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Abstract: Cerebral cavernous malformations (CCM) are developmental venous dysplasias which
present as abnormally dilated blood vessels occurring mainly in the brain. Alterations in vascular
biology originate from somatic mutations in genes regulating angiogenesis and endothelial-to-
mesenchymal transition. Vascular lesions may occur at any time and develop silently, remaining
asymptomatic for years. However, symptomatic disease is often debilitating, and patients are prone
to develop drug-resistant epilepsy and hemorrhages. There is no cure, and surgical treatment is
recommended only for superficial lesions on cortical areas. The study of lesion biology led to the
identification of different pathways related to disease onset and progression, of which RhoA/Rho-
associated protein kinase (ROCK) shows activation in different subsets of patients. This work will
explore the current knowledge about the involvement of ROCK in the many aspects of CCM disease,
including isoform-specific actions, and delineate the recent development of ROCK inhibitors for
CNS-targeted diseases.

Keywords: cerebral cavernous malformation; CCM; CNS; blood–brain barrier; ROCK; Rho-associated
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Cerebrovascular disease is a leading cause of mortality and disability worldwide,
and among the estimated 12 million new cases in 2019, nearly half were fatal [1]. Vas-
cular malformations are non-neoplastic anomalies which can appear in any part of the
body, but their cerebral forms pose great risk of mortality, especially if hemorrhagic or
neurological symptoms develop. Cerebrovascular anomalies are divided into four cat-
egories: arteriovenous malformations, which are shunting lesions linking arteries and
veins; cerebral telangiectasias, predominantly constituted by anomalous capillaries; and
cavernous malformations and developmental venous anomalies, comprising alterations of
venous origin [2]. Cerebral cavernous malformations (CCM) are one of the most prevalent
vascular anomalies in the central nervous system (CNS) and a significant cause of pediatric
strokes [3–5]. Its pathogenesis remains partially understood and its treatment relies only
on neurosurgical resection, if feasible. Therefore, the search for biological targets involved
in disease biology is of great importance for the management of CCM. Recently, the role of
the ras homolog family member A (RhoA)/Rho-associated coiled coil-containing protein
kinase (ROCK) pathway has been described in the development of neurologic and vas-
cular diseases, including those from cerebral vascular beds. However, no previous work
thoroughly addresses the recent advances in CCM research with focus on this pathway.
Therefore, this work summarizes the involvement of ROCK in CCM pathophysiology and
critically reviews the recent development of ROCK inhibitors targeting CNS diseases.

1. Cerebral Cavernous Malformations (CCM): Epidemiology, Clinical Manifestations,
and Current Therapy

Cerebral cavernomas, or CCM, are vascular dysplasias characterized by clusters of non-
shunting abnormally dilated blood vessels (“caverns”) with multilobulated mulberry-like
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appearance, which present low blood flow and are prone to thrombosis and hemorrhage
(Figure 1) [6–8]. These structures occur on the venous side of the capillary bed, which
makes CCM angiographically occult and only detectable by magnetic resonance imaging
(MRI) [6,8]. Despite being also named “hemangiomas” or “angiomas”, CCM lesions display
low proliferative activity and are classified as simple non-neoplastic venous malformations
by the International Society for the Study of Vascular Anomalies (ISSVA) [2,6,9,10].
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Figure 1. Neuroanatomical features of cerebral cavernous malformations. Commonly affected
locations in the central nervous system include cortex (Ia), “deep seated” areas (Ib), and brainstem
(Ic) and lesions may present as isolated or multiple (Id), depending on disease etiology. Lesion
microanatomy appears as mulberry-like structures of ectatic post-capillary vessels (II).

Recent studies indicate a prevalence in 2–9 individuals per thousand and an incidence
of 5–6 new diagnostics of CCM per million adults per year [11,12]. Prevalence shows a slow
increase with age, although pediatric cases constitute 25–35% of the population living with
CCM [4,5,9,11,12]. The disease is not restricted to any ethnic group, but some ethnicities
(Hispanics and Asians) may display higher prevalence rates [6,11]. Moreover, biological
sex [6,11,12], pregnancy [13,14], and cardiovascular risks [12,15,16] are not involved in
disease progression or symptom development.

Cavernous malformations are acquired lesions which originate sporadically or in a
familial pattern [6,8,11]. Familial CCM corresponds to approximately 20% of all affected
individuals, which usually present multiple scattered lesions [6,8,11,17]. This form is
associated with autosomal dominant inheritance of gene mutations affecting vascular
biology and shows incomplete penetrance, i.e., only a fraction of carriers develop the
disease [6,17]. On the contrary, sporadic CCM is found in up to 80% of patients and appears
as an isolated lesion or multiple lesions circumscribed to a restricted area, often in proximity
with developmental venous anomalies [6,8,17]. Its pathogenesis remains largely unknown,
but genetic origins also seem to be implicated [6,8,11]. Moreover, CCM lesions may develop
after radiation therapy or appear de novo during one’s lifetime [6,9,11,18–20].

Although usually restricted to the CNS, CCM can also appear in the meninges, nerves,
retina, and skin [6,21]. Within the CNS, 65–80% of lesions are found in supratentorial
areas, while brainstem, cerebellar, and intraspinal lesions are less prevalent and commonly
associated with the familial form [11,21–23]. With the advent of MRI, a remarkable increase
in incidental detection of silent cavernomas has been reported. Symptoms associated with
CCM appear in 10–80% of diagnosed cases, depending on the population studied [6,12,24].



Kinases Phosphatases 2023, 1 74

Patients previously treated with radiotherapy are also at greater risk of developing symp-
tomatic disease, due to a 6-fold increase in the prevalence of CCM in this population [11,20].

