAB√
VAVB

FeatureScore is the sum of overlap between the feature points in A and B of the same type.
dij is the distance between the features of A and B and R f is the overlap tolerance.

FAB = ∑
f∈F

∑
i∈A

∑
j∈B

exp

−2.5

(
dij

R f

)2


FeatureScore =
FAB√
FAFB

Finally, the hybrid score is defined as a weighted sum of the ShapeScore and FeatureScore
scaled to [0, 2].

HybridScore = ShapeScore + FeatureScore

Rapid overlay of chemical structures (ROCS) [113] uses unweighted sums to aggregate
many features of similarity, resulting in parameter-free models. It measures the chemical
and shape similarity of two molecules by calculating the Tanimoto coefficients of the
aligned overlap volumes:

T(A, B) =
OAB

OAA + OBB −OAB
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10. Drug Development Database

In last few decades, researchers have created multiple large-scale databases to enhance
computational drug discovery projects (Table 3). QM9 [114,115], ZINC [116], Molecular
Sets (MOSES) [117], ChEMBL [118], and GDB13 [119] are the datasets generally used for
1D/2D molecule generation and optimization. In drug discovery projects, researchers
use smile string (1D data) or graph data (2D data) but molecules have a 3D structure
by nature. Therefore, 1D or 2D data process less information than 3D data. For drug
discovery, molecules’ 3D structures are crucial to their activities in a variety of applications,
including molecular dynamics and docking. The purpose of 3D molecule production
is to create molecules in three dimensions. One 1D/2D molecule has a variety of 3D
geometries or conformations, unlike 1D/2D molecule production. This yields a list of tasks,
the end outputs of which should be 3D molecules. GEOM-QM9 [120], GEOM-Drugs [120],
ISO17 [121], Molecule3D [122], CrossDock2020 [123], scPDB [124], and DUD-E [125] are
the datasets generally used for 3D molecule generation.

Table 3. Different datasets used for drug discovery task.

Dataset Approximate Amount Description

QM9 [114,115] 134,000

This is a subset of GDB-13 (a database of nearly 1 billion stable and
synthetically accessible organic molecules) composed of all molecules
of up to 23 atoms including 9 heavy atoms. QM9 provides quantum

chemical properties for the chemical space of small organic molecules.

ZINC [116] 250,000 It comprises over 230 million compounds in ready-to-dock, 3D formats.

Molecular Sets (MOSES) [117] 1,937,000 The set is based on the ZINC Clean Leads collection. This dataset has
been filtered from the ZINC dataset. These are the drug-like molecules.

ChEMBL [118] 2,100,000 A database of bioactive compounds with drug-like molecules, which is
manually curated.

GDB13 [119] 970,000,000
In this dataset, we have small organic compounds with up to 13 atoms,

using chemical stability and synthetic feasibility principles. It is the
largest publicly available small organic molecule database.

GEOM-QM9 [120] 450,000; 37,000,000
The 3D conformer ensembles are annotated by GEOM-QM9 using

sophisticated sampling and semiempirical density functional theory.
The dataset contains around 133K 3D molecules.

GEOM-Drugs [120] 317,000 This dataset also uses advanced sampling and semiempirical density
functional theory to annotate the 3D conformer ensembles.

ISO17 [121] 200; 431,000 This dataset contains 197 2D molecules and 430,692
molecule-conformation pairs.

Molecule3D [122] 4 million
This dataset contains almost 4 million molecules and researchers use
density functional theory to create exact ground-state geometries for

the molecules in the dataset.

CrossDock2020 [123] 22,500,000
The CrossDocked2020 collection contains 22.5 million docked ligand
poses in various binding pockets that are similar across the Protein

Data Bank.

scPDB [124]
An annotated database of druggable binding sites from the Protein
Data Bank. It registers 9283 binding sites from 3678 unique proteins

and 5608 unique ligands, with a total of 16,034 entries.

DUD-E [125] DUD-E contains 102 target-specific affinity scores and
22,886 active molecules.

11. Discussion

We have given a detailed description of the traditional state-of-the-art methods of
CADD, along with the related new advanced techniques. Computational drug design
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(CADD) has significant theoretical and clinical importance over the traditional drug devel-
opment process. Here are some key points:

Theoretical Importance:
Speed and Efficiency: CADD allows for the rapid screening of large libraries of com-

pounds, reducing the time and cost involved in drug development.
Precision and Control: CADD offers greater precision and control over molecular

properties, enabling the design of drugs with specific, desired characteristics. This is
important for targeting specific disease mechanisms and minimizing off-target effects.

