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Abstract: The microflora of the soil is adversely affected by chemical fertilizers. Excessive use of
chemical fertilizers has increased crop yield dramatically at the cost of soil vigor. The pH of the
soil is temporarily changed by chemical fertilizers, which kill the beneficial soil microflora and
can cause absorption stress on crop plants. This leads to higher dosages during the application,
causing groundwater leaching and environmental toxicity. Nanofertilizers (NFs) reduce the quantity
of fertilizer needed in agriculture, enhance nutrient uptake efficiency, and decrease fertilizer loss
due to runoff and leaching. Moreover, NFs can be used for soil or foliar applications and have
shown promising results in a variety of plant species. The main constituents of nanomaterials are
micro- and macronutrient precursors and their properties at the nanoscale. Innovative approaches
to their application as a growth promoter for crops, their modes of application, and the mechanism
of absorption in plant tissues are reviewed in this article. In addition, the review analyzes potential
shortcomings and future considerations for the commercial agricultural application of NFs.

Keywords: nano-fertilizer; sustainable agriculture; eco-friendly; agro-economics

1. Introduction

Plant nutrients or fertilizers are materials that are responsible for plant growth and
development with elements or nutrients. Due to the excessive use of fertilizers, the fertility
of the soil has been decreased by destroying the beneficial microbes, and, therefore, there
is a dire need for alternative and eco-friendly nanofertilizers (NFs) that are the most
vital application of nanotechnology in the agricultural sector [1]. Nutrient carriers or
transporters using substrates with nano dimensions of 1–100 nm are being developed. NFs
can be manufactured from conventional fertilizers, bulk fertilizer materials, or extracted
from other plants by encapsulating/coating them with nanomaterials (NMs). In addition
to having a large surface area, nanoparticles can hold plenty of nutrients while slowly
and steadily releasing them. The crop is then able to absorb nutrients according to its
needs without any adverse effects that are found with traditional fertilizers [2]. Various
metabolic reactions in the plant are facilitated by the extra surface area, such as enhanced
photosynthesis, resulting in increased productivity. Since NFs deliver nutrients directly
to the plants, ecotoxicity is reduced, and loss of nutrients to the soil or groundwater is
prevented [3]. There is a range of particle sizes between 1 and 100 nanometers for NFs. The
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application sites, such as soil or leaves surface, promote more penetration of nanoparticles
into the plant. The nanoparticles are more likely to diffuse into the crop from the surface if
they are smaller than the pore size of the leaves and roots [4], making them more effective at
uptake and use. Photosynthesis, nutrient absorption efficacy, photosynthate accumulation,
nutrient translocation, and pest and pathogen resistance are significantly improved by NFs.
In addition to increasing productivity, this also improves soil quality, leading to enhanced
crop yields.

The use of NFs is an eco-friendly and more effective alternative to chemical fertilizers.
As a result of their physio-chemical properties, NFs are promising agrochemicals. In
this review, we examine the role of NFs in agriculture, their mode of application, and
their prospects [5]. Owing to the smaller size (1–100 nm) and larger surface area, nano-
enabled products, such as nano-insecticides, nano-pesticides, and nano-fertilizers, NPs
perform an important role in sustainable agriculture [6]. Recent research has suggested that
nanoparticles could be used to control plant pests, such as insects, fungi, and weeds [7,8]. It
has been suggested that NFs could supply nutrients to plants more effectively and therefore
improve crop productivity significantly [9].

By meeting the nutritional requirements of plants without affecting agricultural yields,
NFs have the potential to completely transform current food production systems. The
increased surface area to volume ratio and better mobility of these sub-microscopic particles
aid in boosting plant nutrient absorption and agricultural productivity. As a result, NFs
can be viewed as a “smart system of nutrients” that, by increasing food grain yield, can
aid in reducing hunger and poverty. By 2030, these cutting-edge nanofertilizers may
be crucial to attaining the sustainable development goals of ending world hunger and
ensuring food security and improving global agricultural practices’ overall sustainability.
Thus, the current review focuses on the timely need for NFs for sustainable agricultural
practices. Here, the role performed by metal oxide nanoparticles (NPs), nanocomposites,
and conjugated nanoparticles are discussed. Moreover, their use in fertilizing crops for
growth enhancement, stress tolerance, and commercial production are also examined.

2. Chemical Fertilizers and Their Drawbacks

Traditionally, fertilizers deliver nutrients in chemical forms that plants cannot readily
absorb. Moreover, most of the macronutrients added by these chemical fertilizers are very
poorly soluble in soil, leading to very low consumption. As a result, there is a need for
repetitive application of these chemical fertilizers. Increasing food demand requires farmers
to use more chemical fertilizers, which in turn affects soil and environmental health. As a
result of the excessive use of chemical fertilizers, the soil structure and mineral cycles are
irreversibly damaged. In addition, excessive and disproportionate fertilizer application
harms soil microflora, plants, and ultimately, food chains throughout ecosystems, leading
to inherited mutations in future generations. Agricultural nitrogen (N) and phosphorus
(P) fertilizers have been identified as the major anthropogenic factor leading to worldwide
eutrophication problems [4]. A farmer’s profit margin is reduced when he uses chemical
fertilizers. In addition, the prolonged use of conventional fertilizers has led to severe
environmental repercussions worldwide, such as groundwater contamination, water eu-
trophication, chemical burning, soil degradation, and air pollution [10,11]. As a result
of high release rates of nutrients, conventional fertilizers negatively affect the nutrient
use efficiency (NUE) of crops and/or by converting nutrients that are not bioavailable to
crops [12,13].

3. Advantages of Nanofertilizers over the Traditional Chemical Fertilizers

Farmers and gardeners now have access to nanofertilizers, a relatively new type of
fertilizer. They are a desirable alternative for individuals wishing to improve the health
and production of their plant and soil fertility because they have numerous advantages
over conventional chemical fertilizers.
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The improved effectiveness of nanofertilizers in delivering nutrients directly into plant
cells is its most significant benefit. By doing this, plants get all the nutrients they need
without any excess ending up in the soil or running off into nearby waterbodies, such as
lakes and streams, which could damage the environment due to nutrient pollution from too
much nitrogen or phosphorus in these bodies of water. Additionally, adopting goods based
on nanotechnology results in lower costs for farmers and less overall environmental impact
for important applications because they are more effective at delivering vital nutrients than
conventional fertilizer products.