Neurovascular symptoms are often debilitating and sometimes life-threatening, rang-
ing from headaches, muscle weakness, and chronic pain to seizures, neurological deficits,
and hemorrhagic strokes. Giant cavernomas sized over 3 cm are seldom found and may
cause a substantial compressive mass effect on surrounding areas [21,25,26]. Symptoms
often manifest after the second decade of life, but can occur at any age [8,27]. Supratento-
rial CCM is commonly associated with seizures and usually evolve to epilepsy within 1
year, which is treated with anticonvulsant therapy or neurosurgery [11,18,25,28,29]. The
incidence of seizures is higher in pediatric CCM patients [18], and surgical excision may
prevent neurological defect expansion and psychosocial disabilities due to long-term an-
ticonvulsants [5]. Due to anticonvulsant teratogenicity, surgery is also recommended to
pregnant women with symptomatic CCM up to the second trimester or if severe symptoms
develop [13,14].

Intracerebral hemorrhage is the most severe consequence of the disease, which may
lead to fatal outcomes [4,11,30]. It is one of the main reasons for clinical presentation,
whether from individuals bearing familial or sporadic CCM, as both demonstrate similar
susceptibility [11,12]. Whenever possible, surgical resection is indicated for symptomatic
CCM lesions, as the risk of bleeding increases from 0.5–2% to 4.5–23% annually after a
previous hemorrhage [30]. Deep-seated and brainstem lesions are found in 10–20% of
cases and are associated with greater risk of first (2.3–6.8% per year) and re-hemorrhage
(21–62% per year) [11,30]. The vicinity of these lesions to eloquent structures causes great
concern, often leading to rapid clinical deterioration and life-threatening outcomes after
hemorrhage [11,30]. However, neurosurgical resection of these lesions is also a high-
risk procedure and may cause postoperative hemorrhages and transient or permanent
disabilities, not being generally recommended [11,17,30,31]. In these cases, the use of
radiosurgery or laser ablation for CCM removal has been reported [9,11,17,32–34], but their
efficacy remains uncertain.

2. Pathobiology of the Neurovascular Unit in CCM

The exact mechanism behind CCM pathogenesis remains uncertain, although aberrant
vasculogenesis has been suggested. Lesions present ectatic blood vessels in a complex
labyrinthic arrangement separated by loose connective tissue with but without intervening
brain parenchyma (Figure 2) [35]. At the cellular level, all components of the neurovascular
unit show distinct degrees of degeneration. An outer rim of reactive astrocytes is often
encountered encircling the cavernoma [25,35], although neither neuronal or glial cell pro-
cesses penetrate the lesions. Vessels are completely devoid of smooth muscle and pericytes
are rarely seen. Their luminal surface is composed by a single layer of endothelial cells with
defective intercellular junctions laying on a thin and discontinuous basal lamina [35,36].
Moreover, hemosiderin deposits indicating hemoglobin breakdown are commonly seen
around the lesion [25,37]. These alterations indicate a defective blood–brain barrier (BBB)
in CCM [36], which underlies their propensity to vasogenic edema and hemorrhage.
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Figure 2. Histological panorama of cerebral cavernous malformations. Lesions appear microscopi-
cally as dilated congested capillaries with simple endothelium and discontinuous basal membrane.
Endothelial cells proliferate and undergo endothelial-to-mesenchymal transition (EndMT), contribut-
ing to angiogenesis and extracellular matrix turnover. Loss of blood–brain barrier (BBB) proteins
and cell junctions lead to plasma protein leakage and microhemorrhages. Hemosiderin, a byproduct
of hemoglobin degradation, may be phagocytosed and cleared by macrophages or remain in the
extracellular matrix, causing perilesional astrogliosis. Myeloid (yellow) and lymphoid cells (blue)
also infiltrate lesions and participate in tissue remodeling, humoral responses, and thrombosis.

Under physiological conditions, nutrient supply to the CNS depends on transport across
the BBB, due to its reduced permeability to paracellular and transcellular routes [38,39]. Its
development and integrity results from neurovascular interactions in a series of time- and
spatially regulated signaling pathways [38]. Barriergenesis is preceded by angiogenesis, in
which new immature leaky capillaries are formed in response to trophic stimuli, mainly
vascular endothelial growth factor (VEGF) [38]. In fact, CCM lesions display elevated
protein levels of VEGF and higher angiogenic signaling [40,41], which stimulates the
disruption of cell–cell and cell–extracellular matrix junctions for transdifferentiation of
the quiescent endothelium into a highly proliferative and migratory phenotype [42]. This
process of endothelial-to-mesenchymal transition (EndMT) is considered pivotal for the
pathogenesis of CCM [43,44].

