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Abstract: Monitoring of peatlands is an important conservation issue. We investigated communities
of soil mites (Acari: Oribatida, Mesostigmata) inhabiting a relatively undisturbed European boreal
mire characterized by a mosaic of oligotrophic and meso-eutrophic areas. We assess the potential of
using remote sensing approach as a mapping and predictive tool for monitoring productivity and
arthropod biodiversity in a peat bog. In georeferenced plots, Acari biodiversity, water table level,
water pH and plot productivity class on the oligotrophic-eutrophic gradient were recorded. Data
from the Landsat 8 OLI sensor were used to calculate several spectral indices known to represent pro-
ductivity and surface moisture gradients in terrestrial ecosystems. We then explored the relationship
between spectral indices, environmental gradients and biodiversity of mites. We found that several
spectral indices were significantly and consistently correlated with local environmental variables and
biodiversity of soil mites. The Excess Green Index performed best as a predictor of plot trophic class
on the oligotrophic-eutrophic gradient and showed significant relationship with Oribatida diversity
in 2016. However, following hot summer in 2019, there was no significant relationship between
abundance and species richness of Oribatida and remotely sensed data; there was a weak correlation
between abundance of Mesostigmata and spectral indices which represent surface moisture gradient
(e.g., Normalised Difference Moisture Index). We discuss advantages and challenges of using spectral
indices derived from remote sensing imagery to map biodiversity gradients in a peatland.

Keywords: peatlands; fauna; biodiversity; oribatid mites; Mesostigmata; remote sensing; Landsat 8
OLI; productivity

1. Introduction

Ombrotrophic (rain-fed) peat bogs are characterized by high water table, acidic
nutrient-poor conditions and dominance of Sphagnum mosses and occur in the boreal
and temperate zone on most continents [1]. Worldwide, peatland environments are impor-
tant as providers of ecosystem services and as long-term carbon storage reservoirs [2–4].

The plant communities of peat bogs provide information on ecosystem processes such
as primary production and carbon sequestration and are sensitive indicators of environ-
mental change [5–11]. Based on plant communities, bog environments are usually classified
along the oligotrophy–eutrophy ‘productivity’ gradient [12]. Although not strictly a nutri-
ent gradient, as plant communities reflect predominantly the gradient of pH values, the
oligotrophy–eutrophy gradient frequently also reflects the availability of nutrients [13,14].
If a bog receives an additional nutrient input, either globally in the form of nutrient pol-
lution from atmospheric sources, or locally from mineral-rich ground water seepage or
from surface streams, the resulting areas of nutrient enrichment are characterized by higher
pH and characteristic changes in vegetation [15]. The second major gradient in bogs is the
ground water level, driven by the micro-topography of hummocks and hollows, which
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gives bogs their characteristic patterning and which is linked to hydrology and carbon
sequestration [1,16]. Both productivity and microtopography exert significant controls on
patterns of plant and animal diversity in peat bogs.

Bog environments are a habitat for many species; among invertebrates which are
abundant in peat bogs are mites (Arthropoda: Acari). Mite taxa such as Oribatida are well
studied, abundant and diverse, and are known to respond to a wide range of environmental
and anthropogenic stressors in bogs and elsewhere [17–25]. At a site level, the diversity
patterns of mites are influenced by the same gradients that are recognized as richness
drivers for broader groups of bog organisms, such as pH, nutrient availability and ground
water level [25,26].

Peat bogs worldwide have been affected by nutrient pollution, peat extraction, drainage
and other types of development, leading to degradation and loss of biological diver-
sity [2,3,27]. Consequently, monitoring of environmental conditions and productivity of
peatlands is important. Due to access difficulties and expense of ground sampling in remote
peat bogs, coupled with the need for spatially-explicit landscape-scale information, various
remote sensing methods have been used for monitoring of peatlands [28–32]. For example,
remote sensing has been used to obtain information on bog hydrology and water table
depth, functional types and phenology of plants, and to map vegetation classes and fertility
gradients [9,28,29,31,33,34]. Other relevant values, such as the Leaf Area Index or the
Normalized Difference Vegetation Index, both important parameters linked to terrestrial
ecosystem productivity, are routinely mapped using spectral indices derived from remote
sensing imagery [10,35–39].