Micronutrients, such as zinc or iron, which may not be easily accessible by conventional
methods, can dramatically affect crop yields if low levels exist in soils. It is a sort of
specialized plant nutrition requirement that can be targeted using nanofertilizer technology.
Researchers can now create slow-release formulations thanks to nanoparticles, which
reduce the risk of leaching while still providing plants with the necessary nutrition during
critical growth stages, such as flowering and fruiting when higher levels of some minerals
are needed to support reproductive processes and help crops grown in these conditions
produce to their highest potential.

Furthermore, it can be used in conjunction with nanobiofertilizers (NBFs) to improve
crop plant stress tolerance. Although it has the potential to launch a new crop management
strategy, its limitations should be carefully examined before implementation [5].

In fact, nanotechnology offers several distinct advantages over conventional ap-
proaches to agricultural production, including improved nutrient availability. Greater
efficiencies in application rates targeted delivery of specific micronutrients need slower
releases, reduce leaching losses, and enhance yield potentials (Table 1). All of these explain
why it is becoming an increasingly popular choice among growers today.

Table 1. Differential Features of Nanofertilizers and Traditional Fertilizers [14].

Properties Nanofertilizers Traditional Fertilizers

Solubility and Dispersion of the
mineral nutrients.

Nano-sized advantages the mineral nutrient
by improving solubility, dispersion, and can

achieve enhanced bioavailability.

Due to large-sized particles, it can show
limited solubility and dispersion hence

leading to poor bioavailability to the plants.

Deprivation rate of Nutrients in
Fertilizer.

Nano-sized enables the retention in the soil
particle for a prolonged period.

Significantly leached, rain-off, and drifts
can occur in the methods.

Superintend releasing Mode.

Release rate and pattern of nutrients can be
precisely controlled by encapsulating the

nanofertilizers in the polymer matrix,
supporting sustainable practices.

Direct exposure to fertilizers might be toxic
in excess dosage and can also damage the
ecosystem associated with the crop field.

Nutrient Uptake Efficiency.
Nanostructured Fertilizer can save the excess

use and increases the efficiency in uptake
ratio during controlled cultivation.

Large-sized Chemical Composite is
difficult to uptake by plants hence reducing

efficiency and resource utilization.

Prolongation of effective nutrient
release.

Nanostructured formulation can extend the
nutrient supply to the plant for a prolonged

time by controlled released efficiency.

Readily available at the time of delivery or
foliar leading to the loss of rest nutrients

into the soil, forming insoluble salts.

4. Need for the Development of Nanofertilizers

Due to the surge in population in the past few decades, agriculture productivity has
increased to meet the needs of billions of people, especially in developing countries. Soil
nutrient deficiencies cause great economic losses for farmers and significant decreases
in nutritional quality and quantity of grain for humans and livestock [15]. In order to
increase crop production, techniques, such as hydroponics, can be used. However, these
techniques are very expensive. Thus, there is a need for affordable and sustainable technol-
ogy to provide nutritional supplements and improve crop production by reducing resource
consumption and fertilizer usage. The traditional method of fertilizer usage involves the
use of much more fertilizer than is necessary, whereas the nanotechnological approach
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emphasizes the use of less quantity of fertilizer. With the advancement of nanotechnology,
nanoparticles of physiologically vital metals can now be mass-produced, which can be
used to enhance fertilizer formulations for enhanced uptake in plant cells and nutrient
conservation. In addition, NFs can reduce nutrient losses through leaching, thus improving
nutrient use efficiency and addressing environmental concerns generated due to the heavy
use of fertilizer [16]. Nanostructured fertilizers can improve nutrient use efficiency through
targeted delivery and slow or controlled release mechanisms. In response to environmental
triggers and biological demands, they could precisely release their active ingredients. In
addition, NFs have demonstrated enhanced crop productivity by increasing the rates of
photosynthesis, seed germination, seedling growth, carbohydrate and protein synthesis,
and nitrogen metabolism [15].

5. Types of Nanofertilizers

There are different types of NFs based on the type of nutrient and carrier, such as
macronutrient-based, micronutrient-based, carbon-based, and polymer-based (shown in
Figure 1 below).
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5.1. Macronutrient-Based Nanofertilizers

Macronutrients (e.g., nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg),
sulfur (S), and calcium (Ca)) have been combined with nanomaterials for the purpose of
delivering an accurate amount of nutrients to the crops and minimizing their bulk require-
ments, with the extra benefit of decreasing purchasing and transportation costs. The major
macronutrients are nitrogen (N), phosphorus (P), and potassium (K). Nitrogen is essential
for plant development since it performs a fundamental role in energy metabolism and
protein synthesis. Nitrogen is absorbed by the plant in the form of nitrate. Nutrients contain
nitrogen, which is an essential nutrient for energy metabolism and protein synthesis. Plants
cannot use N in its atmospheric form even though it makes up about 78% of the atmosphere.
Nitrate (NO3

−) and ammonium (NH4
+) are specific chemical forms of N that plants can

absorb. Due to its low affinity for soil particle surfaces, negatively charged nitrate is not
readily absorbed by the soil, so it is deficient there. Combining nitrogen with hydroxyap-
atite and zeolite increases nitrogen absorption in soil and slows nitrogen release [2]. As
with N, P is essential for transporting and storing energy, photosynthesis execution, root
growth, flowering, and the production of organic compounds [17]. Potassium is crucial
to photosynthesis, photon translocation, protein synthesis, ionic balance, regulating plant
stomata and water use, activating plant enzymes, and many other processes. It is known
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to activate at least sixty enzymes involved in plant growth [2]. Among sulfur (S), calcium
(Ca), and magnesium (Mg), Ca-based NFs’ performs a crucial role in stabilizing cell walls,
retaining minerals in the soil, transporting minerals, neutralizing toxic substances, and
forming seeds; magnesium is essential for plant growth because it is present at the core of
chlorophyll molecules and activates enzymes. In addition to aiding in chlorophyll forma-
tion, sulfur enhances the efficiency of nitrogen and the defenses of plants. In addition, it is
necessary to produce a few amino acids [17,18].