The first cues for elucidating its pathophysiology came from studies on familial CCM,
which shows autosomal dominant inheritance. Between 2000 and 2005, loss-of-function
germline mutations were identified in three genes, named Krev Interaction Trapped 1 ankyrin
repeat containing (KRIT1 or CCM1, HGNC:1573, OMIM:604214), Cerebral Cavernous Mal-
formation 2 scaffold protein (CCM2, HGNC:21708, OMIM:607929), and Programmed Cell
Death 10 (PDCD10 or CCM3, HGNC:8761, OMIM:609118), which contribute to roughly
60, 20, and 10% of the familial cases, respectively [11,45]. As germline mutations do not
explain the CNS selectivity, the detection of a second somatic mutation in lesions from
both familial and sporadic forms substantiated a “two-hit” hypothesis [8,11,46]. How-
ever, animal studies illustrated that CCM1-3 mutations do not correlate with human dis-
ease onset or progression [46–48], and the search for a “third hit” pointed to a series of
pathological processes, such as epigenetics [49–51], oxidative stress [31,52–54], inflamma-
tion [31,46–48], local hypoxia [47,55], defective autophagy [46,47,53], angiogenic signal-
ing [31,46,47], EndMT [31,46,47,56], deranged hemodynamics [46,47,55,57], and thrombo-
sis [55].
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More recently, somatic gain-of-function mutations in genes Mitogen-Activated Protein
Kinase Kinase Kinase 3 (MAP3K3, HGNC:6855, OMIM:602539) and Phosphatidylinositol-4,5-
bisphosphate 3-Kinase, Catalytic subunit α (PIK3CA, HGNC:8975, OMIM:171834) have also
been identified in sporadic and familial CCM as triggers for pathogenesis and disease
progression, respectively [48,58–60]. The activation of Mitogen-Activated Protein Kinase
Kinase Kinase 3 (MEKK3), the product of the MAP3K3 gene, is also observed in endothelial
cells bearing loss-of-function mutations in CCM1-3 [56,61]. This enzyme initiates a phos-
phorylation cascade, which activates transcription factors Krüppel-like factor-2 (KLF2) and
-4 (KLF4) and ultimately mediates the endothelial response to angiogenic stimuli [46,56,61].
Among the pathways under transcriptional control by KLF2/KLF4, RhoA and its effector
ROCK regulate contractility, adhesion, migration, and proliferation in CCM1 knockdown
endothelial cells by modulating the structure of actomyosin filaments [46,61,62]. Endothe-
lial cells from CCM lesions of patients and animal models display higher activity of the
RhoA/ROCK pathway, which has been associated with increased disease progression and
incidence of bleedings [46,63,64].

Given the current lack of pharmacological treatment for reducing disease burden, this
pathway became attractive as a target for attenuating CCM development and hemorrhages.
The inhibition of RhoA by statins is currently under investigation in an ongoing Phase I/II
clinical trial (NCT02603328) [65]. This approach is based on the inhibition of geranylgeranyl
pyrophosphate synthesis in the mevalonate pathway, the primary target of the statins, block-
ing RhoA prenylation and its membrane anchoring for ROCK activation [66]. Although
this “pleiotropic” action of statins is commonly associated with beneficial effects, it is worth
noting that it is not their primary intended use. Dosage used on the AT CASH EPOC trial
would begin at 80 mg, the highest dose available for the control of dyslipidemia. Therefore,
the increased risk of side effects, especially hemorrhagic strokes [66–69], generates concerns
regarding the continuous use of high-dose statins, which could outweigh their clinical
utility for CCM. In addition, the inhibition of protein prenylation affects not only RhoA
but all other membrane-anchored proteins [36,69]. As endothelial cell biology involves a
fine-tuning of GTPase activities [70,71], widespread inhibition of protein prenylation could
potentially counterbalance the intended positive effects of RhoA inhibition.

To circumvent the limitations of statins, the inhibition of ROCK could provide enough
efficacy and selectivity for the treatment of CCM, since its activation acts as a convergence
point of many signaling pathways involved in cardiovascular diseases. In fact, the kinase
inhibition approach outperforms statins in reducing disease burden in experimental models
of CCM [72,73], indicating the usefulness of this pharmacologic strategy.

3. The Role of Rho-Activated Coiled Coil-Containing Protein Kinases (ROCK)
in CCM

The Rho-associated coiled coil protein kinases (ROCK) are the most studied effectors
of the small GTPase RhoA, and exist as two isoforms: ROCK1 (ROKβ or p160ROCK),
encoded by gene ROCK1 (HGNC:10251, OMIM:601702) first isolated from human platelet
extracts [74]; and ROCK2 (ROKα or Rho-kinase), encoded by gene ROCK2 (HGNC:10252,
OMIM:604002) and identified in rat brain extracts [75]. Both ROCK isoforms display
similar tridimensional structures, with a N-terminal kinase domain and a C-terminal
pleckstrin homology domain joined by a coiled coil region, which contains the Rho-binding
domain [76]. Proteins are found as dimers, and enzyme activity is independent of previous
(auto)phosphorylation [77–79]. Isoform homology reaches 65% along the entire primary
sequences and surpasses 90% inside the substrate binding site [76,80]. Although both
isoforms are ubiquitous, ROCK1 predominates in the kidney, liver, and hematopoietic
organs, while ROCK2 shows greater abundance in the heart and CNS [80,81]. Gene
knockout studies indicate non-redundant activities performed by each isoform [82–84].

The activity of direct ROCK inhibitors has been evaluated in mouse models of familial
CCM, developed by associating of Ccm1-3 hemizygous deletion with sensitization to ge-
netic instability caused by the knockout of Tumor protein p53 pathway corepressor 1 (Trp53,
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HGNC:43652, OMIM:191170) or MutS Homolog 2 (Msh2, HGNC:7325, OMIM:609309). When
administered orally for 4 months to Ccm1+/– Msh2–/–, Ccm2+/– Trp53–/–, and Ccm3+/– Trp53–/–

mouse models, fasudil (100 mg/kg/day) increased survival and reduced the density and
severity of cerebral lesions [72,73,85]. In addition, fasudil also attenuated the perivascular
hemosiderin deposition, indicating a reduced tendency of microhemorrhages, and B lym-
phocyte infiltration, which demonstrates reduced vessel inflammation [72,73]. In the brain,
fasudil attenuated the phosphorylation of ROCK substrates in both lesion endothelium and
perivascular leukocytes [72,73]. Although it showed promising efficacy, fasudil is a weak
ROCK inhibitor and does not show selectivity towards any ROCK isoform [86]. Therefore,
further studies using Rock1 and Rock2 haploinsufficient mice were designed to elucidate
the role of each isoform in familial CCM. These experiments indicated a higher beneficial
effect of knocking down Rock2 than Rock1 on disease prevalence, lesion density, and iron
deposition [87].