Because satellite data can be remotely obtained and are free for satellites such as
Landsat 8 or Sentinel-2, they are useful to enhance our understanding of response of bog
arthropod communities to productivity gradients in less accessible areas. In this study, we
investigated communities of free-living mites inhabiting a relatively undisturbed European
boreal mire “Shichengskoe”. Shichengskoe mire system is characterized by a mosaic of
oligotrophic and meso-eutrophic areas, and our previous data for this system show that
the pH gradient and the nutrient availability gradient in this bog are linked [25]. The
trophic class of sampled plots (classified on a oligotrophy–eutrophy gradient based on
plant community features) was one of the best predictors of abundance and species richness
of non-aquatic oribatid mites in this bog [25]. For aquatic Oribatida, water table depth
was of significant importance [25]. Mesostigmatid mites of the bog have not been studied
previously. Here, we aimed to assess the potential of using remote sensing data as a
mapping and predictive tool for monitoring arthropod biodiversity of a peat bog. As the
connection between environmental data and mite biodiversity can been demonstrated
directly, we aimed to confirm the link between spectral data and environmental data and to
check if the link between spectral data and biodiversity data is consistent with the ground
survey results.

2. Materials and Methods
2.1. Study Site

The mire system “Boloto Shichengskoe” in Vologda region in the north-western Russia
(59◦56′30.4′′ N, 41◦16′57.1′′ E, 120 m a.s.l.) is a large (15,900 ha) wetland system of predomi-
nantly lacustrine origin (Figure 1a). The central part of the mire is occupied by a shallow
oligotrophic lake Shichengskoe (1060 ha). Extensive area of the mire is the oligotrophic
peat bog, dominated by Sphagnum mosses. Within the oligotrophic bog, there are several
ground water seeps, associated with forested (Picea-Pinus-shrublets) islands. Areas near
the seeps and the south-eastern part of the mire system are meso- and eutrophic [40]. The
climate in the region is humid continental (Dfb in Köppen climate classification) with long
moderately cold winter (mean temperature of January −12 ◦C) and short warm summer
(mean temperature of July 16–17 ◦C). Annual precipitation is 500–650 mm; snow cover lasts
165–170 days of the year [40].
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Figure 1. Study area: (a) Shichengskoe mire system with Shichengskoe lake (scale bar: 2 km); in
lighter colour is the ombrotrophic Sphagnum peat bog. Image courtesy of the U.S. Geological Survey.
(b) Sampling plots, 2016—purple, 2019—green (scale bar: 2 km).

2.2. Sampling on the Ground

Two ground datasets were used in this study. The first dataset (training set) was
collected in July 2016 in Sphagnum-dominated communities in the ombrotrophic western
part of the mire system (Figure 1b). Samples were collected from 48 plots dominated
by Sphagnum species; each plot was 1 m2 in size. The minimum distance between plots
was 5–7 m, but usually over 30 m. In each sampling plot, the following was recorded:
GPS coordinates, Sphagnum moss identity, water table level, water pH and Sphagnum
nutrient content (C, N, P, K) (see details in [25]). Based on plant community features, each
plot was assigned to one of the five qualitative productivity classes (“trophic classes”)
on the oligotrophic–eutrophic gradient (oligotrophic, oligo-mesotrophic, mesotrophic,
meso-eutrophic, eutrophic) [41,42]. Such trophic classes do not directly reflect nutrient
status, but instead are based on plant indicator species of the poor-rich (acidity–alkalinity)
gradient—however, in Shichengskoe mire these trophic classes are correlated with pH and
Sphagnum nutrient content measurements [25]. The distribution of trophic classes among
plots was not homogeneous, as meso-eutrophic and eutrophic patches are rarer on the
ground. There were 21 oligotrophic plots, 18 oligo-mesotrophic and mesotrophic plots, and
9 meso-eutrophic and eutrophic plots. Sphagnum moss for mite extraction was collected as
10 × 10 cm samples to the depth of living moss plants (including capitula and the length of
stems) (one sample per plot). Mites from moss samples were extracted in modified Berlese
funnels until samples were fully dry (at least for five days). Adult Oribatida were identified
to a species level using published keys and original species descriptions and classified into
two functional groups following [22,43]—‘aquatic’ species, living on submerged vegetation
in freshwater habitats, and ‘terrestrial’ (all other species). Oribatida juveniles were excluded
from abundance and richness counts.

