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Abstract: Controversy over the oncogenicity of glyphosate-based herbicides (GBHs) persists seven
years after a 2015 IARC Monograph classified glyphosate/GBHs as “probably carcinogenic” to
humans. Most regulatory authorities have concluded that technical glyphosate poses little or no
oncogenic risk via dietary exposure. The US EPA classified glyphosate as “not likely” to pose cancer
risk in 1991, a decision reaffirmed in reports issued in 2017 and 2020. A Federal Circuit Court of
Appeals in the US vacated EPA’s assessment of glyphosate human-health risks in 2022 and required
EPA to revisit old and take into account new data in its forthcoming, possibly final glyphosate/GBH
reregistration decision. Divergent assessments of GBH genotoxicity are the primary reason for
differing conclusions regarding GBH oncogenic potential. We assessed whether assays published
since completion of the EPA and IARC reviews shed new light on glyphosate/GBH genotoxicity. We
found 94 such assays, 33 testing technical glyphosate (73% positive) and 61 on GBHs (95% positive).
Seven of 7 in vivo human studies report positive results. In light of genotoxicity results published
since 2015, the conclusion that GBHs pose no risk of cancer via a genotoxic mechanism is untenable.
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1. Introduction

Measured as pounds of active ingredient applied, glyphosate-based herbicides (GBHs)
remain the most heavily applied pesticide ever, both in the US and globally [1–3]. Further
diversification continues in the places, reasons, and methods by which GBHs are applied
and the ways people are exposed.

Unlike nearly all other pesticides, GBHs are widely used by farmers, ranchers, and
forestry workers, as well as in non-agricultural treatments around homes, farmsteads,
industrial facilities, rights-of-way, transportation corridors and a diversity of public spaces.
For these reasons, there are numerous GBH application and exposure pathways and
scenarios that sometimes lead to high dermal exposures [4–9] compared to typical dietary
intake [10,11].

Non-agricultural applications with small-scale equipment (including a simple hand-
held wand) can lead to markedly higher applicator exposures per pound/kilogram of
active ingredient applied (or per area treated) compared to GBH applications made by oper-
ators who drive machines equipped with enclosed, steel-glass cabs and active air-filtration
systems.

Dietary exposure is now ubiquitous as evident in the high percent of urine samples
found to contain glyphosate residues and its primary metabolite, aminomethylphosphonic
acid (AMPA) [11–18]. It is highly likely that more people are exposed to GBHs occupa-
tionally, and from incidental contact with spray solution, than any other pesticide and
these exposures almost certainly account for the majority of GBH high-exposure incidents
worldwide.
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The global commercialization of genetically engineered, Roundup Ready (RR) soybean,
cotton, and corn seeds began in 1996. This was arguably the most rapid and successful major
new technology-package launch in the history of agriculture [1,19]. Roundup Ready seeds
simplified complex and challenging weed-management systems that were increasingly
plagued by the spread of herbicide-resistant weeds. The RR system appeared in the early
years to solve several problems: damage to subsequent crops from herbicide carryover in
the soil, high costs, and poor or spotty control.

Just 5 years after market entry in the US, farmers planted GMO soybean and cotton
seeds on ~90% of the acres planted to these two crops [1,20,21]. Widespread planting
of GMO corn, alfalfa, and sugar beet seeds soon followed in many countries. By 2000,
glyphosate had become the most heavily applied agricultural pesticide in the US, eclipsing
atrazine [3]. Just 5 years later, glyphosate use had doubled (78.8 to 157.5 million pounds in
2005). It subsequently tripled by 2011 and continued to grow thereafter [1].

A growing body of evidence points to GBH exposure-driven adverse impacts on
human reproduction [22–29] and upon the incidence of certain cancers, especially non-
Hodgkin lymphoma [30–43]. The first evidence of adverse reproductive impacts emerged
before the introduction of Roundup Ready seeds. Arbuckle et al. [25] (2001) reported an
elevated odds ratio for late-term spontaneous abortions in women from farm families with
preconception glyphosate exposure. Another study from 2002 documented increased risk
of adverse neurobehavioral effects in children born to applicators of glyphosate [26]. Four
birth cohort studies published since 2018 have reported associations between glyphosate
and/or AMPA exposure and pre-term birth and/or low-birth weights [23,24,28,44]. Eaton
et al. (2022) reported that elevated prenatal AMPA exposures were linked to increased risk
of oxidative stress and inflammation during pregnancy [22]. Both of these conditions are
known risk factors for pre-term birth.

Rising GBH use, coupled with recent studies reporting linkages between GBHs and
certain adverse health outcomes in experimental animals and humans, have intensified
scientific and regulatory scrutiny of GBH uses, exposures, and public-health outcomes.

Since 2015 litigation has been underway in the US pursued by individuals alleging
their occupational, dermal exposures to Roundup and/or other GBHs caused or con-
tributed to their non-Hodgkin lymphoma (NHL) [45]. This litigation has triggered an
extensive reassessment of both published glyphosate studies and pesticide-registrant data.
This reassessment focuses on GBH toxicity, exposure, metabolism, pharmacokinetics, geno-
toxicity, and cancer risk. In addition, the reassessment has brought into the public arena a
large number of internal pesticide-manufacturer studies. These include regulatory submis-
sions, emails, and planning and regulatory-response documents generally referred to as the
“Monsanto Papers” [46]. Collectively, these documents provide a historical accounting of
what Monsanto understood about Roundup toxicity and risks since first approval in 1974.