Despite the results obtained with haploinsufficient mice, experiments conducted with
a mildly ROCK2-selective fasudil derivative, (R)-BA-1049 (100 mg/kg/day), resulted in
minimal improvements in disease burden when compared to fasudil at the same oral
dose and treatment scheme [87]. These outcomes indicate, at least, how incomplete the
understanding of ROCK biology is in the physiopathology of CCM. Therefore, this and
the next section will address the current knowledge on ROCK involvement in the many
aspects of CCM, including isoform-specific actions, and the development of CNS-targeted
inhibitors.

3.1. Endothelial Cell and Blood–Brain Barrier Function

A marked hyperactivation of ROCK is observed in the endothelium of both sporadic
and familial CCM lesions, indicating its potential role as a therapeutic target [36]. The down-
regulation of CCM proteins is associated with increased ROCK activity in these cells, ulti-
mately increasing BBB permeability [88]. At intercellular junctions, CCM proteins assemble
in a macromolecular complex which inactivates RhoA by recruiting RhoGTPase-activating
protein 29 (ARHGAP29) [45,62,89]. Physical interaction between CCM1 and CCM2 at the
membrane stimulates RhoA degradation by SMAD-specific E3 ubiquitin protein ligase 1
Smurf1, further reducing RhoA/ROCK activation. The CCM complex can promote RhoA
degradation by SMAD-specific E3 ubiquitin protein ligase 1 (SMURF1)-mediated ubiqui-
tinylation [45] and inhibition of MEKK3/KLF-2/4 gene expression [18,46,61,90]. Moreover,
it also blocks β1-integrin signaling through integrin cytoplasmic domain-associated protein-
1 (ICAP-1), resulting in further RhoA/ROCK inhibition [62,89,91]. Finally, CCM3 protein
can also engage in another complex, striatin-interacting phosphatase and kinase (STRIPAK),
reducing ROCK activity independently from CCM1 and CCM2 [92].

As a consequence of the referred pathways, loss-of-function mutations in any of
the CCM genes result in strong ROCK activation, leading to stress fiber formation and
actomyosin contraction, which ultimately destabilizes cell–cell junctions [45,46,55,62,93].
In brain endothelial cells, the phosphorylation of occludin and claudin-5 by ROCK was
reported and contributes to disassembling tight junctions [89]. The influence of the CCM
protein complex on each ROCK isoform was recently addressed and revealed a predomi-
nance of ROCK1 on inducing transcellular permeability in CCM-depleted endothelial cell
cultures [83].

The CCM complex also stimulates Notch signaling, promoting senescence and re-
sistance to oxidative stress while inhibiting EndMT and angiogenesis [45]. In contrast,
disassembling the complex stimulates β-catenin nuclear translocation and promotes the
expression of EndMT genes [45,94]. In microvascular endothelial cells, EndMT pathways
initiated by transforming growth factor (TGF)-β, SNAIL, and SLUG converge to ROCK
activation and its inhibition may contribute to significantly reducing endothelial cell phe-
notype switching [80,95]. Additionally, CCM lesions display a mosaic pattern, which
indicates lesion growth and also depends on recruiting wild-type endothelial cells after
clonal expansion of somatic mutants [46,96,97]. Recently, ROCK isoforms were also at-
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tributed different roles in lesion progression: while ROCK 1 dominates the expression of
proteases for extracellular matrix turnover and invasion, ROCK2 preferentially regulates
the chemoattraction of wild-type endothelial cells and leukocytes [84].

Although the influence of CCM proteins on ROCK activation seems pivotal for fa-
milial CCM, this kinase can also influence other aspects of cavernoma endothelial cell
biology. In the luminal surface of CCM lesions, the accumulation of von Willebrand factor
(vWF) is reported and involves RhoA/ROCK pathway [55]. In addition, intracavernous
thrombosis also indicates the susceptibility of CCM endothelium to procoagulant proteases,
which also stimulate BBB disruption by protease-activated receptor (PAR)/RhoA/ROCK
signaling [55].

Vascular inflammation is also implicated in endothelial dysfunction, and alterations
in gut microbiome suggested the influence of immune responses on disease course [98].
Activation of toll-like receptor 4 (TLR4) stimulates lesion progression and hemorrhage in
rodent models of CCM, while its expression is correlated with increased disease burden in
humans [47,55,99–101]. In fact, symptomatic CCM patients express higher TLR4 content in
circulating lymphocytes [101], which indicates a potential predictive use of this biomarker
for risk stratification. In the CNS, the activation of endothelial TLR4 receptors also causes
the loss of tight junctions by means of RhoA/ROCK2 signaling [102,103].

Vascular lesions of CCM are also prone to blood stasis and disturbed flow, and the
activation of endothelial ROCK2 by these factors may also contribute to increased BBB
permeability, possibly by EndMT pathways [104–106]. Moreover, the use of ROCK in-
hibitors or a small-interfering RNA-targeting ROCK2 also abolished hypoxic-stimulated
proliferation of microvascular endothelial cells without compromising viability, indicating
that ROCK may also control phenotypic changes under ischemia [107].

Despite both ROCK isoforms inducing the expression of leukocyte adhesion factors
in endothelium, ROCK2 is reported to control endothelial cytoskeletal remodeling during
diapedesis [108]. However, unselective ROCK inhibitors revert these alterations and
preserve BBB integrity both in vitro and in vivo [72,73,109,110].