5.2. Micronutrient-Based Nanofertilizers

Plants require micronutrients in much smaller amounts than macronutrients for
growth. B, Fe, Cu, Mn, Zn, Mo, and Cl elements are found in micronutrients [19]. The
electron transfer system, chlorophyll biosynthesis, and certain enzyme functions require
iron, particularly heme proteins. Different metabolic enzymes use zinc for their catalytic
activities and processes, such as cell division, tryptophan synthesis, photosynthesis, protein
synthesis, and maintaining membrane structure and potential. Zn deficiency is common
worldwide due to the low bioavailability of Zn in plant-based diets [16]. Nitrate reductase
in plants is dependent on molybdenum. Mo is also an important element in nitrogenase,
which is essential for nitrogen fixation of legume crops. In addition to mitochondrial
respiration, cellular transport, antioxidative activity, protein trafficking, and hormone sig-
naling, copper performs an important role in several physiological processes. Cell cycle
regulation, nucleic acid synthesis, cell elongation, and membrane function are all regulated
by Boron [15].

5.3. Polymer-Based Nanofertilizers

Nanoparticles can be carried by polymers, such as chitosan, alginate, albumin, and
others. Polymers, such as those mentioned above, are being extensively investigated
for their application in the delivery of NPs to plants. A cationic biopolymer, chitosan
is inexpensive and used to enhance plant growth, seed germination, nutrient uptake,
photosynthetic rate, and crop yield. Moreover, antimicrobial properties of chitosan have
been demonstrated in various studies [20,21]. Zn-chitosan NPs can promote the growth of
wheat plants when applied in foliar mode [22]. Cu-Chitosan NPs have potential growth
promotion in corn and tomato plants [23,24].

5.4. Zeolite-Based Nanofertilizers

Minerals, such as zeolite, are naturally occurring. By releasing nutrients gradually to
the crop plant, zeolite-based NFs increase the crops’ accessibility to nutrients throughout
their growth cycle. This prevents nutrient loss due to denitrification, volatilization, leaching,
and nitrogen fixation in the soil. Due to their large surface area and ability to modulate the
release of nitrogen, nanozeolites and their combinations have been widely employed for
designing NFs [25]. Zeolite-based composite fertilizers are known for increasing nutrient
use efficiency in lettuce plants [26]. Furthermore, zeolite-based nitrogen fertilizers have
been reported to have growth-promoting activity in maize yield and quality of alfisols and
inceptisols [27]. In this context, zeolites have been recently studied for their characteristic
property of carriers of nanofertilizers [28].

5.5. Carbon-Based Nanofertilizers

Carbon is a key component for the existence of life on Earth. A carbon nanotube (CNT)
is an engineered carbon nanomaterial that has exceptional physicochemical properties and
stability. Growing plants in nutrient media with CNTs increased seed germination and
shoot length. CNTs (carbon nanotubes) can penetrate the tomato seed coat promoting the
water uptake inside the seeds and affecting their growth rates and germination [29]. The
growth rate of tobacco cells was enhanced by treatment with CNTs [30]. Similarly, callus,
embryogenesis and embryo germination, root elongation, and rooting stages were studied
in date palms. The results indicated that the treatment with CNTs affected the culture of the
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cells irrespective of the growth stage. The number of roots and rate of embryo germination
was enhanced [31].

5.6. Trace Elements Based Nanofertilizers

Minerals or trace metals are present in very small amounts in living tissues. Some of
them are essential nutritionally, while others are not. The total number of trace elements is
fourteen, for example. Iron (Fe), copper (Cu), zinc (Zn), strontium (Sr), molybdenum (Mo),
manganese (Mn), rubidium (Rb), selenium (Se), lead (Pb), cobalt (Co), vanadium (V), arsenic
(As), chromium (Cr), and cadmium (Cd) [32,33]. NPs synthesized from trace elements are
safer because of their ease of fabrication and have various applications, including human
feed and medicine [34,35] and poultry feed supplements [36,37].

6. Nano-Biofertilizers for Sustainable Agriculture

Natural ecosystems and human life are adversely affected by the overreliance on
chemical fertilizers. A novel alternative to these chemical fertilizers is biofertilizers, which
have emerged as a renewable, supplementary, and eco-friendly source of plant nutrients.
Biofertilizers are mainly composed of formulations based on microorganisms, which can
be applied to the surface, soil, or seeds to improve growth characteristics by supplying
essential nutrients to the plant [38]. These include various groups, such as nitrogen fixing,
phosphorous solubilizing and mobilizing, plant growth-promoting rhizobacteria (PGPRs),
and mycorrhizal biofertilizers. Due to their poor shelf-life, crop specificity, instability in the
field due to soil and environmental constraints, limited availability of beneficial microflora,
susceptibility to harsh environments, and high dose requirements, their use is limited [7,8].
In this context, nanomaterial-based fertilizers have been developed and explored to over-
come these drawbacks. By virtue of their unique size-dependent and optical properties,
high surface area to volume ratio, and controlled release of micronutrients, NBFs are an
attractive alternative to chemical fertilizers. By coating organic fertilizer (biofertilizer)
with nanomaterials, NBFs are produced by reducing organic fertilizer (biofertilizer) to the
nanoscale (1–100 nm). Growth-promoting bacteria or micronutrients are coated on polymer
by a process called nanoencapsulation. To increase nutrient absorption efficiency and mini-
mize application losses, chitosan and zeolite are primarily used. As a result of NBFs, native
microflora is enhanced, and enzyme activity and crop resistance to disease are improved.
In their rhizospheres, NBFs increased plant stress tolerance several times with almost 30%
nutrient immobilization. Furthermore, NBFs are less toxic, highly stable, cost-effective, and
eco-friendly. They minimize nutrient loss due to soil leaching, gasification, erosion, etc.
However, despite these advantages, NBFs suffer from some disadvantages, including a
lack of technical expertise, labor-intensive production methods, and a need to evaluate the
risks prior to commercial and large-scale use [39,40]. Table 2 states the major differences
between bionanofertilizers and nanobiofertilizers.

Table 2. The basic difference between Bionanofertilizers and nanobiofertilizers.