The authors of this paper have been involved in the Roundup-NHL litigation as
testifying experts and/or consultants working with plaintiff law firms. The opportunity
to serve in this capacity has afforded the time and resources to carry out a comprehensive
appraisal of both published and proprietary, registrant-commissioned studies on GBH
toxicity and cancer risk.

The Toxicology Branch within the Office of Pesticide Programs (OPP) in the US EPA
(OPP/EPA) classified glyphosate as a “possible oncogen” in 1984–1985 based on a finding
of renal tubular adenomas in male mice. This action by OPP set in motion a seven-year
debate between OPP and Monsanto that came to focus on the presence of a single renal
tumor in control mouse #1028. Several Monsanto scientists and consultants argued that a
tumor in control mouse #1028 had been missed in the initial histopathological examination,
an argument ultimately accepted by a Scientific Advisory Panel convened to assist OPP
resolve the stalemate between Monsanto and OPP scientists [47].

In response to new data, the OPP/EPA reclassified glyphosate in 1991 as “not likely”
to pose cancer risk, a decision reaffirmed in 2017 [3] and 2020 [48]. However, in 2022
the OPP/EPA withdrew its proposed interim glyphosate reregistration decision and its
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supporting human-health risk assessment after the 9th Circuit Court of Appeals vacated
the glyphosate risk assessment and cancer classification decision [48–50]. The 9th Circuit
explained in its order that in light of EPA cancer risk assessment guidelines, the panel of
judges could not reconcile the substantial evidence of a link between GBH exposure and
cancer (as discussed in the OPP Glyphosate Issue Paper) with the OPP decision to classify
glyphosate as “not likely” to cause cancer.

In 2015, the International Agency for Research on Cancer (IARC) classified glyphosate/
GBHs as a Group 2A “probable human carcinogen” [30,51]. Additionally, in 2015 at the
request of the EPA Administrator, the agency’s Office of Research and Development (ORD)
carried out an assessment of the data and basis of the OPP and IARC Working Group
classification decisions [52]. The ORD ad hoc committee review focused on the degree to
which the final classification judgements adhered to the respective criteria and guidelines
governing EPA and IARC assessments of oncogenic potential.

In this paper we discuss OPP assessments and positions (OPP/EPA) in contrast to
those of the Office of Research and Development committee (ORD/EPA). The results of the
ORD/EPA assessment are recorded in two key documents [43,52] focusing on whether the
OPP/EPA and IARC classification decisions adhered to EPA’s and IARC’s stated cancer
risk-assessment guidelines and decision criteria.

The ORD committee concluded that neither the OPP/EPA nor the IARC Working
Group supported classification of glyphosate/GBHs as “proven” carcinogens. The ORD
scientists who conducted the review were divided on whether glyphosate should have
been classified as a “possible” or “probable” oncogen in light of the evidence and EPA
cancer risk-assessment guidelines [53].

Several published reviews address differences in the OPP/EPA and IARC assessments
of glyphosate/GBH carcinogenicity [32,54–56]. Other reviews and meta-analyses focus on
published epidemiology studies exploring whether dermal exposures to GBHs alter the
risk of NHL [31,34,37].

The authors of this paper argue herein that the primary reason OPP/EPA and IARC
reached markedly different cancer-classification decisions arises from divergent interpreta-
tions of glyphosate/GBH genotoxicity and mechanistic studies. The OPP/EPA focused
primarily on genotoxic assays carried out on pure, technical glyphosate and placed lit-
tle or no weight on published genotoxic studies on formulated GBHs, including several
in vivo studies [45]. These were some of the studies upon which the IARC Working Group
placed considerable weight in its final judgement that glyphosate/GBHs are “probably
carcinogenic” [30].

As of late 2015, more than 70% of published genotoxicity assays reported one or more
positive result, compared to about 1% of registrant-commissioned assays [54]. The stark
disparity between registrant-commissioned genotoxicity assays and studies conducted by
scientists not working on behalf of pesticide manufacturers raises questions about conflict-
of-interest bias, the methodologies deployed, and the quality of data available to assess
glyphosate/GBH genotoxicity.

Based on EPA cancer study and risk assessment guidelines [57], the OPP/EPA’s
“not likely” to pose cancer-risk classification decision depends heavily on the absence of
evidence of glyphosate/GBH mutagenic or genotoxic potential. This remains the case to
this day.

The dozens of genotoxicity assays published since 2016 shed new light on the onco-
genic potential of glyphosate-based herbicides. Other new science is deepening under-
standing of mechanisms. For example, a team composed of Centers for Disease Control and
Prevention (CDC) and National Institutes of Health (NIH) scientists has linked glyphosate
exposure levels in farmers to elevated markers of oxidative stress, concluding that their
data “strengthen existing evidence from studies that have reported associations between
glyphosate exposure and increased DNA damage” [58]. In addition, the CDC-NIH team
suggests that “these [oxidative stress] effects may apply broadly to the general population
who are primarily exposed through ingestion of contaminated food and water or residen-
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tial applications”. The breadth and consistency of recently published mechanistic data
warrants considerable weight as the Office of Pesticide Programs responds to shortcom-
ings highlighted by the 9th Circuit in the interim 2020 reregistration decision. Here, we
provide an overview of studies on glyphosate and/or GBH genotoxicity published since
completion of the EPA and IARC reviews in 2015. The findings of new studies are reported
and synthesized, with focus on their collective impact on a key question: “Does dermal
exposure to a GBH pose a risk of damage to DNA, and hence possibly increase the risk of
cancer among applicators and those occupationally exposed?”