3.2. Leukocytes and Inflammation

Vessel inflammation is increasingly recognized as a major player in CCM pathology,
and altered plasma cytokines are found in different cohorts of symptomatic and asymp-
tomatic CCM patients and rodent models [55,100,111–113]. Inflammatory signals from
the neurovascular unit have recently been pointed as driving elements of lesion growth
and maturation, by attracting hematopoietic cells and stimulating thrombosis [55,114].
Advanced lesions show perivascular leukocytes within the intercavernous septa, of either
myeloid (macrophages, neutrophils) or lymphoid origin (plasma cells, B and T lympho-
cytes) [55,101,114–116]. Therefore, immune cell activation is also implicated in CCM disease
progression.

The activation of ROCK enhances leukocyte recruitment to the vasculature by mod-
ulating cytoskeleton remodeling, cell adhesion. and invasiveness [117–120], which are
favored by BBB disruption. The inhibition of both ROCK isoforms has demonstrated anti-
inflammatory effects on preclinical models of cardiovascular and autoimmune diseases
by modulating leukocyte migration and activation [117,121,122]. However, the selective
knockdown of ROCK1 in vivo enhances macrophage migration, indicating adhesion, and
diapedesis are predominantly mediated by ROCK2 [122,123]. Increased ROCK content in
circulating leukocytes is also a predictor of cardiovascular event risk, including hemor-
rhagic stroke, in cardiovascular diseases [124,125].

In addition to diapedesis, ROCK also regulates T cell activation, proliferation, and
cytokine production [117,118,126,127]. In both human and rodent CCM, elevated numbers
of activated T lymphocytes are found around lesions [116], further demonstrating the
importance of immune responses in this disease. Moreover, symptomatic CCM patients
display a higher Th17/Treg ratio, indicating the predominance of a pro-inflammatory T
cell phenotype in advanced disease [101]. Both ROCK isoforms induce biased responses
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in T cells, as ROCK1 promotes their polarization towards Th2 and ROCK2 to Th1/Th17
phenotypes [117,122,127,128]. The inhibition of ROCK2 also blocks Signal Transducer
and Activator of Transcription (STAT)-1 and -3 and activates STAT-5, thus favoring Treg
polarization over Th1/Th17, and locally controlling immune cell activation [129,130].

Disease progression also involves humoral responses, with the deposition of im-
munoglobulins around vascular lesions and the infiltration of B lymphocytes [100,115,116].
Although perivascular B cell density is proportional to endothelial ROCK activity, the role
of ROCK on these cells remains poorly understood. Although RhoA is essential for B cell
survival and development, this effect is not ROCK-dependent [126]. In contrast, ROCK1 is
implicated in antigen internalization through B cell receptors [126], and enzyme inhibition
can potentially inhibit autoimmune responses in the cavernoma milieu.

The enzymatic inhibition of ROCK impairs monocyte adhesion to endothelial cells
and reduces their migration, proliferation, and differentiation [122,131]. Additionally, it
also stimulates the phagocytosis of apoptotic cells by macrophages [132], which serves
as a signal for polarization towards a pro-resolutive anti-inflammatory (M2) phenotype.
However, ROCK influence on macrophage polarization seems context-dependent, probably
by dependence on ROCK isoform, since ROCK1 promotes the inflammatory M1 while
ROCK2 promotes the M2 phenotype in models of inflammation [122,133].

The accumulation of neutrophils and dendritic cells in the vicinity of CCM lesions
was recently reported in a mouse model with brain endothelial cell-specific CCM3 knock-
out [114], although their exact role in lesion development is currently unaddressed. Neu-
trophils contribute to thrombus formation inside vessels by releasing neutrophil extracellu-
lar traps (NET) [55], which are directly dependent on ROCK activation, as well as migratory
activity, adhesion to endothelium, and phagocytosis [118,134–138].

3.3. Platelets and Thrombosis

Despite the incidence of thrombi inside caverns being long known in CCM pathology,
only recently has the importance of platelets in disease development been investigated.
Patients undergoing anticoagulant therapy are reported to develop intracranial hemor-
rhages at lower rates in different cohort studies [57,139,140]. The formation of intralesional
thrombi is stimulated by an interplay of anti- and procoagulant factors secreted by en-
dothelial cells, mainly due to low shear stress [55]. The role of ROCK on the activation
and aggregation of human and rodent platelets in response to agonists or proteases is
well known [141–143] and is mainly mediated by ROCK2, as indicated by platelet-specific
knockout models [144]. Additionally, the pharmacological inhibition of ROCK reduces the
activity of NADPH oxidase in activated human platelets [141], reducing superoxide synthe-
sis and increasing nitric oxide bioavailability, which contributes to alleviating endothelial
dysfunction inside lesions.

3.4. Activated Glia and Epileptogenesis

Seizures are the most common symptoms of CCM, but only 50% of patients become
seizure-free after 1 year of pharmacotherapy [25,28]. Epileptogenesis is thought to origi-
nate in the outer rim of reactive astrocytes located around the lesion periphery [25,145],
possibly by the metabolic regulation of excitatory neurotransmitter release or by reducing
adenosine content in the area [25]. The effects of ROCK inhibition in neuron cell biology are
known, with ROCK1 predominating in morphological processes and ROCK2 preferentially
regulating synaptic plasticity [146]. Although our knowledge on the involvement of ROCK
in epilepsy is still incipient, some reports indicate the usefulness of ROCK inhibitors on
patients and experimental models of focal [147] and generalized seizures [148,149].

Defective BBB exposes surrounding astrocytes to pro-epileptogenic mediators, such
as thrombin [150] or albumin [25]. Thrombin-stimulated astrocytes display a ROCK-
dependent reduction in glutamate uptake [150], which contributes to increased excitotoxic-
ity in neurons surrounding the CCM lesion. Recently, an increase in ROCK2 expression has
been observed in the astrocytes of a rodent model of epilepsy and correlated with increased
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astrocytic proliferation [149]. The inhibition of ROCK2 would not only control glutamate
dysmetabolism but, additionally, also exert neuroprotection, as seen in neuron cultures
exposed to kainate-induced excitotoxicity [151] and in hippocampal neurons of epileptic
mice [152].

