Glyphosate Effects on Earthworms: Active Ingredients vs. Commercial Herbicides at Different Temperature and Soil Organic Matter Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Substances
2.2. Test Substrate
2.3. Earthworms
2.4. Earthworm Avoidance Test
- Factor substances (6 levels):
- ○
- 2 GBHs (Roundup PowerFlex vs. Touchdown Quattro)
- ○
- 2 GLYs (potassium salt vs. ammonium salt)
- ○
- Adjuvant (alkylpolyglucoside APG vs. water);
- Factor temperature (2 levels): 15 ± 2 °C vs. 20 ± 2 °C air temperature;
- Factor soil organic matter (2 levels): 3.2% vs. 4.3% SOM.
2.5. Earthworm Biomass Growth and Reproduction
- Factor substances (6 levels):
- ○
- 2 GBHs (Roundup PowerFlex vs. Touchdown Quattro)
- ○
- 2 GLYs (potassium salt vs. ammonium salt)
- ○
- Adjuvants (alkylpolyglucoside vs. water);
- Factor temperature: 15 ± 2 °C vs. 20 ± 2 °C air temperature.
2.6. Statistical Analyses
3. Results
3.1. Avoidance Behavior
3.2. Growth, Cocoons and Juveniles
4. Discussion
4.1. Avoidance Behavior
4.2. Growth and Reproduction
4.3. Effects of Coformulants
4.4. Effects of Temperature
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mesnage, R.; Zaller, J.G. Herbicides: Chemistry, Efficacy, Toxicology, and Environmental Impacts. In Emerging Issues in Analytical Chemistry; Thomas, B.F., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; p. 366. [Google Scholar]
- Benbrook, C.M. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 2016, 28, 3. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mesnage, R.; Defarge, N.; Spiroux de Vendômois, J.; Séralini, G.E. Potential toxic effects of glyphosate and its commercial formulations below regulatory limits. Food Chem. Toxicol. 2015, 84, 133–153. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Baylis, A.D. Why glyphosate is a global herbicide: Strengths, weaknesses and prospects. Pest Manag. Sci. 2000, 56, 299–308. [Google Scholar] [CrossRef]
- Székács, A. Herbicide Mode of Action. In Herbicides: Chemistry, Efficacy, Toxicology, and Environmental Impacts; Mesnage, R., Zaller, J.G., Thomas, B.F., Eds.; Emerging Issues in Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2021; pp. 41–86. [Google Scholar]
- Mesnage, R. Coformulants in Commercial Herbicides. In Herbicides: Chemistry, Efficacy, Toxicology, and Environmental Impacts; Mesnage, R., Zaller, J., Thomas, B.F., Eds.; Emerging Issues in Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2021; pp. 87–112. [Google Scholar]
- European Commission. Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. Off. J. Eur. Union 2009, 309, 1–50. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32009R31107 (accessed on 1 November 2022).
- EFSA. Data collection on co-formulants used in representative plant protection product formulations in the context of the EFSA peer review process for approval/renewal of approval of active substances. EFSA J. 2022, 19, EN-7547. [Google Scholar] [CrossRef]
- EPA. Inert Ingredints Overview and Regulation. 2022. Available online: https://www.epa.gov/pesticide-registration/inert-ingredients-overview-and-guidance (accessed on 5 December 2022).