Characteristic Bionanofertilizers Nanobiofertilizers

Synthesis of NPs Biological method Biological, chemical, or Physical

Structure Biologically synthesized NPs as
fertilizer

Nano-encapsulated Organic
Molecules as fertilizer

Encapsulation Biomolecules from biological
materials Nanomaterial

Core Micro/macronutrient element Inorganic and organic

Example MgO [41], ZnO [42], Phosphorous-hydroxyapatite
NPs [9] and Zn-Chitosan NPs [22]
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Some of the major applications and modes of action for the popularly used nanomate-
rials are given in Table 3 below:

Table 3. Applications of various nanoparticles in agriculture.

Sr. No. Type of Nanoparticle Used Mode of Application Crop Used References

1 N (urea-coated hydroxyapatite) Soil application Rice [41]
2 P (coated hydroxyapatite) Foliar spray Soybean [42]
3 K Foliar spray Basil [43]
4 Ca Foliar spray Basil [43]
5 Mg (MgO) Foliar spray Cluster bean [44]

6 Zn (ZnO) Foliar spray Pearl
Millet [45]

7 Zn (Zn-chitosan) Foliar spray Wheat [22]

8 Fe (Fe2O3) Foliar spray Wheat, watermelon, corn,
tomato, peanut [45–48]

9 Fe (Fe2O3) Seed treatment Rice [49]
10 Cu (Cu−chitosan) Seed treatment Tomato [23]
11 Cu (Cu−chitosan) Foliar spray Corn [24]
12 S Seed treatment Sunflower [50]
13 Mn Seed treatment Mung bean [51]
14 Ti (nanoanatase TiO2) Soil application Spinach [52]
15 Ni Seed treatment Wheat [53]
16 B Foliar spray Mung bean [54]
17 Mo Foliar spray Chickpea [55]

18 Zn and Mg-doped
hydroxyapatite modified with urea

Foliar spray, soil
applicant Wheat [56]

19 Urea–hydroxyapatite nanohybrid Soil applicant Tea plant
(Camellia sinensis (L.) Kuntze) [6]

20 Phosphorous-Containing
HydroxyapatiteNanoparticles (nHAP) Foliar spray Pomegranate (Punica granatum L.) [9]

21 Integrated Nanofertilizers(N, P, K, Mg,
S, Si, Ca, Fe, Cu, Zn, Co, and Ag)

Foliar spray and soil
applicant

Polyscias fruticosa and Asparagus
officinalis [57]

7. Nanofertilizers for Improving Biotic and Abiotic Stress Tolerance

As a novel and eco-friendly stress-tolerance component in crop plants, NFs are being
studied. Crops are always subject to varying environmental stresses, which have always
been a major threat to any crop plant and its desired yield. Stresses can be both biotic and
abiotic. Various stressors tend to promote the formation of reactive oxygen species (ROS)
and the deposition of toxic ions causing damage to biochemical pathways and actively
growing tissues. The use of NPs can be an efficient and promising approach for combating
different biotic and abiotic stresses [58–60].

Abiotic stresses are mainly caused by environmental factors, such as temperature
(extreme cold or heat), soil composition (salt concentration and nutrient availability), pH,
drought, flooding, soil moisture content, humidity, etc. [59,61]. NPs in the form of nanofer-
tilizers are employed and studied for their dual action in plant growth promotion and
mitigating abiotic stress [62]. Stress tolerance in plants has been reported to improve with
a wide range of NFs. This includes CeO2 NPs and nanofertilizers (N, P, K, Zn, Fe) [63];
nanoboron, nanosilica, and nanozinc [64]; nano-urea-amorphous calcium phosphate (NU-
ACP) [65]; nano-liposome-containing Fe2+ [66]; nanochelated fertilizer (N, P, K, Fe, Zn,
Mn) [67], etc. These NFs have been shown to enhance the uptake of nutrients, improve
growth and photosynthetic performance under drought, increase biomass, increase cell
membrane stability under salinity stress, etc. [68].

Biotic stresses in plants include infections due to bacteria, fungi, nematodes, insects,
viruses, etc. The most common pathogens in crops are bacteria and fungi. They cause
various diseases in crop plants and hamper productivity [59]. Numerous Gram-positive
and Gram-negative bacterial pathogens are reported to be inhibited by the application
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of NPs [69,70]. Various zinc nanoparticles and composites have been explored against
Xanthomonas axonopodis pv. Phaseoli, X. citri, X. oryzae pv. Oryzae (strain GZ 0003), etc. [71].
Fungal pathogens belonging to genera, such as Fusarium, Pythium, Aspergillus,
Colletotrichum, etc., are effectively controlled by Cu, CuO, ZnO, Ag, Au, MgO, TiO, and
nanoparticles [72]. Ralstonia solanacearum, a soil-borne causative agent of bacterial wilt
in tomatoes, can be efficiently managed through CuO, ZnO, and FeO NPs [73]. Various
antiviral nanomaterials are also competent against plant viruses, such as Turnip Mosaic
virus (TuMV) in tobacco [74], barley yellow mosaic virus (BaYMV), potato virus Y (PVY),
and tomato mosaic virus (ToMV), and many more can be controlled using various nanopar-
ticles [75]. Thus, the stress due to various biotic stress components can be mitigated using
nanomaterials in an eco-friendly and sustainable way [76].

8. Large-Scale Production and Commercialization of Nanofertilizers

A great deal of attention has been paid to the development of processes for producing
NMs on a commercial and large-scale in the past decade. Many of the nano-derived
products are already available. Nevertheless, large-scale industrial production of NFs has
not yet been achieved. Nanofertilizers need to be well-characterized and well-identified
before they can be applied to agriculture. Prior to commercialization, thorough studies and
science-based evidence are necessary. Large-scale production of NFs is currently lacking
due to reports indicating their toxicity at higher concentrations, a lack of soil- or field-based
research focusing on crop nutrients, the type of nanomaterial used as fertilizer, an effective
and efficient method of application, and most importantly, the lack of economically efficient
production technology. A detailed field study and research findings are needed to motivate
industries to produce NFs [77].

Currently, there are no diseases that have been reported to be directly linked to
nanoparticles and their functionalized products. Commercial production, however, should
be preceded by establishing ethical guidelines and safety measures before they are used in
agriculture and in humans. NPs can cross the membrane barrier due to their size, allowing
them to enter the human body in a multimodal manner. These issues need to be addressed
urgently. However, using NFs in agriculture has been reported to have beneficial, growth-
promoting effects at very low concentrations. Considering various research studies, it is
evident that NFs do not cause any significant toxic effect on the environment at such low
concentrations [78–81].