Although many aspects of CCM physiopathology have been recently elucidated, the
contribution of the RhoA/ROCK pathway to this disease remains poorly understood. Its
activation results from multiple signals, but the resulting effects are context-dependent
and isoform-specific to each cell type involved. The inhibition of ROCK may not only
slow lesion growth but also minimize the development of symptoms, such as seizures and
hemorrhages, and thus can be considered a potential pharmacological target for CCM. Thus,
the use of CNS-targeted ROCK inhibitors will provide further insights on its contribution
to the disease and guide the discovery of new drugs for cavernoma management.

4. Recent Development of CNS-Targeted ROCK Inhibitors

Intracellular ROCK signaling plays a vital role in the morphogenesis and functions
of the CNS, controlling processes such as axonogenesis, neuronal migration, and synaptic
plasticity [153]. Since its kinase activity is enhanced in several neurologic and neurovascular
pathologies, ROCK inhibition is a relevant strategy for treatment of these disorders and
is shown to provide significant improvements in experimental models [146,154]. The
development of new ROCK inhibitors for this purpose has attracted crescent interest of
drug discovery companies, as indicates the number of applied patents worldwide between
January 2003 and December 2022 (Table S1).

Retrieved patents displayed a constant annual rate of five new applications in the
last 20 years, indicating the development of CNS-targeted ROCK inhibitors displaying
continuous expansion (Figure 3A). In addition, this field has attracted continuous interest
from pharmaceutical companies as, each year, nearly half of the applicants identified
correspond to newcomers with a first patent in this field (Figure 3B,C). However, neurologic
indications in these documents are rarely accompanied by evidence of adequate efficacy
due to a lack of preclinical testing in experimental models. It must be emphasized that
efficacy for treating CNS diseases is only obtained by proper balance of pharmacodynamic
and pharmacokinetic properties [155], and is more precisely evaluated in animal models
than directly in cell cultures. Efforts towards developing CCM-targeted ROCK inhibitors
emerged more recently but also lack solid experimental data, with contributions from US
companies BioAxone Biosciences and Cervello Therapeutics (Table S1).
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Figure 3. Analysis of published patents of ROCK inhibitors with indications for neurological dis-
eases available from the Cortellis Drug Discovery Intelligence database between January 2003 and 
December 2022. (A) Cumulative time evolution of published patents. (B) Annual rate of applicant 
companies identified. (C) Annual rate of new applicant companies at time of first patent application. 

In contrast to the analyzed patents, the scientific literature contains robust evidence 
of adequate efficacy in animal models, although the diversity of ROCK inhibitors remains 
highly unexplored. The examples found are presented in Table 1.  

Figure 3. Analysis of published patents of ROCK inhibitors with indications for neurological dis-
eases available from the Cortellis Drug Discovery Intelligence database between January 2003 and
December 2022. (A) Cumulative time evolution of published patents. (B) Annual rate of applicant
companies identified. (C) Annual rate of new applicant companies at time of first patent application.

In contrast to the analyzed patents, the scientific literature contains robust evidence of
adequate efficacy in animal models, although the diversity of ROCK inhibitors remains
highly unexplored. The examples found are presented in Table 1.
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Table 1. ROCK inhibitors under preclinical development for neurological and neurovascular diseases.

Compound
Affinity (pKD) Activity (pKI) BBB Score

[155]
Detect.
CNS?

CNS Testing

ROCK1 ROCK2 Ref. ROCK1 ROCK2 Ref. Disease Animal Model Ref.

Non-selective ROCK inhibitors (isoquinolines)

Fasudil (1)
6.04;
7.29

6.03;
7.34

[86,156]
6.46 7.02 [157] 4.90 Yes

[158]
fCCM Ccml+/–Msh2–/– mice [72,85]
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Table 1. Cont.

Compound
Affinity (pKD) Activity (pKI) BBB Score

[155]
Detect.
CNS?

CNS Testing

ROCK1 ROCK2 Ref. ROCK1 ROCK2 Ref. Disease Animal Model Ref.

(R)-BA-1049 (4) 6.96 7.23 [156]
6.19;
5.47

6.49;
6.84

[156] 4.70 Yes
[156]

fCCM Ccml+/–Msh2–/– mice [87]
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Table 1. Cont.

Compound
Affinity (pKD) Activity (pKI) BBB Score

[155]
Detect.
CNS?

CNS Testing

ROCK1 ROCK2 Ref. ROCK1 ROCK2 Ref. Disease Animal Model Ref.

ROCK2-selective inhibitors

Belumosudil (8) 5.13 7.19 [156] 4.62 6.98 [190] 2.18
Yes

[191]

I/R C57BL/6 mice [191]
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* Values estimated using Cheng–Prusoff equation. ** Values correspond to pCI50. Abbreviations: AD, Alzheimer’s disease; AE, autoimmune encephalomyelitis; ALS, amyotrophic lateral
sclerosis; BBB, blood–brain barrier; CI, cerebral injury; CNS, central nervous system; fCCM, familial cerebral cavernous malformation; I/R, cerebral ischemia/reperfusion; MS, multiple
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Fasudil (1) is the prototypic ATP-competitive ROCK inhibitor of the isoquinoline sul-
fonamide type (Table 1), which is non-selective towards ROCK isoforms and is approved
for the treatment of cerebral vasospasm in Japan [193]. This compound is the only one
currently undergoing Phase II clinical studies for neurologic disorders, including amy-
otrophic lateral sclerosis (NCT03792490; NCT05218668), tauopathies (NCT04734379), and
dementia (NCT04793659). In addition, 1 displayed beneficial effects in animal models
of Alzheimer’s disease [159,194], depression [162], acute ischemic stroke [163], cerebral
ischemia [195], spinal cord injury [196], schizophrenia [158], multiple sclerosis [170], and
epilepsy [147] (Table 1). Furthermore, studies with 1 were also performed in murine models
of CCM [72,85], demonstrating significant reduction in lesion burden, inflammation, and
hemorrhage.