- Mesnage, R.; Benbrook, C.; Antoniou, M.N. Insight into the confusion over surfactant co-formulants in glyphosate-based herbicides. Food Chem. Toxicol. 2019, 128, 137–145. [Google Scholar] [CrossRef]
- Mesnage, R.; Antoniou, M.N. Ignoring adjuvant toxicity falsifies the safety profile of commercial pesticides. Front. Public Health 2018, 5, 361. [Google Scholar] [CrossRef][Green Version]
- Straw, E.; Thompson, L.; Leadbeater, E.; Brown, M. ‘Inert’ ingredients are understudied, potentially dangerous to bees and deserve more research attention. Proc. R. Soc. B 2022, 289, 20212353. [Google Scholar] [CrossRef]
- EC. Commission Regulation (EU) 2021/383 of 3 March 2021 amending Annex III to Regulation (EC) No 1107/2009 of the European Parliament and of the Council listing co-formulants which are not accepted for inclusion in plant protection products (Text with EEA relevance). Off. J. Eur. Union 2021, 74, 7–26. [Google Scholar]
- Defarge, N.; Takács, E.; Lozano, V.L.; Mesnage, R.; Vendômois, J.S.; Seralini, G.E.; Székács, A. Co-formulants in glyphosate-based herbicides disrupt aromatase activity in human cells below toxic levels. Int. J. Environ. Res. Public Health 2016, 13, 264. [Google Scholar] [CrossRef][Green Version]
- Borggaard, O.K.; Gimsing, A.L. Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: A review. Pest Manag. Sci. 2008, 64, 441–456. [Google Scholar] [CrossRef] [PubMed]
- Zaller, J.G.; Brühl, C.A. Direct Herbicide Effects on Terrestrial Nontarget Organisms Belowground and Aboveground. In Herbicides: Chemistry, Efficacy, Toxicology, and Environmental Impacts; Mesnage, R., Zaller, J.G., Thomas, B.F., Eds.; Emerging Issues in Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2021; pp. 181–230. [Google Scholar]
- Fuchs, B.; Laihonen, M.; Muola, A.; Saikkonen, K.; Dobrev, P.I.; Vankova, R.; Helander, M. A Glyphosate-Based Herbicide in Soil Differentially Affects Hormonal Homeostasis and Performance of Non-target Crop Plants. Front. Plant Sci. 2022, 12, 787958. [Google Scholar] [CrossRef] [PubMed]
- Muola, A.; Fuchs, B.; Laihonen, M.; Rainio, K.; Heikkonen, L.; Ruuskanen, S.; Saikkonen, K.; Helander, M. Risk in the circular food economy: Glyphosate-based herbicide residues in manure fertilizers decrease crop yield. Sci. Tot. Environ. 2021, 750, 141422. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; Mol, H.G.J.; Zomer, P.; Tienstra, M.; Ritsema, C.J.; Geissen, V. Pesticide residues in European agricultural soils—A hidden reality unfolded. Sci. Tot. Environ. 2019, 653, 1532–1545. [Google Scholar] [CrossRef]
- Giesy, J.P.; Dobson, S.; Solomon, K.R. Ecotoxicological Risk Assessment for Roundup® Herbicide. In Reviews of Environmental Contamination and Toxicology: Continuation of Residue Reviews; Ware, G.W., Ed.; Springer: New York, NY, USA, 2000; pp. 35–120. [Google Scholar]
- Bento, C.P.M.; Goossens, D.; Rezaei, M.; Riksen, M.; Mol, H.G.J.; Ritsema, C.J.; Geissen, V. Glyphosate and AMPA distribution in wind-eroded sediment derived from loess soil. Environ. Pollut. 2017, 220, 1079–1089. [Google Scholar] [CrossRef]
- Bento, C.P.M. Glyphosate and Aminomethylphosphonic Acid (AMPA) Behavior in Loess Soils and Off-Site Transport Risk Assessment; Wageningen University: Wageningen, The Netherlands, 2018. [Google Scholar]
- Muskus, A.M.; Krauss, M.; Miltner, A.; Hamer, U.; Nowak, K.M. Effect of temperature, pH and total organic carbon variations on microbial turnover of 13C315N-glyphosate in agricultural soil. Sci. Total Environ. 2019, 658, 697–707. [Google Scholar] [CrossRef]