2. Methods

This paper focuses on genotoxicity studies conducted since 2015 that were not refer-
enced or relied upon in the 2015–2016 glyphosate/GBH oncogenicity reports issued by the
OPP/EPA and IARC. We searched multiple databases to identify published papers assess-
ing the genotoxicity of glyphosate/GBHs. Other mechanisms that can lead to cancer are
beyond the scope of this review and include cell proliferation, immunologic, and epigenetic
effects. Databases searched include PubMed, Web of Science, and Google Scholar.

Identified studies are incorporated in the master table of assays completed (Sup-
plemental Table S5). Because of the size of the master table, Supplemental Tables S1–
S4 divide the master table into four sections roughly aligned with the way OPP/EPA
and IARC structured their respective genotoxicity reviews: Mammalian In vivo, Mam-
malian In vitro, Non-mammalian In Vivo, and Non-mammalian In vitro. Each row in
Supplemental Tables S1–S5 covers the results of a single assay. Columns report the citation,
test compound(s) and concentrations, test organism, assay or assays deployed, and primary
findings. Tables in the body of this paper are largely derived from these Supplemental
Tables.

We identified 80 studies published since 1/1/2016 reporting the results of genotoxicity
assays on technical glyphosate or GBHs [59–138]. Several studies reported results on both.
For these studies, two results are recorded in Supplemental Tables S1–S5, one for glyphosate
and one for GBHs. There are a total of 94 assay results on glyphosate and GBHs included
in the master table. A few studies also report results for AMPA, glyphosate’s primary
metabolite. A positive genotoxicity response in an assay testing AMPA is considered
evidence of a positive response to a GBH/glyphosate.

Some reviews of the glyphosate/GBH genotoxicity database focus on the number
of assays conducted and their results. Other reviews focus on the number of published
studies reporting positive/negative results in one or more assays. Most published studies
since 2015 have deployed multiple genotoxicity assays.

When the authors of a published study report one or more assay as indicative of a
genotoxic response, the results of such an assay or assays are recorded as “Positive” in
the present analysis. Likewise, assays regarded as negative for genotoxicity by authors
are recorded as “Negative” in our tables. Some studies report both positive and negative
assays, as well as some assays producing equivocal results.

Data and insights from unpublished, proprietary registrant-commissioned genotoxic-
ity assays on glyphosate, AMPA, and GBHs are derived from four primary sources:

• Published reviews commissioned and paid for by Monsanto [139–142].
• The final OPP and IARC glyphosate/GBH oncogenicity review documents [3,30].
• “Glyphosate. Study summaries for genotoxicity studies” issued by OPP [143].
• Descriptions of Monsanto and other registrant-commissioned genotoxicity assays

contained in expert reports, depositions and documents generated as a result of
ongoing Roundup-NHL litigation.

The fourth category noted above includes information that has become publicly
accessible as a consequence of the ongoing Roundup-NHL litigation via what is generally
referred to as the “Monsanto Papers” [46].
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3. Results

Table 1 provides an overview of the numbers of in vivo mammalian genotoxicity
assays published since release of OPP’s 2016 Glyphosate Issue Paper and the IARC Working
Group’s 2015 report. Supplemental Table S1 contains further details on individual study
designs, assays deployed, test concentrations, and findings. There were 5 assays in which
glyphosate technical was administered. A genotoxic response was reported in 4 of these
5 assays (80%).

Table 1. Mammalian In Vivo Genotoxicity Assays Published Since the EPA and IARC Reviews of
Glyphosate and GBH Oncogenicity.

Glyphosate Technical
Number of Assays 5

Positive 4

Percent Positive 80%

Formulated GBHs

Number of Assays 11

Positive 9

Percent Positive 82%

All New Studies

Number of Assays 16

Positive 13

Percent Positive 81%
Source: Supplemental Table S1.

Nine of 11 GBH in vivo assays in humans, rats, Holstein cows, and armadillos reported
positive responses. To date, seven assays analyzed genotoxicity in humans exposed to a
GBH, all of which reported positive responses (see Table 2). A biomonitoring and oxidative
stress study of 177 school-age children in Cyprus was conducted as part of an EU-wide
biomonitoring program [70]. The study reported a statistically significant association for
AMPA and 8-OHdG, a marker of oxidative stress, but not for glyphosate.

AMPA is the primary metabolite of glyphosate in food. Some studies have reported
statistically significant associations between AMPA and adverse health outcomes, but not
to glyphosate [22]. Makris et al. stated, “The lack of significant associations between
AMPA/GLY and lipid damage may suggest a biological mechanism of DNA damage for
AMPA”. We regard Makris et al. (2022) [70] as one of the 7 positive in vivo human studies
testing GBHs.

Kupske et al. (2021) studied 76 farmers/GBH applicators in Brazil using a micronuclei
(MN) assay and oral mucosa epithelial cells [67]. Applicators had applied a GBH for a
mean 5.5 eight-hour exposure days. Compared to unexposed controls, the 76 applicators
revealed a greater frequency of micronuclei (p = 0.0002), as well as broken egg (p = 0.001),
binucleation (p = 0.0001), and karyolysis (p = 0.0004). The buccal micronucleus cytome
assay (BMCA) assessed DNA damage in a population of coffee workers in the Dominican
Republic [66]. Several BCMA biomarkers showed statistically significant increases in the
frequency of nuclear anomalies in the exposed versus control group.