Despite being brain-penetrant and displaying efficacy in neurologic disease models,
pharmacologic effects observed after an oral dose of 1 are attributed to its metabolite, hy-
droxyfasudil (2), generated by first-pass hepatic metabolism [197]. Compound 2 has similar
affinity and BBB permeability to 1, but displays improved inhibitory activity and kinome
selectivity towards ROCK, although it is still not isoform-selective (Table 1). In addition, 2
also has improved pharmacokinetics when compared to 1, including a longer half-life and
oral bioavailability [158]. Treatment with 2 provided improvements in rat models of age-
or neurodegenerative-related memory dysfunctions [173], cerebral ischemia [175,176], and
stroke [174].

Structural analogs of 1 are also under investigation in experimental models of CNS
disorders. FSD-C10 (3) was designed by bioisosteric substitution in 1, resulting in the
replacement of homopiperazine by pyrrolidine, and by the introduction of a ramification
in ring position 2, previously reported to enhance inhibitory activity [198]. Its higher
lipophilicity enhanced the predicted brain permeability compared to 1, although its phar-
macokinetics in CNS tissues remains unknown. Its efficacy was investigated in rodent
models of multiple sclerosis [178], Alzheimer’s disease [179], and neuroinflammation [180]
and, even though beneficial effects were observed, it does not outperform 1.

The molecular hybridization of 1 and Y-27632 (5) generated compound (R)-BA-1049
(4), which reduces CCM lesion burden, inflammation, and microhemorrhages in sensitized
mouse models [87]. It displays similar affinity for both ROCK isoforms and mild ROCK2-
selective activity, similar to 5 (Table 1). A drop in lipophilicity due to the substitution of
primary amine for the secondary amino group of 1 reduced the predicted CNS permeability
of 4 (Table 1) and reflected a lower peak concentration in mouse brains after intravenous
administration (5.5–110 ng/g tissue for 5 mg/kg of 4 vs. 250 ng/g tissue for 10 mg/kg of
1) [156,158]. Moreover, 4 is also metabolized to an active 1-isoquinolone metabolite, which
is far less brain-penetrant than 2, suggesting the existence of a threshold of polar group
density or polar surface area for BBB permeation of isoquinolonesulfonamides. These
differences in pharmacokinetics may explain the similar in vivo pharmacologic profile
between 4 and 1, despite the improved inhibitory activity of the first [72,73,85].

As CNS diseases, such as CCM, are often multifactorial in origin, the use of a mul-
titarget approach has been widely explored in CNS drug development. The molecular
hybridization of 1 and antioxidant α-lipoic acid led to compound L-F001 (6) [182], which
was also evaluated for Alzheimer’s [183] and Parkinson’s diseases [184] (Table 1), demon-
strating antioxidant and anti-inflammatory effects in CNS cells. The increased lipophilicity
of 6 improved its brain penetration 5-fold relative to 1, but did not significantly modify its
elimination kinetics from rat plasma, as indicated by elimination half-life (t1/2): 1.3 h for 6
(30 mg/kg p.o.) versus 2.34 h for 1 (6 mg/kg p.o.) [182,199].

Two additional cases of pan-ROCK inhibitors with distinct hinge-binding motifs other
than isoquinoline were also tested in animal models with neurologic disturbances. Y-27632
(5), a 4-aminopyridine derivative, presented beneficial effects in experimental models of
spinal cord and cerebral injuries [185,188] and cognitive impairments [187] (Table 1). Its BBB
Score (4.45) was comparable to that of 1 (4.90), suggesting adequate CNS penetration, while
its elimination kinetics in mice (t1/2 1.67 h at 1 mg/kg i.v.) were superior to 1 (t1/2 0.02 h at
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1 mg/kg i.v.) [200], probably because of the distinct metabolic routes involved. However,
in rat models of epilepsy [148] and brain injury [177], the intraperitoneal administration of
5 showed beneficial actions comparable to 1, indicating such pharmacokinetic differences
are species-dependent.

To date, the aminofurazan compound GSK269962 (7) is the most potent ROCK inhibitor
tested in neurological conditions (Table 1). Compound 7 reduced depressive behaviors in
corticosterone-injected female rats after intra-arterial administration [189], although its very
low BBB Score (<4) suggests poor brain penetration. Whether this reflects ROCK inhibition
by an active metabolite or direct action of 7 in CNS areas lacking a BBB, i.e., pituitary gland
or area postrema, remains to be investigated.

Although a predominance of ROCK2 compared to ROCK1 was initially reported
in brain tissues [201], recent data demonstrate that both isoforms are relevant to CNS
diseases [202–204], since they perform non-redundant functions [82–84]. Belumosudil (8)
is the only selective ROCK2 inhibitor approved for clinical use in graft-versus-host disease
and is currently investigated in clinical trials of inflammatory conditions [205]. Despite
no clinical trials in neurological disorders being reported, evidence from rodent models
support a neuroprotective effect of 8 in stroke [191,206] and brain injury [207], which
parallels non-selective ROCK inhibitors (Table 1). However, 7′s lower BBB Score indicates
that it hardly permeates the BBB and, therefore, its mechanism of action on the CNS is
not completely elucidated. Although these data support a prominent ROCK2 activation
in these conditions, it is not sufficient for excluding the contribution of ROCK1 to disease
onset or progression. Moreover, it is not known if ROCK1 could substitute for ROCK2
after long-term isoform-selective inhibition. Carefully designed molecular biology studies
are currently beginning to untangle the biological role of each isoform in neurovascular
diseases, and the development of selective pharmacological probes must support these
investigations. Finally, comparative studies with isoform-selective BBB-permeant inhibitors
are of utmost importance for addressing these issues in vivo in models of CNS diseases.