At the laboratory scale, NFs are produced by using various biological and precursor
materials, such as bacteria, fungi, and plants (demonstrated in Figures 2 and 3 below) [4].
In view of the beneficial properties shown by nanofertilizers, more attention has been
given to the initiation of development and commercial production. The idea of NFs being
commercialized is still in its early stages, and it will take time and effort to become popular.
There are very few NFs that are produced on a large scale. Further increase in production
scale will require a thorough investigation of technology and scientific research. This must
be followed by setting up pilot plants prior to full-scale production. Simultaneously, a
well-versed quality check facility and the low-cost production of the final product must be
the key factors taken into consideration. By overcoming all the above-mentioned problems,
the target of large-scale production can be achieved.
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9. Modes of Nanofertilizers Application

There are different ways of applying NFs, including soil application, seed treatment,
foliar spray, dusting, fogging, emulsion, etc. A few methods are described below. In Table 1,
different nanoparticles are shown with their host plant, their mode of application, and their
mode of action.

9.1. Soil Application

Soil application is the most common method of providing a nutrient supplement to
plants. It is critical to consider various factors, such as how long the fertilizer will stay
in the soil, soil texture, soil salinity, plant sensitivity to salts, salt content, and pH of the
modification, when applying this method of fertilizer. When fertilizers are mixed in the soil,
the exposure and localized concentration of the particles become much higher as compared
to foliar spray [16]. Negative soil particles affect the adsorption of mineral nutrients. The
anion exchange capacity of most agricultural soils is less than the cation exchange capacity.
Nitrate, among the anion, remains mobile in soil solution and is susceptible to leaching by
water passing through the soil [82].

9.2. Seed Treatment

Seed treatment or soil application of fertilizer is based on nutrient deficiencies in the
soil, whereas foliar application is based on plant symptoms of nutrient deficiency [83]. Iron
oxide (Fe3O4) NPs are known for their root elongation and growth promotion activity in
the case of rice plants. However, above higher concentrations, they cause phytotoxicity [49].
Seedling growth promotion is seen in maize when treated with copper-chitosan (Cu-Cht)
NPs [23]. Similarly, manganese NPs are reported to exhibit induction and enhanced nitro-
gen metabolism in non-nodulated plants [51]. Nano-TiO2 promotes the growth of naturally
aged seeds of spinach [52]. Nickle NPs show a prominent effect on the morphophysiologi-
cal features of wheat [53]. The literature indicates that the various types of NPs thus can be
used as potent seed priming and germination promotion agents.

9.3. Foliar Spray

In this method of application, liquid fertilizers are directly applied. Foliar fertilization
provides speedy utilization of nutrients, and it takes less time to replenish the observed
deficiencies than soil application. Comparative investigations of nanoparticle delivery
to plants by spraying on the leaves versus soil amendment show that foliar application
has substantial advantages for nanoscale nutrient uptake. For some of the immobilized
nutrients in the soil, such as iron, manganese, and copper, the foliar application is more
effective and economical compared to soil application. The limitations of this method are
specific times (morning and evening) of spraying, as the stomata are open during these time
periods. Additionally, there is the possibility of plant damage if the correct concentration of
fertilizers is not applied [83].

9.4. Aeroponics Treatment

Aeroponics is an effective technique for the soilless cultivation of horticultural crop
plants, in which nutrients are made available through the mist of oxygen in the growth
chamber [84]. Here, nutrient materials are continuously made available to plants as foliar
sprays or in the form of dust on the roots [85]. The gaseous exchange in plants occurs
through the stomatal openings. Nanofertilizers can be much more beneficial compared to
chemical fertilizers and can be used instead of micronutrients. These NFs increase nutrient
efficiency by 2–20%. As the rate of nanosized nutrient uptake depends upon their size
and shape. It is easier for smaller particles to penetrate the cuticle and for larger particles
to pass through non-cuticle parts, such as hydathodes, stomata, and stigma. Thus, NFs
can be designed to be the desired size and shape for use in aeroponics treatment based
on the requirements and expected effect on the plant body [86]. The technique of using
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nanofertilizers for aeroponic treatments could be an efficient way of optimizing nutrient
utilization with minimal losses.

9.5. Hydroponics Treatment

Hydroponics technology utilizes micronutrients in a soil-less manner, where water is
the main supply medium. NFs can be made available to hydroponic systems in the form
of stable colloids of nano-encapsulated plant nutrients. Micro- and macro-nutrients and
other agrochemicals can be encapsulated in nanoparticles and used for the treatment of
hydroponic systems [87]. The development of thorough and comprehensive knowledge
must be the primary goal for the application of NFs in aeroponics and hydroponics based
on detailed research. Nanotechnology-based approaches are, therefore, proving to be an
effective methodology for nutrient utilization and negligible resource loss [80,82,87–89].

10. Mechanism of Uptake of NFs by Plants

The uptake, translocation, and aggregation of nanoparticles are subject to plant species,
age, growth environment, and the physicochemical properties, functionalization, stability,
and mode of delivery of nanoparticles. The pathways for the uptake and transportation of
NFs are illustrated in Figure 4.

Agrochemicals 2023, 2, FOR PEER REVIEW 12 
 

 
Figure 4. The uptake of nanofertilizers (NFs) via various channels and their translocation paths 
across multiple plant sections are depicted schematically. (A) NF traits affect absorption and trans-
location in plants: (a) T.S. of maize leaf and (b) T.S. of maize roots. (B) NFs may use apoplastic or 
simplistic pathways for moving up and down. (C) Various strategies were proposed for the internal 
distribution of NFs inside the cells through endocytosis and pore formation mediated by carrier 
proteins via plasmodesmata (Adapted with permission from Reference [56], published by Nano-
materials, MDPI, 2022). 

 

Figure 4. The uptake of nanofertilizers (NFs) via various channels and their translocation paths across
multiple plant sections are depicted schematically. (A) NF traits affect absorption and translocation
in plants: (a) T.S. of maize leaf and (b) T.S. of maize roots. (B) NFs may use apoplastic or simplistic
pathways for moving up and down. (C) Various strategies were proposed for the internal distribu-
tion of NFs inside the cells through endocytosis and pore formation mediated by carrier proteins
via plasmodesmata (Adapted with permission from Reference [56], published by Nanomaterials,
MDPI, 2022).