A study published in 2019 by Leite et al. provides evidence of a genotoxic response
as a result of GBH exposure [68]. This study tracked the impacts of aerial spraying of
GBHs and organophosphate insecticides. The authors reported that GBH applications and
volume applied accounted for most of the total pesticide use in the region.
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Table 2. Summary of Seven Human In Vivo Genotoxicity Studies.

Author & Date Study Design Methodology Reported Results Result

Bolognesi et
al., 2009 [144] Before v. after exposure MN * frequency in

peripheral leukocytes
There were significant increases in MN
frequency after glyphosate exposure. Positive

Hutter, 2018 [66] Exposed v. unexposed
pesticide workers

Buccal micronucleus
cytome assay

(MN frequency and
nuclear anomalies)

There were statistically significant
nuclear anomalies in pesticide-exposed

(primarily glyphosate) workers.
Positive

Kupske, 2021 [67] Before v. after exposure
MN frequency and other

cellular alterations in
buccal cells

There were significant increases in MN
frequency, broken egg cells,

binucleation, and karyolysis after
glyphosate exposure.

Positive

Leite, 2019 [68] Exposed v. unexposed
children

Buccal micronucleus
Comet assay

The study found higher frequency of
all damages analyzed (MN,

binucleation, broken egg, karyorrhexis,
karyolysis, pyknosis, and condensed

chromatin).

Positive

Lucia, 2022 [69] Post-menopausal women

Differentially methylated
probes (DNA methylation

was measured at over
850,000 CpG sites)

Biomonitoring
methodology

The study identified 17 CpG sites
(probes) at which a decrease in

methylation was associated with
increasing levels of urinary glyphosate.

Four genomic regions, all located
within gene promoters, were
significantly associated with
glyphosate levels in >90% of

subsamples.

Positive

Makris, 2020 [70] Children 10–11 years old

Oxidative stress was
assessed with
immunoassay

measurements of marker
8-iso-PGF2a for lipid

damage and 8-OHdG as a
DNA oxidative damage

marker.
Biomonitoring
methodology

The DNA oxidative damage marker
(8-OHdG) was positively associated

with AMPA (beta = 0.17; 95% CI: 0.02,
0.31, p = 0.03 cr2, and beta = 0.12; 95%
CI: 0.0, 0.24, p = 0.06, cr1), but not with

GLY (p > 0.05).

Positive

Paz-y-Miño, 2007 [145] Exposed v. unexposed Comet assay

The results showed a higher degree of
DNA damage in the exposed group

(comet length = 35.5 pm) compared to
the control group (comet length = 25.9
4 pm), suggesting that the formulation
used during aerial spraying glyphosate
had a genotoxic effect on the exposed

individuals.

Positive

* Micronuclei.

Leite et al. evaluated human biomarkers within: (1) a community surrounded by trans-
genic Roundup Ready soybean crops, and (2) a control group of children born and residing
in a community dedicated to family agriculture with predominantly biological control of
pests and little or no use of GBHs. The study measured biomarker buccal micronucleus
(with other nuclear abnormalities) together with a comet assay analysis in the exposed
and unexposed groups to determine frequency of DNA and cellular damage. The study
reported statistically significant differences between exposed and unexposed groups. No-
tably, higher frequencies were observed in the exposed groups for: micronucleus, increased
binucleated, broken egg, karyorrhexis, karyolysis, pyknosis, and condensed chromatin. The
study compared children exposed to pesticides to children largely unexposed to pesticides
and found that the exposed group experienced greater DNA damage.

An epigenome-wide association study by Lucia et al. explored differences in methy-
lation patterns among 299 post-menopausal women [69]. The SF3B2 gene plays a role in
RNA splicing and DNA repair. The authors reported that glyphosate and AMPA altered
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methylation patterns near the SF3B2 and other genes associated with cancer and endocrine
disruption in ways that elevate or promote cancer risk.

Both EPA and IARC consider in vivo genotoxicity assays in exposed humans to be
the most relevant type of study for assessing a pesticide’s genotoxic potential in humans.
Additional details are provided in Table 2 on 7 positive in vivo human studies published
since 2007. Taken together, these in vivo human studies provide strong evidence that GBHs
can damage DNA through multiple mechanisms. GBHs can also undermine repair of
damaged DNA, and trigger new tumors or promote the growth and spread of existing
tumors.

Table 3 covers in vitro mammalian assays using cells from a wide range of mammals.
Details on each study and assay are presented in Supplemental Table S2. Thirteen of
19 assays testing technical glyphosate reported a positive response. One assay reported
that technical glyphosate was approximately twice as genotoxic compared to AMPA in
human peripheral blood mononuclear cells [88]. A second study by Wozniak et al. (2021)
also reported that glyphosate triggered a genotoxic response in human peripheral blood
mononuclear cells at a lower dose than AMPA [87].

Table 3. Mammalian In Vitro Genotoxicity Assays Published Since the EPA and IARC Reviews of
Glyphosate and GBH Oncogenicity.

Glyphosate Technical
Number of Assays 19

Positive 13

Percent Positive 68%

Formulated GBHs

Number of Assays 12

Positive 12

Percent Positive 100%

All New Studies

Number of Assays 31

Positive 25

Percent Positive 81%
Source: Supplemental Table S2.

All 12 mammalian in vitro assays done with formulated GBHs reported one or more
positive result. Over the 31 mammalian in vitro assays, 25 reported one or more positive
result (81%).