Insights into Molecular Mechanisms: CADD can provide detailed insights into the
interactions between drugs and their targets at the molecular level, helping researchers to
understand the mechanisms of action of drugs and to optimize their properties.

Reduction of Animal Testing: CADD can help reduce the need for animal testing by
providing information about the biological activity and toxicity of drug candidates before
they are tested in vivo.

Clinical Importance:
Identification of Effective Drugs: CADD can help identify drug candidates with a higher

likelihood of success, increasing the chances of developing effective drugs for treating diseases.
Reduced Adverse Effects: CADD can help minimize adverse effects by designing drugs

that are highly specific to their targets, reducing the risk of unintended interactions with
other molecules in the body.

Personalized Medicine: CADD can help facilitate the development of personalized
medicine by allowing for the design of drugs tailored to specific patient needs, such as
individual genetic variations.

Improved Patient Outcomes: CADD can help improve patient outcomes by enabling the
development of more effective drugs with fewer adverse effects.

In summary, CADD offers several theoretical and clinical advantages over the tradi-
tional drug development process. By providing greater precision, efficiency, and control
over drug design, CADD has the potential to accelerate drug development, improve drug
efficacy and safety, and reduce the costs associated with traditional drug design methods.

However, CADD has its own challenges [126–130]. We summarize below the chal-
lenges in respect of CADD, from traditional methods to molecule generation using deep
learning. SBDD is the most promising technique in drug design but still it has some
limitations. Challenges regarding the chemical space are as follows:

• Expand the chemical space that is medically relevant.
• Design and screen extremely large chemical libraries rationally.
• Extract lead compounds and unknown hits from screening libraries.

Challenges regarding the biological space are as follows:

• Improve multi-target drug design.
• Identify responsible region in genome.
• Improve targeting protein–protein interaction module.

Challenges regarding methods are as follows:

• Try to reduce off-target binding during clinical trials.
• For multi-target drug design, reduce toxicity.
• Compound and library enumeration.
• Improve medically relevant 3D drug molecule design.
• In molecule generation methods using deep learning we face many challenges, such

as out-of-distribution generation, lack of interoperability, lack of unified evaluation
protocol, generation in low-data regime, etc.

Researchers are trying to solve these challenges and we hope that deep learning will
take drug design to the next level in the coming decade.
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12. Conclusions

In this study, we reviewed the computational drug design process. Computational
drug design is a field that uses computational tools and techniques to design and optimize
drug molecules with specific therapeutic properties. CADD has become an essential part
of the drug discovery and development process, allowing researchers to save time and
resources by rapidly identifying potential drug candidates that can be further tested in a
laboratory. There are several steps involved in the computational drug design process. First,
the target protein or biological system with which the drug is meant to interact is identified.
This can be achieved through various methods, including bioinformatics, structural biology,
and molecular modeling. Once the target is identified, the next step is to generate or
identify potential drug candidates. This is typically achieved using a combination of virtual
screening, molecular docking, and molecular dynamics simulations. Virtual screening
involves the use of computer algorithms to screen large databases of chemical compounds
and identify molecules that have the potential to interact with the target protein. Molecular
docking involves predicting the binding affinity and orientation of potential drug molecules
to the target protein, while molecular dynamics simulations are used to predict the dynamic
behavior of the drug–target complex. Once potential drug candidates are identified, they
are further optimized through various computational methods, such as structure-based
design, ligand-based design, and fragment-based design. Structure-based design involves
using the known structure of the target protein to design molecules that will interact with
specific regions of the protein. Ligand-based design involves optimizing the chemical
structure of a known drug molecule to improve its activity and specificity. Fragment-
based design involves using small fragments of molecules to design larger drug molecules.
Overall, computational drug design has become an essential tool in the drug discovery and
development process, allowing researchers to rapidly identify and optimize potential drug
candidates. While there are still limitations to the accuracy of computational methods, the
field continues to evolve and improve, leading to new and innovative drug discoveries. Lastly,
it is important to note that computational drug design is not a replacement for traditional drug
discovery methods. Rather, it is a complementary tool that can help researchers to identify
potential and effective drug candidates. Moreover, the ultimate goal of future work is to utilize
a combination of computational approaches and experimental wet lab-based experiments
together to identify and develop safe and effective drugs for the treatment of various complex
diseases for the benefit of human beings and public health services.
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MDPI Multidisciplinary Digital Publishing Institute
DOAJ Directory of Open Access Journals
TLA Three-letter acronym
CADD Computer-aided drug design
SBDD Structure-based drug design
LBDD Ligand-based drug design
MD Molecular dynamics
ADMET Adsorption, distribution, metabolism, excretion and toxicity
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