5. Concluding Remarks

The management of CCM has greatly evolved over the last decades. Despite the
advances towards understanding the mechanisms of pathogenesis and progression, this
disease remains associated with great burden and risks of mild to severe neurological
deficits. More importantly, mortality is correlated with intracerebral hemorrhages, which
cannot be avoided but must be simply treated as CCM lesions become active. Today, the
only therapeutic option for treatment is neurosurgical resection, but its feasibility depends
on lesion location, size, and frequency of hemorrhage. Moreover, neurosurgical procedures
are not devoid of adverse outcomes, with risks of transient to permanent neurological
impairment and mortality.

Currently, there is no consensus or guideline for the pharmacological treatment of
CCM, and clinical management is restricted to conservative therapy or derives from anec-
dotal off-label use of cardiovascular drugs. Despite being used for treating severe infant
hemangiomas and showing positive effects in case reports and retrospective studies in
CCM [57,208–210], nonselective β-blocker propranolol did not alleviate the frequency
of intracerebral hemorrhages in a recent prospective randomized Phase II clinical trial
(NCT03589014) [211]. The use of statins as inhibitors of the RhoA/ROCK pathway is also
reported to be beneficial for treating CCM, although simvastatin did not improve hemor-
rhage rates but instead increased white matter permeability in unaffected brain areas [68].
A randomized Phase I/II clinical trial of high-dose atorvastatin in CCM is expected to be
completed by 2024 (NCT02603328) and will ascertain its utility for managing hemorrhage
outcomes [65].

Not only is the knowledge about CCM pathogenesis and clinical evolution incomplete,
but the lack of validated preclinical models for testing new drug candidates also contributes
to disparities in translational research. Despite its low cost and easier management, Ccm-
mutated zebrafish proved insufficient for studying possible treatments, as these animals do
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not develop cerebrovascular disease phenotypes [36]. As Ccm1-3 knockout and knockdown
strategies did not produce viable models in mice, sensitized, conditional, and inducible
genetic models were developed for studying familial CCM, all of them with advantages and
shortcomings [36]. Additionally, currently, no model of sporadic CCM has been reported.
As this disease displays low prevalence, preclinical model development and validation
should be addressed as soon as possible for minimizing patient enrollment and exposure
to inefficacious drug candidates.

The utility of ROCK inhibitors has been evaluated in mouse models of familial CCM,
reducing lesion density and dimensions and their tendency to bleeding [72,73,85,87]. How-
ever, the scientific literature still lacks a definite mechanism for the beneficial effects ob-
served, including essential issues as the distinct roles of ROCK isoform in the cell types of
the neurovascular unit. Medicinal chemistry work on developing BBB-permeant isoform-
selective ROCK inhibitors has greatly advanced since the approval of fasudil [146,212],
and a recent contribution by our group identified new ROCK inhibitors based on the
sulphonylhydrazone motif, such as LASSBio-2065 [212]. The structural optimization of this
compound for achieving ROCK2 selectivity and improved pharmacokinetics is currently
under investigation and must prove essential not only for providing inhibitor probes for
addressing mechanistic gaps but also to develop new treatments for this disease.

6. Data Collection and Analysis

The data search and collection on CCM clinical features and pathobiology (Section 2)
were performed on the PubMed database, using the keywords “cavernous malformation”,
“cavernoma”, and “CCM”, using “CNS”, “nervous”, “brain”, and “cerebral” as filters
and restricting our analysis to documents published between 2010 and 2022. Data about
the role of ROCK in neurovascular tissues and cells (Section 3) were obtained from both
PubMed and Scopus databases by searching “ROCK” or “Rho kinase” in both title or
abstract and applying filters for each cell type (endothelium, leukocytes, platelets, and glial
cells). Those searches with more than 50 results were further filtered with CNS-related
terms and publishing year between 2010 and 2022.

Articles and patents on ROCK inhibitors (Section 4) were retrieved from the Cortel-
lis Drug Discovery Intelligence (CDDI) database (Clarivate, https://www.cortellis.com/
drugdiscovery/home, accessed on 3 December 2022) by searching “ROCK” and “Rho-
Associated Protein Kinase” and filtering results by assigned targets, including “Rho associ-
ated coiled-coil containing protein kinase 1 (ROCK1)”, “Rho associated coiled-coil contain-
ing protein kinase 2 (ROCK2)”, or “Rho kinase (ROCK) (nonspecified subtype)”. The in-
hibitor search was further refined by filtering assigned conditions with CNS disease-related
available terms, i.e., “Neurological disorders”, “Cerebrovascular disorders”, “Parkinson
disease”, etc. Finally, only those inhibitors with available inhibitory activity on both iso-
forms and reported action in vivo in animal models were selected for analysis. Data on
affinity and activity were taken only from documents reporting paired experiments in both
ROCK isoforms, and inhibitors were classified as isoform selective if ∆pKI ≥ 2.00. BBB
Scores were calculated as described elsewhere [155]. Preclinical testing for each inhibitor
was obtained in an “Experimental pharmacology” search in CDDI. Similarly, patent doc-
uments were collected from CDDI and manually examined for clinical indications. Only
those patents or patent applications published in 2003–2022 and containing indications for
CNS diseases were included in our analysis.
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