The second dataset (validation set) was collected in August 2019 using the same
methods, except Sphagnum nutrient content was not measured. Sampling was again limited
to 1 m2 plots in Sphagnum-dominated communities but covered a larger extent of the
mire (Figure 1b). In each sampling plot GPS coordinates, Sphagnum moss identity, trophic
class on the oligotrophic–eutrophic gradient, ground water level and pH were recorded.
Mites were sampled and extracted using the same methods as above. Adult Oribatida and
Mesostigmata were identified to a species level. Aquatic and terrestrial Oribatida were
counted separately, with juveniles excluded. Mesostigmata are all terrestrial; their juveniles
were excluded from abundance and richness counts. Some of the records in this dataset
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were excluded from the analysis as plots were located too close to each other—at the end,
the dataset comprised 42 records (see Data S1 in Supplementary Materials).

2.3. Remote Sensing Data

The U.S. Geological Survey Landsat 8 OLI/TIRS scenes for path 177, row 18 covering
Vologda region were used with the 2016 (scene LC81770182016151LGN01, 30 May 2016) and
2019 (scene LC08_L2SP_177018_20190608_20200828_02_T1, 6 August 2019) data sets. The
satellite imagery search criteria were (a) acquisition date close to the date of sampling and
the period of maximum vegetation activity and (b) minimum cloud cover (5% threshold).
The 24-Jul-2016 scene, also available, was rejected due to the larger % cloud cover and the
presence of haze.

Remote sensing images require radiometric and geometric correction. The path 177
row 18 scenes for 30 May 2016 and 6 August 2019 are “level T1”, indicating that they have
been geometrically corrected. As a rule, systematically corrected T1 Landsat 8 data have
geodetic accuracy of ≤12 m [44].

The remote sensing data were processed using the ArcMap 10.6, Esri Inc., Redlands,
CA, USA. Landsat 8 scenes were cropped to the area of interest and co-registered. The
16-bit digital numbers (DNband) recorded in the Landsat 8 OLI spectral radiance bands 2–7
were converted to the top of the atmosphere band reflectances (rband) using solar zenith
angle and band-specific scaling coefficients provided in the Landsat 8 OLI metadata file [44].
Spectral bands were significantly correlated to local environmental data (Table 1). However,
such correlations are difficult to interpret biologically, so we focused on known spectral
indices which represent productivity gradients and surface moisture gradients in terrestrial
ecosystems.

Table 1. Landsat 8 OLI (path 177, row 18, 30-May-2016) bands correlations with water pH, plot
trophic class and water table depth in Shichengskoe mire (Pearson r, * p < 0.05, ** p < 0.01).

Band 2 Band 3 Band 4 Band 5 Band 6 Band 7

pH −0.17 −0.06 −0.15 0.09 −0.22 −0.45 **
Trophic class −0.32 * −0.13 −0.38 ** −0.11 −0.22 −0.46 **

Water table depth 0.30 * 0.26 0.35 * 0.38 ** 0.19 0.09

The following spectral indices representing productivity gradient and ground water
level gradient were calculated for the area of interest and sampled using ground plot coor-
dinates:

(i) Normalized Difference Vegetation Index (NDVI), computed using band 4 (red) and
band 5 (NIR) reflectances as (r5 − r4)/(r5 + r4). NDVI is an indicator of the amount of
vegetation; it approaches 1.0 if a pixel contains vegetation; 0 if a pixel contains soil;
and −1.0 if a pixel contains water. NDVI is commonly used in remote sensing as a
proxy for productivity [36];

(ii) Excess Green (ExG), calculated as 2r3 − r4 − r2;
(iii) Excess Green minus Excess Red (ExG−ExR), calculated as 1.4r4− r3 using normalized

reflectances of band 2 (blue), band 3 (green) and band 4 (red) [45]. Both ExG and
ExG−ExR have been found useful as proxies of gross primary productivity [45,46];

(iv) Normalized Difference Moisture Index (NDMI), computed using band 5 (NIR) and
band 6 (SWIR1) reflectances as (r5− r6)/(r5 + r6) [47]. NDMI is used to determine veg-
etation water content; it is sensitive to changes in liquid water content and in spongy
mesophyll of vegetation canopies [47,48], otherwise known as NDWI (normalized
difference water index);

(v) Moisture Stress Index (SWIR1/NIR), computed as r6/r5; this index is negatively
correlated with surface water content and has been suggested as a broad-band index
of surface moisture (reflective of water table position) in peatlands [32,49]. Moisture
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Stress Index is used for canopy stress analysis, productivity prediction and biophysical
modeling [50].