NFs enter plant tissue either through roots or through upper parts. The size, shape,
and interaction behavior of nanoparticles with cell walls are also crucial factors in the
absorption of NFs in plants. The size exclusion limit of the cell wall (5–20 nm) acts as a
barrier that limits the entry of larger particles into plant cells [90]. As a result of surface-
functionalized nanoparticles, the pore size is enlarged, or a new cell wall pore is induced,
improving nanoparticle uptake. The schematic translocation of the nanofertilizers in the
cellular mechanisms of the plant systems is illustrated in Figure 5 below.
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Figure 5. Mechanistic understanding of nanoparticle transport within plant cells. The representation
describes how nanoparticles transport through apoplast and symplast pathways in plant cells, along
with the pressure gradient or mass flow of the photosynthetic product. The inset represents the
favorable transport of the nanostructure (rod shape) more through the apoplast pathway than the
symplast pathway. NPs stand for nanoparticles. The color gradient in the phloem represents the mass
concentration of photosynthesized nanoparticles. (Adapted with permission from Reference [16],
published by Frontiers, 2016).

Other possible routes for the uptake of nanoparticles into plant cells include binding to
carrier proteins through aquaporin, ion channels, and complex formation with membrane
transporters, root exudates, or endocytosis [91,92]. Nanocarriers protect encapsulated
nutrients from soil filtration and retain them in the soil around the roots. Encapsulated
components may enter the soil network through hydrogen bonds, molecular forces, surface
tension, or viscous forces, thus extending their spatial scale [93]. For foliar applications,
NPs may penetrate through stomata or the base of the trichome in leaves or cuticles [91].
After entering the cell through stomatal openings, nanoparticles can be transported apoplas-
tically or symplastically through the vascular system. The NPs may be transported via
plasmodesmata from one cell to the other.

NPs are well known for their regulatory effect on plant growth. However, above
certain concentrations, the negative impact starts to appear. The fate of nanoparticles and
their eco-toxicity is an attribute of their unique physio-chemical properties. Among all the
nanoparticles, almost all types of nanoparticles cause either phytotoxicity or genotoxicity
depending upon their structure and functionalization. Phytotoxicity is directly related to
the NPs availability to the plants and soil surrounding them. Thus, the unnecessary release
of the NPs into the environment will surely lead to their increased interaction with the flora
and fauna present in the ecosystem. This may trigger oxidative stress and will interfere with
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plant growth regulation and may lead to genotoxicity. To ameliorate these toxicities due to
NPs, it is required to design globally accepted detection and characterization techniques.
It is necessary to define the permissible limit of NPs considering every aspect of the
application mode. Further research and appropriate funds are needed to understand the
NPs’ mechanism of interaction with environmental components and epigenetic factors.
A thorough understanding of manufacturing techniques, detection and characterization,
methods of application, dosage optimization, monitoring their release into the ecosystem,
and risk assessment is required [94].

11. Current Status of Nanofertilizers in Crop Production

In recent agricultural practices, nanofertilizers are readily available in marketplaces,
but specifically, agricultural fertilizers are still not designed by the leading fertilizer com-
panies [95]. Studies of the nanofertilizers uptake from the soil, their bioavailability, and
possible toxicity of several metal oxides NPs, such as Al2O3, TiO2, CeO2, FeO, and ZnO.
NPs were supported intensively in the present decade for agricultural productivity [77].
Some of the leading producers of nanofertilizers are listed below (Table 4).

Table 4. Some commercial products of nanofertilizers [53,95–97].

Commercial Product Content Company

Nano-GroTM Plant growth regulator and immunity enhancer Agro Nanotechnology Corp.,
Miami, FL, USA

Nano Green Extracts of corn, grain, soybeans, potatoes, coconut, and palm Nano Green Sciences, Inc., Delhi,
India

Nano-Ag Answer® Microorganisms, sea kelp, and mineral electrolyte Urth Agriculture, Monterey, CA,
USA

Biozar Nano-Fertilizer Combination of organic materials, micronutrients, and
macromolecules

Fanavar Nano-Pazhoohesh
Markazi Company, Tehran, Iran

Nano Max NPK Fertilizer
Multiple organic acids chelated with major nutrients, amino acids,
organic carbon, organic micronutrients/trace elements, vitamins,

and probiotics

JU Agri Sciences Pvt. Ltd.,
Janakpuri, New Delhi, India

Master Nano Chitosan Organic
Fertilizer

Water soluble liquid chitosan, organic acid, salicylic acids, and
phenolic compounds

Pannaraj Intertrade, Bangkok,
Thailand

TAG NANO (NPK, PhoS, Zinc, Cal,
etc.) fertilizers

Proteino-lacto-gluconate chelated with micronutrients, vitamins,
probiotics, seaweed extracts, and humic acid

Tropical Agrosystem India (P)
Ltd., Karnal, India

Nualgi Foliar Spray Combining 12 essential nutrients loaded in nano-silica
(henceforth NF-A)

Nualgi America, Inc., San Marcos,
CA, USA

[97]

NovaLand-Nano Nano macro- and micro-elements for plant growth
(henceforth NF-B)

Land Green & Technology Co.,
Ltd., Taiwan

[97]

Titanium dioxide [TiO2]—universal
pigment [20 nm] Titanium dioxide 99% Land Green & Technology Co.,

Ltd., Taiwan

Silicon dioxide [SiO2]—universal
stabilizer agent [20–60 nm] Silicon dioxide 99% Land Green & Technology Co.,

Ltd., Taiwan

Manganese dioxide
[MnO2]—universal purifier [1–50 nm] Manganese dioxide 99.9% Land Green & Technology Co.,

Ltd., Taiwan

Selenium colloid [Se]—universal
antioxidant [1–20 nm] Selenium colloid 99.9% Land Green & Technology Co.,

Ltd., Taiwan

Nano Urea (Liquid) Nitrogen supplement for crops
Indian Farmers Fertilizer

Cooperative Ltd., New Delhi,
India

Poly olefin resin-coated urea N supplement for plants Japan

Neem Coated Urea N supplement for plants Aditya Birla Nuvo Ltd., Veraval,
India

nano-organic compound fertilizer Plant Growth promoters in vegetables, crops, and flowers Lazuriton Nano Biotechnology
Co., Ltd., Taiwan
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Table 4. Cont.