A total of 39 results from non-mammalian in vivo genotoxicity assays are summa-
rized in Table 4. There were 33 assays using formulated GBHs and 6 focused on technical
glyphosate. All 39 assays reported one or more positive response. Most of these results
stem from a comet or micronucleus assay. Fish and reptile species were the most com-
monly tested. A variety of different GBH formulations were used in these experiments.
Non-mammalian in vivo genotoxicity assays provide robust insights into the molecular
mechanisms by which glyphosate can cause DNA damage. Interference with the mitochon-
drial respiratory chain, leading to an elevated production of reactive oxygen species, is
the most frequently reported mechanism heightening risk of cancer [127]. This is corrobo-
rated by in vitro studies [136]. Glyphosate disturbs mitochondrial respiration by altering
the function of the electron transport chain. Glyphosate mitochondrial toxicity was first
described in 1979 [146,147].
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Table 4. Non-Mammalian In Vivo Genotoxicity Assays Published Since the EPA and IARC Reviews
of Glyphosate and GBH Oncogenicity.

Glyphosate Technical
Number of Assays 6

Positive 6

Percent Positive 100%

Formulated GBHs

Number of Assays 33

Positive 33

Percent Positive 100%

All New Studies

Number of Assays 39

Positive 39

Percent Positive 100%
Source: Supplemental Table S3.

Table 5 summarizes the results of 8 in vitro assays in non-mammalian test systems
using fish, frogs, snails, nematodes, and a plant-based system. One of 3 assays testing
technical glyphosate was positive, while 4 of 5 assays were positive in the case of GBHs.

Table 5. Non-mammalian In Vitro Genotoxicity Assays Published Since the EPA and IARC Reviews
of Glyphosate and GBH Oncogenicity.

Glyphosate Technical
Number of Assays 3

Positive 1

Percent Positive 33%

Formulated GBHs

Number of Assays 5

Positive 4

Percent Positive 80%

All New Studies

Number of Assays 8

Positive 5

Percent Positive 63%
Source: Supplemental Table S4.

There are multiple mechanisms of GBH-induced oxidative stress, genotoxicity, and
endocrine disruption among published studies of non-mammalian test systems. Over the
years most formulations of GBHs sold in the US contain surfactants composed of various
polyoxyethylene amine (POEA) compounds; POEA-based GBH formulations were banned
and phased out in Europe by 2017 [148]. The primary mechanism described that is associ-
ated with the endocrine-disrupting effect of GBHs is the modulation of estrogen receptors
and molecules involved in estrogenic pathways. Ingaramo et al. has documented the en-
docrine disrupting effects of exposure to glyphosate and GBHs at low or “environmentally
relevant” doses in female reproductive tissues [149].

The impact of POEA on the freshwater teleost Prochilodus lineatus was assessed using
the comet assay to measure DNA damage in blood cells, indicating significant genotox-
icity [150]. The results of this study showed that POEA can affect various parameters
such as hemolysis, DNA damage, and lipid peroxidation, which are directly related to
an imbalance in the redox state of the fish. Studies of acute exposure of P. lineatus to
Roundup also found liver-catalase activity inhibition. This suggests that both formulated
Roundup and POEA interfere with the antioxidant defenses in fish. The authors also con-
cluded exposure to POEA generates a condition of oxidative stress in fish. The comet assay
used for analyzing DNA damage in blood cells indicated “the genotoxicity of the POEA
surfactant at all concentrations tested”. The coherence between mammalian in vivo and
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non-mammalian in vitro findings across multiple organisms further enhances confidence
that GBH exposures can lead to adverse genotoxic effects.

The results in Tables 1 and 3, Tables 4 and 5 are combined in Table 6. A total of
33 assays assessed the genotoxicity of technical glyphosate of which 24 were positive (73%).
Fifty-eight of 61 assays were positive in the case of formulated GBH assays (95%). Across
all 94 studies, 82 reported one or more positive genotoxic response (87%).

Table 6. Overall Results of Genotoxicity Assays Published Since the 2015 EPA and IARC Reviews of
Glyphosate and GBH Oncogenicity.

Glyphosate Technical
Number of Assays 33

Positive 24

Percent Positive 73%

Formulated GBHs

Number of Assays 61

Positive 58

Percent Positive 95%

All New Studies

Number of Assays 94

Positive 82

Percent Positive 87%
Source: Supplemental Table S4.

While over two-thirds of the assays testing technical glyphosate reported one or more
positive response, 95% did in the case of formulated GBHs—almost a 50% increase in the
frequency of positive responses. Two conclusions seem clear from these data: (1) both
glyphosate and GBHs are genotoxic across a wide array of organisms and test systems, and
(2) the surfactants in formulated GBHs potentiate genotoxic responses through one or more
mechanisms.

In the “Revised Glyphosate Issue Paper: Evaluation of Carcinogenic Potential” dated
12 December 2017 [3], the OPP/EPA focused its genotoxicity assessment on assays carried
out on glyphosate technical. Tables 5.1 to 5.7 in the 2017 EPA report present the results of
in vitro and in vivo assays testing glyphosate in a range of organisms and assay systems
(see [3,54] for an accounting of these studies). In these 7 tables covering 52 assays carried
out by GBH registrants testing glyphosate, 51 were reported as negative. All 43 genotoxicity
assays carried out or contracted by registrants using a formulated GBH were reported as
negative [3,54].

In Section 5.7 in the December 2017 glyphosate issue paper, OPP/EPA states its “Con-
clusion for Glyphosate” relative to the genotoxicity/mutagenicity of technical glyphosate:

“The overall weight of evidence indicates that there is no convincing evidence
that glyphosate induces mutations in vivo via the oral route.”