2.4. Data Analysis

The values of spectral indices were calculated and extracted from the satellite imagery
for the GPS coordinates of plots using the ArcMap 10.6 software package. The values of
spectral indices were compared with local-scale environmental and biodiversity parameters
for that year using Pearson correlation in R 4.0.5. Variables at a plot level in 2016 were:
water table level; water pH; Sphagnum nutrient content (C, N, K, P); trophic class; Oribatida
abundance and species richness (see [25] for detailed analysis of 2016 data). Variables at a
plot level in 2019 were: water table level; water pH; trophic class; Oribatida abundance and
species richness; Mesostigmata abundance and species richness.

The 2016 dataset was used as a training set—using the 2016 data, the spectral indices
with the significant correlation to environmental and biodiversity parameters were selected
to develop the regression model. Random forest regression (randomForest package in
R) [51] was employed for variable selection and to predict the trophic class of ground
plots. The output provides the total % variance explained, and the importance score for
each explanatory variable. The significance of random forest model was tested using
permutation procedure (rfUtilities package in R 4.0.5; [52]).

3. Results

Previous results showed that plot trophic class and water table depth were the two
best predictors of Oribatida biodiversity in Shichengskoe mire [25]. Higher abundance
and species richness of oribatid mites in 2016 were correlated with higher productivity
and lower water table depth (Table 2). In 2019, we observed no relationship between plot
trophic class and abundance, or species richness of mites (Table 2) and the total abundance
of mites collected in 2019 sampling was low (Appendix A, Tables A1 and A2), possibly
due to the heat wave anomaly—June and July 2019 were the hottest months on record for
the region. The relationship between water table level and mite diversity, on the other
hand, remained consistent between 2016 and 2019, with higher abundance and richness of
terrestrial Oribatida and Mesostigmata associated with lower water table (Table 2).

Table 2. Pearson’s correlations (r, + p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001) for local environmental
data and mite diversity in Shichengskoe mire; na—data not collected in 2016.

Mesostigmata Diversity Oribatida Diversity

Abundance Richness Abundance, Aquatic Abundance, Terrestrial Richness, Terrestrial

2019
Trophic class −0.07 0.03 0.26 + −0.09 −0.04

pH −0.10 −0.04 0.17 −0.08 −0.08
Water table depth −0.54 *** −0.45 ** 0.28 + −0.21 −0.33 *

2016
Trophic class na na −0.24 0.46 *** 0.63 ***

pH na na 0.12 0.06 0.19
Water table depth na na 0.66 *** −0.44 ** −0.41 **

Landsat 8 OLI spectral indices representing productivity gradient and ground water
level gradient were consistently correlated to local environmental gradients in Shichengskoe
mire in both 2016 and 2019 data sets (Tables 3 and 4). ExG and NDVI performed well as
productivity indices, showing significant correlative relationship with trophic classification
of sampling plots. The NDMI and SWIR1/NIR showed significant correlation with water
table depth in both data sets. ExG−ExR was correlated to both trophic class and ground
water level in 2016, but only to trophic class in 2019.
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Table 3. Pearson’s correlations (r, + p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001, n = 48) for Landsat
8 OLI spectral indices, local environmental data and Oribatida biodiversity in Shichengskoe mire
(July 2016). NDVI—Normalized Difference Vegetation Index; ExG—Excess Green index; ExG−ExR—
Excess Green minus Excess Red index; NDMI—Normalized Difference Moisture Index; SWIR1/NIR—
Moisture Stress Index.