Commercial Product Content Company

Hibong biological fulvic acid
Nano fertilizer, humic acid. Chitosan oligosacchairides ≥ 30 g/L,

N ≥ 46 g/L, P2O5 ≥ 21 g/L, K2O ≥ 62 g/L, organic
matter: 130 g/L

Qingdao Hibong Fertilizer Co.,
Ltd., Qingdao, China

Seaweed nano organic carbon
fertilizer

NPK: 2–3–3, seaweed extract ≥ 5%, organic matter: 35%,
humic acid ≥ 5%, amino acid ≥ 5%

Qingdao Hibong Fertilizer Co.,
Ltd., Qingdao, China

Supplementary powder
(Nano capsule)

N, 0.5%; K2O, 3.9%; Ca, 2.0%; Mg, 0.2%; S, 0.75%; P2O5, 0.7%; Fe,
0.03%; Cu, 0.007%; Zn, 0.004%; Mn, 0.004%;

The Best International Network
Co., Ltd., Bangkok, Thailand

TAG nano (NPK, Zinc, PhoS, Cal, etc.)
fertilizers

Proteino-lacto-gluconate chelated with micronutrients,
vitamins, probiotics, seaweed extracts, and humic acid

Tropical Agrosystem India (P)
Ltd., New Delhi, India

P, K Fertilizer with a high content of P (30%) and K (20%) Fosvit K30; Kimitec Group, Spain

B Used as micronutrient Nano Bor 20%; Alert Biotech,
Nashik, India

Zn Growth enhancer Nano Zinc Chelate Fertilizer;
AFME Trading Group, UK

Fe, Ca Plant growth regulator and accelerator
Nano Iron and Calcium,

Potassium Chelate Fertilizer;
AFME Trading Group, UK

Nano micronutrient (EcoStar) (500) g Zn, 6%; B, 2%; Cu, 1%; Fe, 6%+; EDTA Mo, 0.05%; Mn, 5%+; and
AMINOS, 5%

Shan Maw Myae Trading Co.,
Ltd., Yangon, India

Nano ultra-fertilizer (500) g Organic matter, 5.5%; nitrogen, 10%; P2O5, 9%; K2O, 14%; P2O5, 8%;
K2O, 14%; and MgO, 3%

SMTET Eco-technologies Co., Ltd.,
Taiwan

Nano calcium (magic green) (1) kg
CaCO3, 77.9%; MgCO3, 7.4%; SiO2, 7.47%; K, 0.2%; Na, 0.03%; P.,
0.02%; Fe-7.4 ppm; Al2O3, 6.3 ppm; Sr, 804 ppm; sulfate, 278 ppm;

Ba, 174 ppm; Mn, 172 ppm; and Zn, 10 ppm

AC International Network Co.,
Ltd., Germany

PPC nano (120) mL M protein, 19.6%; Na2O, 0.3%; K2O, 2.1%; (NH4)2SO4, 1.7%; and
diluent, 76%

WAI International Development
Co., Ltd., Sungai Buloh, Malaysia

Plant nutrition powder (green nano) N, 0.5%; P2O5, 0.7%; K2O, 3.9%; Ca, 2.0%; Mg, 0.2%; S, 0.8%; Fe,
1.0%; Mn, 49 ppm; Cu, 17 ppm; and Zn, 12 ppm

Green Organic World Co., Ltd.,
Surin, Thailand

In the present century, smart agriculture is a way to achieve priority of short- and
long-term development in the countenance of climate change and serves as a link to
others [98]. It seeks to support countries and other functional aspects in securing the
necessary agricultural functions [99].

Recently, studies have focused on understanding the effect of nanofertilizers on plants
based on the growing conditions in the farming system. Nanofertilizer encourages to
development of plant growth parameters, such as the height of plants, number of leaves per
plant, leaf area, the difference in fresh and dry matter content, chlorophyll content, roots,
and rate of photosynthesis. This results in keen consideration of an increase in the yield due
to a higher translocation rate of photosynthesis to various parts of the plant as compared
to chemical fertilizers. Some specialists are focusing on improving the nutrient efficiency
of plants depending on nanotechnology (nanofertilizers) [100–102]. The studies related
to growth parameters need firm acceptability of the nanofertilizers followed by thorough
field experiments. Thus, assisting the researchers and policymakers in the recommendation
of the application of specific dosages in the actual fields on a bulk level without causing a
significant hazardous effect on the environment would be required.

12. Fabrication of Safe Nanofertilizers

There is an urgent need for designing and fabricating NFs with the desired catalytic
activity. This is due to various factors, such as decreasing crop yield, loss in organic content
of the soil, increased multi-nutrient deficiency, and adverse climate. NMs or NPs for
nanofertilizers can be synthesized by different approaches, top-down, bottom-up, or using
biological approaches [5,103]. NPs can bind cargo molecules and control their release, for
example, micronutrients making them an efficient system for target-specific delivery of
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loaded nutritional molecules [104,105]. Thus, the release of fertilizers over a longer period
minimizes nutrient loss while considering environmental safety [106,107].

Several physical and chemical methods have been reported for the synthesis of NFs.
The inert gas condensation method [108,109], aerosol synthesis method [110], high energy
ball mill [111,112], bottom-up and top-down approaches [113,114], mechanical attrition,
mechanical alloying [115], etc., are examples of physical methods. Methods for chemical
synthesis of NPs include chemical vapor deposition [116], chemical precipitation [117], a
sol-gel technique [118], electrodeposition [119], photochemical synthesis [120], etc. Unfor-
tunately, these methods have some major disadvantages, such as source and precursor
incompatibility, evaporation rate, flow rate, gas composition, impurities, costly production,
high-temperature requirements, etc. [121]. To overcome these drawbacks, the methods of
NPs and NMs fabrication must be designed in such a way that they are safe for operating
personnel. In addition, they must cause no harm to humans or the environment. For this,
biosafety measures must be followed when manufacturing NPs [122,123].