Note this key OPP conclusion is silent on the genotoxicity of dermal exposures to
formulated GBHs. Insight into why can be gained through assessment of an OPP memo-
randum dated 13 September 2016 [143]. This memo provides a summary of genotoxicity
assays that OPP relied on in its assessment of the genotoxicity and oncogenicity of technical
glyphosate.

Unlike Tables 1–6 and their focus on genotoxicity assays published since 2015, Table 7
covers the results of this 2016 OPP assessment of mostly registrant-commissioned genotoxi-
city studies. Supplemental Table S6 lists the results of 65 assays on glyphosate technical
reviewed by OPP, most of which were conducted in the 1980s and 1990s (some studies
reported results for 2 or more assays). Supplemental Table S6 also records the gist of OPP
“Reviewer comments” on the reliability of positive results noted by study authors [143].
All such comments cast doubt on some aspect of study design, data collection and interpre-
tation, and/or question the biological significance of positive results.
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Table 7. OPP/EPA Evaluation of Glyphosate Genotoxicity Assays Referenced in the Glyphosate
Oncogenicity Issue Paper (see notes).

Registrant Studies

Type Number of Assays Number Positive

BRM 14 0
MN 9 1

Gene mutations and other 9 0
Chrom aberration 5 0

Totals 37 1

Percent Positive 2.7%

BRM as % All 37.8%

% Since 2000 21.6%

Published Studies

Type Number of Assays Number Positive

BRM 4 0
MN 8 7
SCE 4 4

Comet 5 5
Chrom aberration 4 2

Oxidative stress & other 3 2
Totals 28 20

Percent Positive 71.4%

BRM as % All 14.3%

% Since 2000 35.7%

Notes: 1. BRM: bacterial reverse mutation assay, MN: micronuclei assay; SCE: sister chromatid exchange. 2. See
Supplemental Table S6 for details on the 65 assays analyzed in this OPP/EPA memo.

In the case of the 37 genotoxicity assays conducted by registrants and included in this
2016 OPP review, 36 were reported as negative. In the 2016 memo, OPP/EPA reviewers
offer no comments on study design, interpretation, or biological significance of these
36 negative assays; all are accepted as negative with no appraisal or comment.

Multiple published assays reviewed by OPP reported positive GBH results (20 of 28).
Many of these GBH assays triggered positive responses in cases where technical glyphosate
did not, or did so at lower glyphosate-equivalent exposure levels. OPP largely ignored
these results in its review of glyphosate/GBH genotoxicity.

Almost 38% (14 out of 37) of registrant-commissioned, glyphosate technical genotoxic-
ity assays utilized a bacterial reverse mutation (BRM) assay (e.g., an Ames test). Just over 1
in 5 of the registrant-commissioned assays were conducted since 2000 (8 out of 37). The
most-recent registrant-commissioned study relied on by OPP in its evaluation of glyphosate
genotoxicity was done by Sokolowski in 2010 (a negative BRM assay) [143].

A total of 28 published assays are included in the September 2016 OPP/EPA memo.
Of these, the authors reported a positive result in 71% (20 out of 28). BRM studies made up
only 14% of the published studies, less than one-half the share in the case of the registrant-
commissioned studies.

4. Discussion

The evaluation of glyphosate and GBH oncogenicity draws upon three primary sources
of data: (1) animal bioassays, (2) epidemiological findings, and (3) mechanistic studies
assessing genotoxicity-induced damage to DNA. The cancer classification systems uti-
lized by the US EPA, IARC, the European Food Standard Agency (EFSA) and most other
regulatory authorities integrate qualitative assessments of animal, epidemiological, and
mechanistic data into an overall weight-of-evidence conclusion. While terminology varies
across classification systems, they most often include the following categories:

• Proven carcinogen or oncogenic;
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• Probable carcinogen or probably oncogenic;
• Possible or possibly carcinogenic or oncogenic;
• Not likely to be carcinogenic or oncogenic;
• Inadequate data to support or reach a classification decision.

In the “Revised Glyphosate Issue Paper”, OPP evaluated the results of 9 oncogenicity
bioassays in rats and 6 in the mouse fed technical glyphosate [3]. The OPP determined that
5 tumors in four of the mouse studies were elevated and in need of further assessment. In
the 9 rat oncogenicity assays, OPP noted that 7 tumors were elevated in four of the studies.
Across the 15 oncogenicity bioassays, OPP reviewed 12 tumor types in the “Glyphosate
Issue Paper” that were statistically significant when evaluated in accord with EPA’s cancer
risk assessment guidelines [58].

However, in each case the OPP determined the 12 tumors were “not treatment re-
lated” [3]. The common reasons cited included lack of a monotonic dose response curve,
use of historical control data, lack of significance in pairwise tests, lack of evidence of pro-
gression from adenomas to carcinomas, no similar tumors in other studies, excessively high
maximum dose levels, and adjustment for multiple comparisons. Across the 12 tumors,
the OPP cites an average of about 3.5 of the above reasons in explaining their decision to
discount the 12 statistically significant tumors. There are, to our knowledge, no instances
in the OPP’s analysis of rodent bioassays on glyphosate where OPP invokes the same sub-
jective factors (i.e., historical control data; consistency of response across multiple studies)
to upgrade a marginally significant tumor dose–response to a significant response.

Both an OPP Scientific Advisory Panel [47] and the EPA’s ORD committee [52] have
noted that the downgrading of many of these tumors by OPP to “not treatment related”
relied upon judgements inconsistent with the data and EPA’s cancer risk assessment
policies [57].