Index Trophic
Class

pH Water Table
Depth

Nutrients in Sphagnum Tissues Oribatida Diversity

C:N P K Abundance,
Aquatic

Abundance,
Terrestrial

Richness,
Terrestrial

NDVI 0.55 *** 0.47 ** 0.13 −0.19 −0.31 * 0.21 −0.18 0.38 ** 0.45 ***
ExG 0.63 *** 0.25 + −0.19 −0.24 + −0.28 + 0.37 ** −0.35 ** 0.52 *** 0.63 ***

ExG−ExR −0.54 *** −0.21 0.39 ** 0.34 ** −0.43 ** −0.36 ** 0.26 + −0.41 ** −0.50 ***
NDMI 0.08 0.27 + 0.35 ** 0.09 −0.60 *** −0.05 0.06 0.00 0.02

SWIR1/NIR −0.11 −0.27 + −0.33 ** −0.08 0.61 *** 0.03 −0.04 −0.03 −0.06

Table 4. Pearson’s correlations (r, + p < 0.1, * p < 0.05, ** p < 0.01, n = 42) for Landsat 8 OLI spectral
indices, local environmental and productivity data, and mite biodiversity in Shichengskoe mire
(August 2019).

Index Trophic
Class

pH
Water
Table
Depth

Mesostigmata Diversity Oribatida Diversity

Abundance Richness Abundance,
Aquatic

Abundance,
Terrestrial

Richness,
Terrestrial

NDVI 0.35 * 0.21 −0.15 0.26 + 0.19 0.20 0.01 −0.03
ExG 0.14 0.23 0.16 −0.09 0.11 −0.11 −0.02 −0.05

ExG−ExR −0.44 ** −0.22 0.13 −0.25 −0.20 −0.20 −0.01 0.01
NDMI −0.15 0.01 0.42 ** −0.30 + −0.26 + −0.12 −0.11 −0.12

SWIR1/NIR 0.15 0.00 −0.42 ** 0.30 * 0.25 0.13 0.10 0.11

Spectral indices representing productivity gradient were significantly correlated with
oribatid mites biodiversity in 2016, consistent with the ground data; the strongest rela-
tionship was between Oribatida biodiversity and the ExG index (Table 3, Figure 2a,b).
However, spectral indices representing ground water level gradient showed no correlation
with Oribatida diversity in 2016, even though the ground data (Table 2) suggest that this
gradient was important. In the 2019 dataset, a significant correlation was seen between
abundance and richness of Mesostigmata and spectral indices representing water table
gradient, which is consistent with the ground data (Tables 2 and 4).

Figure 2. Landsat 8 OLI spectral index ExG vs. biodiversity of oribatid mites in Sphagnum bog plots
(red—terrestrial Oribatida, blue—aquatic Oribatida), Shichengskoe mire, July 2016: (a) abundance;
(b) species richness.

Random forest regression model predicting trophic class using spectral indices was
significant at p < 0.001, with ExG index again showing as the best predictor of trophic class
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(Table 5). The random forest model based on 2016 satellite and ground data predicted the
trophic class of plots visited in 2019 with 69.0% accuracy; this of course is relying on the
assumption that the trophic class did not change between 2016 and 2019.

Table 5. Random forest model variable selection for Landsat 8 spectral indices best explaining
plot trophic class (based on plant indicator species of the poor-rich (acidity–alkalinity) gradient)
in Shichengskoe mire, July 2016. The higher % increase MSE, the more important a variable is in
explaining observed patterns.

Model Information Variable Selection %IncMSE

No. of trees: 300
No. of variables tried at each split: 3

Mean of squared residuals: 0.234
No. of permutations: 999

Model significant at p = 0.001
Model R-square: 0.528

ExG 0.375

ExG−ExR 0.124
NDVI 0.047

SWIR1/NIR 0.027
NDMI 0.023

4. Discussion

The use of data derived from remote sensing imagery for assessment and prediction of
biodiversity is receiving increasing attention [53–56]. Unlike vegetation, soil communities
cannot be directly linked to spectral indices, but close links between landscape forms,
vegetation and soil biota allow us to link information from remote sensors to soil biodi-
versity patterns. There are only a few such studies—but, for example, satellite-derived
spectral information has been used to predict patterns of biodiversity in soil microbiome
communities, soil mesofauna (springtails) and earthworms [57–59].

Our results demonstrate both the potential and the limitations of using freely available
satellite data for generating information on environmental gradients, productivity and
biodiversity in a peatland. Among spectral productivity indices, the ExG index was the
best predictor of trophic class and could be used as a broad-scale variable representing
productivity gradient in the Shichengskoe mire, with a significant relationship with Orib-
atida diversity. Both ExG and ExG−ExR have been used successfully elsewhere as a proxy
for gross primary productivity [45,46]. On the other hand, NDVI is known to perform
less well in peatland environments due to atypical near-infrared reflectance of Sphagnum
mosses [60,61].