In order to prevent any harm to the ecosystem and humans due to chemical or phys-
ical methods, an alternative biological method of nanofertilizer synthesis is used [124].
Biological methods of NFs synthesis have received increasing attention to cope with the
growing need and demands to develop reliable, environmentally safe, and non-toxic
methods [125]. Biosynthesized NPs have a higher surface-to-volume ratio, higher catalytic
reactivity, and better contact between biomolecules and metal salts. Several biomolecules
and organic compounds are involved in the stabilization of nanoparticles, including
proteins, enzymes, sugars, and various phytochemical compounds, such as terpenoids,
phenolics, etc. [14,122,124,126]. The biosafety of NFs is an integral part of precision agricul-
ture for a sustainable future [127]. Despite their wide applications, the impacts of NPs on
humans and the environment are unknown. There is a need not only to understand their
adverse effects but also to develop guidelines for their agricultural applications [128]. Bio-
catalytic activity and secured applications of NPs are attributed to their size and structure,
the precursor used, the method of synthesis, the biomaterial used for stabilization, etc. As
a result, it becomes imperative to determine the active concentration, optimum size, and
shape to evaluate the toxicity effects of NPs [76,122,129].

13. Challenges in Nanofertilizers Application

In agriculture, nanomaterials can be applied as nanofertilizers and as carriers of
fungicides/pesticides. NFs are used as growth promoters, soil fertilizers, and to improve
the quality and quantity of agricultural produce [130]. NFs are one of the key components of
nano-based precision and sustainable farming and field applications [38,131]. Less efficient
utilization of chemical fertilizers leads to the accumulation of chemicals in water bodies,
causing eutrophication. In order to overcome this, nano-based products are becoming
increasingly popular for field applications in agriculture. For field application of NFs,
it is deemed necessary to thoroughly evaluate their optimum activity and concentration
for the most effective results considering high yields and low losses [96]. To reduce the
likelihood of harm to other biotic factors in the ecosystem, residual amounts of NFs should
be quantified during in planta studies [132].

Meanwhile, safety measures should be designed and implemented at the same time.
This is in order to define the type, size, and shape of nanoparticles that can be used for crop
production. Along with solubility, stability, surface reactivity, and charges, these factors
perform a major role in agricultural production. The reactivity of NFs in plants is still
non-specific and irrespective of the plant species under investigation possibly because
there are no defined protocols for their field applications. Inevitably, the mechanism of
NFs and other nano-based agrochemicals and their absorption in plants is still not well
understood [96,133]. Research groups, sponsoring organizations, policymakers, and leaders
of the private and public sectors working in related fields must heed the call to familiarize
themselves with specific guidelines for the use of NFs that maintain farmers at the center
of the status quo [134].



Agrochemicals 2023, 2 272

14. Prospects and Future Directions

Extensive research is required to understand the characteristics of nanofertilizers, the
mechanism of action of nanofertilizers concerning the mode of application and type of NFs
and their impact on the plant. When the concentration of NFs exceeds a certain limit, it can
negatively affect plants, such as stunting their growth and yield. Hence, optimization of the
dose quantity of different NFs for different plants is very critical. A systematic and in-depth
analysis concerning the possible health impacts, clearance, and safe disposal of NMs can
lead to enhancements in the designing of additional applications of nanofertilizers [135].

Thus, it is strongly recommended that future research should be focused on defining
the dosage for field application of nanofertilizers on a commercial level. The technological
development should primarily focus on the farmer-centric recommendations of nanofertil-
izers. Furthermore, it is expected that the development and validation of nanofertilizers
will contrast the production of chemical fertilizers, promoting the nanofertilizer industry.
This will help policymakers to decide the dosage and time for nanofertilizer application.

The delivery of nanofertilizers as next-generation fertilizers for agricultural appli-
cations faces difficulties even though they are both economically and environmentally
sustainable. Along with scaling up the procedure for large-scale distribution, it is necessary
to guarantee the availability of raw materials for the synthesis of NFs on an industrial scale.
Once these issues are resolved, it will be simple to produce commercially viable NFs using
the appropriate processes, which will pave the way for a day when even a minimal amount
of use of these fertilizers will result in the desired higher agricultural yield [136,137].

To ensure ongoing development and technological commercialization, an integrated
analysis of these smart fertilizers based on nanotechnology can also be carried out. If slow
release nanofertilizers can be advanced to have a remarkable impact on the environment,
energy, and economy, it will be a major success. Additionally, to make nanofertilizers an
economically feasible endeavor, research and technological interventions that concentrate
on the optimization of manufacturing processes and the search for affordable non-polluting
or biodegradable continuous matrix materials are advised.

To enable efficient restoration, approaches that can sensitively and selectively detect
and monitor environmental contaminants in various biological matrices are required.
Additionally, it is critical that governments and businesses support research teams that are
testing the safety of nanomaterials using various animal models. This research will serve
as the foundation for more effective regulations, which are still insufficient or nonexistent
in certain nations [136,137].

15. Conclusions

The world population is increasing, and so is the need to produce more food. Nutrient
deficiency is a major cause of low crop productivity and significant economic losses in the
agriculture sector. Even though chemical fertilizer applications can boost crop productivity,
it is not a viable option in the long run. A vital effort of current agricultural research is
to find an alternative to chemical fertilizers, which would enable a more environmentally
friendly approach to agriculture.

In recent years, nanotechnology has emerged as a significant component of the agri-
culture industry. Smart fertilizers based on nanotechnology have been created to enhance
agricultural yields and improve soil health. Furthermore, an integrated study of these nano-
based smart fertilizers can be undertaken to assure ongoing technological improvements
and commercialization. This analysis should concentrate on optimizing fabrication tech-
niques and identifying non-toxic or biodegradable, low-cost continuous matrix materials
to make nanofertilizers economically viable businesses.

The potential implications of this research are enormous, particularly in terms of
improving environmental sustainability and energy efficiency in farming methods around
the world. Slow release nanofertilizer solutions, for example, might cut water usage by
up to 20% while increasing nutrient uptake by up to 40%. Furthermore, when improved
production techniques are applied on a large scale in various nations across the world,
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there will be less need for chemical-based fertilizer applications, resulting in decreased
carbon emissions related to agricultural activities.

It is expected that nanofertilizers will change the way we think about sustainable
farming practices around the world, leading to more efficient use of resources, such as water
and land, while lowering reliance on hazardous chemicals that can harm our ecosystem
over time. Slow release nanofertilizers may really have a phenomenal impact not only on
our environment but also on energy consumption levels and economic growth in many
locations throughout the world, with sustained support from both public institutions and
private corporations, universities, farmer groups, and so on.
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