The IARC Working Group concluded that “There is sufficient evidence in experimental
animals for the carcinogenicity of glyphosate”. The ORD/EPA committee noted that OPP
“focused on pairwise comparisons (which were generally not significant), while IARC also
uses trend tests, which yielded several significant results” [151]. ORD/EPA goes on to
point out that the EPA’s cancer guidelines state that “Trend tests and pairwise comparison
tests are the recommended tests . . . Significance in either kind of test is sufficient to reject
the hypothesis that chance accounts for the result” (para 4, [151]).

An analysis by Portier (2019) [152] of glyphosate oncogenicity feeding studies fo-
cused on 13 of the 15 studies addressed in the “Glyphosate Issue Paper” (two studies
OPP included in their analysis were regarded by Portier as low quality, and hence were
not included in his analysis). Across the 13 bioassays Portier analyzed, 37 tumors were
identified as elevated and statistically significant, including 25 tumors that the EPA does not
address in the 2017 “Revised Glyphosate Issue Paper”. According to Portier, the 37 tumors
reflect consistency across studies and particularly strong evidence of hemangiosarcomas,
skin and kidney tumors, and malignant lymphomas.

Disagreement also exists in the interpretation of epidemiological studies focused on
exposures to GBHs and cancer, and especially NHL. The “Revised Glyphosate Issue Paper”
describes the epidemiological studies considered by OPP and assesses study quality. A
total of 58 epidemiology papers covering various studies were identified by OPP, of which:

• 3 studies were judged to be “High” quality;
• 21 were regarded as “Moderate” quality; and
• 34 were determined to be of “low” quality.

OPP considered 6 studies in evaluating the association of GBHs and NHL, 5 of which
report a positive association between GBH use and NHL [3]. After a critique of the 5 positive
studies noting reasons why the reported associations might be spurious, the OPP concludes
that:

“Based on the weight-of-the-evidence, the agency cannot exclude chance or bias
as an explanation for the observed associations in the database . . . A conclusion
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regarding the association between glyphosate exposure and risk of NHL cannot
be determined based on available data”.

The ORD/EPA assessment of the OPP and IARC classification decisions states that:

“ORD’s epidemiologists agree with IARC that there is ‘limited evidence’ of car-
cinogenicity in humans and understands IARC’s definition of ‘limited evidence’
as ‘a positive association has been observed’ for which a causal association is
‘credible, but chance, bias, or confounding could not be ruled out with reasonable
confidence’” [43].

The IARC Working Group noted several studies reporting an association between GBH
use/exposures and NHL and concluded that “There is limited evidence in humans for the
carcinogenicity of glyphosate. A positive association has been observed for non-Hodgkin
lymphoma” ([30], p. 78).

Several meta-analyses and reviews strive to explain what the epidemiological database
shows. Most published studies done by scientists not affiliated with or funded by registrants
of GHB herbicides conclude that there is limited-to-ample epidemiological data establishing
an association between GBH use and NHL. For example, a team of scientists including
three individuals that served on the December 2016 Scientific Advisory Panel assessing
GBH oncogenicity concludes their meta-analysis by saying: “The overall evidence from
human, animal, and mechanistic studies presented here supports a compelling link between
exposures to GBHs and increased risk of NHL” [31].

Starkly Divergent Assessments of the Genotoxicity Database

Based on its assessment of glyphosate genotoxicity, the OPP concluded that there is
“no convincing evidence that glyphosate induces mutations in vivo via the oral route”.
Conversely, IARC concluded that there is “strong evidence” that exposures to GBHs are
genotoxic through two modes of action: oxidative stress and damage to DNA.

While these two conclusions may seem irreconcilable, a careful reading of both re-
ports, with focus on questions asked and answered and on what basis, reveals a plausible
explanation of why these two reviews reached different conclusions.

As stated in its glyphosate issue paper, the OPP focused its review of GBH genotoxicity
on assays using technical glyphosate. In addition as noted in Supplemental Table S6, the
OPP discounted essentially all of the positive assay results in 18 published studies on
glyphosate/GBH genotoxicity.

The IARC Working Group concluded that in addition to limited epidemiological
evidence and sufficient animal bioassay data:

“ . . . there is strong evidence that glyphosate can operate through two key
[mechanistic] characteristics of known human carcinogens”. Specifically:

• “There is strong evidence that exposure to glyphosate or glyphosate-based
formulations is genotox based on studies in humans in vitro and studies in
experimental animals . . . ”;

• “There is strong evidence that glyphosate, glyphosate-based formulations,
and aminomethylphosphonic acid [AMPA] can act to induce oxidative stress
. . . ” [30].

Thus, three primary reasons explain why OPP and IARC reached different conclusions
on whether glyphosate/GBHs are genotoxic:

1. OPP focused on studies conducted testing technical glyphosate, while IARC placed
considerable weight on in vivo GBH studies focused on biomarkers of genotoxicity in
exposed human populations and experimental animals.

2. The significant potentiation of GBH genotoxicity caused by the coformulants in GBHs,
coupled with the enhancement of dermal penetration brought about by the most
common GBH surfactants (POEAs).
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3. OPP/EPA relied predominantly on inappropriate bacterial genotoxicity assays con-
ducted by or for GBH registrants, almost all of which were negative, while the IARC
Working Group relied on a larger body of mostly published genotoxicity assays, of
which over 70% reported one or more positive response.

The factors noted in #2 above are important in accurately quantifying applicator
exposures and risk yet played essentially no role in the OPP’s review of GBH oncogenicity
among applicators, including those frequently exposed to relatively high levels of GBH
spray solution.