The application of spectral indices derived from remote sensing imagery to map eco-
logical gradients in peatlands presents several challenges. The first of these is the scale—for
medium-scale sensors such as Landsat 8 OLI or Sentinel-2, it results in aggregation and
averaging of patterns and features which are smaller than the pixel size of the sensor [28].
The use of fine-scale sensors such as IKONOS improves the accuracy of peatland land
cover mapping [31] but is more costly. The second challenge is the difficulty of deriving
the details of bog microtopography from the satellite sensor data. Peat bog microtopog-
raphy (hummocks and hollows) are linked to hydrology and biodiversity [1,24,26]. In
the Shichengskoe mire, two major environmental drivers which explained the abundance,
species richness and community composition of Oribatida were trophic class, linked to
acidity–alkalinity (pH) gradient and nutrients (N-P-K) availability, and water table level,
linked to microtopography [25]. For aquatic Oribatida, the water table was the single most
important variable [25]. Our 2019 data (this study) suggests again that microtopography
and moisture are significant drivers for diversity of both Oribatida and Mesostigmata
mites. A satellite sensor, by definition, records a “flat’ pixel reflectance value and loses
structural information, which may result in a poor discrimination of microtopography
and its effects. Soil moisture indices (such as NDMI) may have limitations in peat bog
environment, especially during dry conditions [32,62]. Crichton et al. [28] used Landsat
ETM+ to map the spatial distribution of six ecohydrological classes on a lowland om-
brotrophic peatland in the UK; their accuracy with Landsat ETM+ bands alone was 74%;
including the texture brightness layer derived from band 5 increased accuracy of prediction.
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Other option includes supplementing satellite imagery with airborne Light Detection and
Ranging (LiDAR) data [31,63,64] or using the Synthetic Aperture Radar (SAR) backscatter
in Sentinel-1 satellite [65], which adds information on surface texture and water table depth
to increase accuracy.

5. Conclusions

To conclude, Landsat 8 OLI spectral indices representing productivity gradient and
ground water level gradient were consistently correlated to local environmental gradients
in Shichengskoe mire. Spectral indices were significantly correlated with mite biodiver-
sity parameters, and the patterns were consistent with the ground data; the strongest
relationship was between Oribatida biodiversity and the ExG index in 2016. Changing
weather conditions can override local environmental gradients, as we have seen with lower
abundance and diversity of Oribatida after the abnormally hot summer of 2019.

There is an opportunity to use freely available medium-scale remotely sensed data
for soil biodiversity monitoring in space and time, once the links between biodiversity
of specific taxa and land features which affect land reflectance values (e.g., soil type, soil
moisture, vegetation) are established. Ground data should be used to validate the accuracy
of predictions. Surface topography (e.g., digital elevation model) and texture (roughness,
microtopography) data, if possible, should be used to supplement spectral data.
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Appendix A

Table A1. Abundances (raw counts) of oribatid mites in Sphagnum bog plots, Shichengskoe mire
(n—number of samples).

Species 1 Jul 2016,
n = 48

Aug 2019,
n = 53 Species Jul 2016,

n = 48
Aug 2019,

n = 53

Achipteria coleoptrata (L., 1758) 2 22 Limnozetes palmerae Behan-Pelletier, 1989 642 474
Acrotritia ardua (Koch, 1841) 63 16 Limnozetes rugosus (Sellnick, 1923) 333 46
Adoristes ovatus (Koch, 1839) 12 18 Liochthonius alpestris (Forsslund, 1958) 94 334

Atropacarus striculus (Koch, 1835) 273 87 Malaconothrus foveolatus (Willmann, 1931) – 688
Autogneta traegardhi Forsslund, 1947 1 – Malaconothrus monodactylus (Michael, 1888) 259 333
Banksinoma lanceolata (Michael, 1885) – 4 Malaconothrus vietsi (Willmann, 1925) 27 –

Camisia solhoeyi Colloff, 1993 3 – Microppia minus (Paoli, 1908) – 1
Carabodes labyrinthicus (Michael, 1879) 57 – Nanhermannia comitalis Berlese, 1916 74 –

Carabodes rugosior Berlese, 1916 11 – Nanhermannia coronata Berlese, 1913 421 182
Cepheus cepheiformis (Nicolet, 1855) 15 – Nothrus pratensis Sellnick, 1928 222 236
Ceratoppia bipilis (Hermann, 1804) 1 – Oppiella nova (Oudemans, 1902) 1446 436

Ceratoppia quadridentata (Haller, 1882) 2 – Oribatula tibialis (Nicolet, 1855) 2 –
Ceratozetes sellnicki Rajski, 1958 – 1 Parachipteria punctata (Nicolet, 1855) 43 –

Chamobates cuspidatus (Michael, 1884) 24 – Pergalumna emarginata (Banks, 1895) 12 22
Diapterobates humeralis (Hermann, 1804) 22 9 Phthiracarus boresetosus Jacot, 1930 184 14

Epidamaeus kamaensis (Sellnick, 1926) 1 – Phthiracarus laevigatus (Koch, 1841) 4 –
Eupelops occultus (Koch, 1835) 24 – Pilogalumna tenuiclava (Berlese, 1908) 48 32

Eupelops strenzkei (Knülle, 1954) 16 13 Punctoribates sellnicki Willmann, 1928 – 13
Fuscozetes fuscipes (Koch, 1844) 5 – Quadroppia quadricarinata (Michael, 1885) 4 –
Fuscozetes setosus (Koch, 1839) – 5 Rhinoppia hygrophila (Mahunka, 1987) – 29

Galumna lanceata (Oudemans, 1900) 20 –
Scheloribates circumcarinatus
Weigmann & Miko, 1998 61 9

Galumna obvia (Berlese, 1914) 17 – Scheloribates labyrinthicus Jeleva, 1962 – 11
Heminothrus longisetosus (Willmann, 1925) 3 – Scheloribates laevigatus (C.L. Koch, 1835) 176 3

Heminothrus peltifer (Koch, 1839) 43 1 Suctobelbella palustris (Forsslund, 1953) 141 17
Heminothrus thori (Berlese, 1904) 1 – Tectocepheus velatus (Michael, 1880) 560 44

Hoplophthiracarus illinoisensis (Ewing, 1909) 796 949 Trhypochthoniellus longisetus (Berlese, 1904) 217 7
Hydrozetes lacustris (Michael, 1882) 38 15 Trhypochthonius tectorum (Berlese, 1896) 24 6
Hypochthonius rufulus Koch, 1835 90 1 Trimalaconothrus foveolatus Willmann, 1931 352 –
Liebstadia similis (Michael, 1888) 3 3 Tyrphonothrus angulatus (Willmann, 1931) 5 47

Limnozetes ciliatus (Schrank, 1803) 354 851 Tyrphonothrus maior (Berlese, 1910) 800 82

Oribatida total 8048 5083
1 Identification keys: Weigmann [66]; Balogh and Balogh [67]; Norton and Behan-Pelletier [68].

Table A2. Abundances (raw counts) of mesostigmatid mites in Sphagnum bog plots, Shichengskoe
mire (n = 53).

Species 1 August 2019

Lysigamasus lapponicus (Trägårdh, 1910) 21
Veigaia transisale (Oudemans, 1902) 25
Veigaia nemorensis (C.L.Koch, 1839) 11

Cheiroseius bryophilus Karg, 1969 13
Cheiroseius mutilus (Berlese, 1916) 9
Cheiroseius serratus (Halbert, 1915) 2

Cheiroseius laelaptoides (Berlese, 1887) 5
Platyseius italicus (Berlese, 1905) 8
Ololaelaps venetus (Berlese 1903) 12

Gaeolaelaps nolli (Karg, 1962) 4
Parazecon radiatus (Berlese, 1910) 54
Zercon zelawaiensis Sellnick, 1944 32

Prozecon kochi Sellnick, 1943 77
Epicrius bureschi Balogh, 1958 2

Acugamasus montanus (Willmann, 1936) 7

Mesostigmata total 282
1 Identification keys: Karg [69]; Gilyarov and Bregetova [70]; Evans and Hyatt [71]; Evans and Till [72]; Mašán
and Fend’a [73].
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