As noted in Williams et al. (2019), the Ames assay detects 93% of the known mutagens
in a database of >10,000 compounds [153]. This is because the vast majority of mutagens
induced gene mutations, the only class of mutations the Ames assay can detect. However,
7% of mutagens are solely clastogens that induce chromosomal mutations not detected by
the Ames assay and, instead, require use of the comet assay or micronucleus assay [154].
Roughly one-half of the registrant-submitted glyphosate/GBH genotoxicity studies evalu-
ated by OPP used the Ames assay. Heavy reliance by registrants and EPA on Ames-test
results in assessing the genotoxicity of chromosomal mutagens such as glyphosate/GBHs
has and continues to perpetuate the erroneous notion that glyphosate/GBHs are not geno-
toxic [55].

In addition, glyphosate can have antibiotic activity through inhibition of the shikimate
pathway in bacteria [155]. For decades, use of the Ames test has not been recommended
when testing compounds which can kill bacteria [156]. Bacteria also do not contain mito-
chondria, a common target of GBHs associated with genotoxic responses.

Figure 1 provides an overview of the results of glyphosate and GBH genotoxicity
assays published since 2016 in each of the categories of assays covered in Tables 1–5.
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5. Conclusions

The claimed absence of any credible evidence that exposure to glyphosate/GBHs
can lead to damage to DNA via a genotoxic mechanism is one of the most important
justifications cited over the last 40 years by regulators and GBH registrants in explaining
why glyphosate/GBHs are not likely to be carcinogenic.

Over the years, the importance of the claim that glyphosate/GBHs are not genotoxic
rose in step with the rising number and quality of animal bioassays and epidemiological
studies pointing to links between GBH use, exposures, and cancer.

We conclude that the 80+ positive glyphosate/GBH genotoxicity assays published
since 2016 provide clear and compelling evidence that both glyphosate and formulated
GBHs are genotoxic. We also find that the POEA surfactants in many GBHs markedly
increase genotoxic potency in contrast to glyphosate alone. Hence, the assertion of no
credible data supporting the genotoxicity of GBHs is erroneous and no longer tenable.

Presumably the EPA’s cancer risk assessment guidelines will require the OPP to change
its current glyphosate/GBH cancer classification. The OPP could change the GBH cancer
classification to “probably” or “possibly” oncogenic in light of risks arising from dermal
exposures to GBH spray solution. Alternatively, OPP could bifurcate the classification deci-
sion, retaining “not likely” for dietary exposures to technical glyphosate and reclassifying
dermal exposures to GBHs as “probably” oncogenic for people occupationally exposed to
relatively high levels of GBHs several times a year over a period of years.

In classifying GBH oncogenicity, we conclude that OPP and IARC asked and answered
different questions, drew upon different datasets, and reached markedly divergent con-
clusions in the interpretation of studies within each of the three pillars supporting the
classification decision.

Several factors led the OPP to its “not likely” conclusion in contrast to IARC’s “proba-
bly carcinogenic” decision. These include:

1. In accord with US federal law, the OPP focused its review on dietary exposures to
technical glyphosate (i.e., the “oral route” of exposure), and largely ignored dermal
exposures to GBHs and the ways that the surfactants in GBHs increase applicator
exposures and, consequently, increase cancer risk.

2. The IARC Working Group placed heavy weight on published epidemiology and
genotoxicity studies in human populations exposed to formulated GBHs, and espe-
cially studies involving people exposed to GBHs over a span of years. Conversely,
OPP placed little or no weight on these key studies and/or raised questions over the
conclusions articulated by study authors.

3. GBH applicators are exposed to far more glyphosate in a day of spraying GBHs than
from glyphosate residues in their diet. This is especially the case among applicators
who apply a GBH with small-scale, handheld spray equipment.

4. The OPP relied mostly on purportedly negative studies done by GBH registrants,
while IARC relied primarily on published studies not commissioned or sponsored by
manufacturers, of which more than 70% reported positive results.

Our analysis identified 80 studies published since 2016 reporting the results of 94 geno-
toxicity assays testing technical glyphosate or formulated GBHs. Some 87% of the 94 assays
report one or more positive result.

The results of Table 7 are instructive in understanding the basis for OPP’s conclusion
regarding glyphosate genotoxicity. This table summarizes the results of the OPP analysis
of 65 genotoxicity assay results. Among the glyphosate genotoxicity assays commissioned
by GBH registrants, only one assay reported a positive response. Among the 28 published
genotoxicity assays the OPP reviewed, 71% reported one or more positive assays. In all
20 cases, the OPP notes reasons to ignore or place limited weight on the positive assays.

The lingering controversy over the risks and regulation of GBHs can be traced in
large part to provisions in federal pesticide law dating back to 1972. Resolving systemic
statutory problems in the pesticide risk assessment and regulatory process will require
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the US Congress to amend federal law [157]. Key statutory changes relevant to the OPP’s
assessment of GBH oncogenicity include:

(1) The identity and concentrations of all inert ingredients should be disclosed and listed
on pesticide labels;

(2) Applicator and farmworker dermal-exposure risk assessments should be markedly
improved and new risk-mitigation measures and requirements codified in law;

(3) The majority of the toxicological and exposure studies required by EPA prior to
approval of new pesticide uses, or reregistration of existing uses, should be carried
out on both active ingredients and selected, widely-sold formulated products; and

(4) Most foundational pesticide toxicity and risk assessment studies should be conducted
by scientists independent of the pesticide industry.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agrochemicals2010005/s1, Excel workbook with Supplemental
Tables S1–S6.
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