- Mandl, K.; Cantelmo, C.; Gruber, E.; Faber, F.; Friedrich, B.; Zaller, J.G. Effects of Glyphosate-, Glufosinate- and Flazasulfuron-Based Herbicides on Soil Microorganisms in a Vineyard. Bull Environ. Contam. Toxicol. 2018, 101, 562–569. [Google Scholar] [CrossRef][Green Version]
- Santos, M.J.G.; Ferreira, M.F.L.; Cachada, A.; Duarte, A.C.; Sousa, J.P. Pesticide application to agricultural fields: Effects on the reproduction and avoidance behaviour of Folsomia candida and Eisenia andrei. Ecotoxicology 2012, 21, 2113–2122. [Google Scholar] [CrossRef]
- Reynolds, J. Earthworms of the world. Glob. Biodivers. 1994, 4, 11–16. [Google Scholar]
- Marques, C.; Pereira, R.; Gonçalves, F. Using earthworm avoidance behaviour to assess the toxicity of formulated herbicides and their active ingredients on natural soils. J. Soils Sediments 2009, 9, 137–147. [Google Scholar] [CrossRef]
- van Gestel, C.A.; Mommer, L.; Montanarella, L.; Pieper, S.; Coulson, M.; Toschki, A.; Rutgers, M.; Focks, A.; Römbke, J. Soil Biodiversity: State-of-the-Art and Possible Implementation in Chemical Risk Assessment. Integr. Environ. Assess Manag. 2021, 17, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Pochron, S.; Choudhury, M.; Gomez, R.; Hussaini, S.; Illuzzi, K.; Mann, M.; Mezic, M.; Nikakis, J.; Tucker, C. Temperature and body mass drive earthworm (Eisenia fetida) sensitivity to a popular glyphosate-based herbicide. Appl. Soil Ecol. 2019, 139, 32–39. [Google Scholar] [CrossRef]
- Albers, C.N.; Banta, G.T.; Hansen, P.E.; Jacobsen, O.S. The influence of organic matter on sorption and fate of glyphosate in soil—Comparing different soils and humic substances. Environ. Pollut. 2009, 157, 2865–2870. [Google Scholar] [CrossRef] [PubMed]
- Bayer Crop Science. Safety Data Sheet Roundup(R) PowerFlex. 2022. Available online: https://cropscience.bayer.co.uk/data/documents/roundup/roundup-flex/roundup-flex-msds/ (accessed on 18 December 2022).
- Syngenta. Safety data sheet Touchdown Quattro. 2018. Available online: https://www.syngenta.de/sites/g/files/zhg146/f/sicherheitsdatenblatt-touchdown-quattro.pdf?token=1614933071. (accessed on 18 December 2022).
- Hrčková, K.; Žák, Š.; Hašana, R.; Švančárková, M. Change of chosen soil physical properties of chernozem after seven years of no-till soil cultivation. J. Cent. Eur. Agric. 2014, 15, 9. [Google Scholar] [CrossRef][Green Version]
- WRB. World Reference Base for Soil Resources; FAO: Rome, Italy, 2014. [Google Scholar]
- Dominguez, J.; Velando, A.; Ferreiro, A. Are Eisenia fetida (Savigny, 1826) and Eisenia andrei Bouché (1972) (Oligochaeta, Lumbridicae) different biological species? Pedobiologia 2005, 49, 81–87. [Google Scholar] [CrossRef]
- DIN ISO 17512-1; Deutsches Institut für Normung. Bodenbeschaffenheit—Vermeidungsprüfung zur Bestimmung der Bodenbeschaffenheit und der Auswirkungen von Chemikalien auf das Verhalten—Teil 1: Prüfung von Regenwürmern (Eisenia fetida und Eisenia andrei) (ISO 17512-1:2008). Beuth Verlag: Berlin, Germany, 2010; 32p.
- Natal-da-Luz, T.; Römbke, J.; Sousa, J.P. Avoidance tests in site-specific risk assessment—Influence of soil properties on the avoidance response of collembola and earthworms. Environ. Toxicol. Chem. 2008, 27, 1112–1117. [Google Scholar] [CrossRef] [PubMed]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Sousa, A.; Pereira, R.; Antunes, S.C.; Cachada, A.; Pereira, E.; Duarte, A.C.; Goncalves, F. Validation of avoidance assays for the screening assessment of soils under different anthropogenic disturbances. Ecotox. Environ. Saf. 2008, 71, 661–670. [Google Scholar] [CrossRef]
- ÖNORM EN ISO 11268-2: 2015-08; Austrian Standards. Bodenbeschaffenheit—Wirkungen von Schadstoffen auf Regenwürmer —Teil 2: Bestimmung der Wirkung auf die Reproduktionsleistung von Eisenia fetida/Eisenia andrei. Austrian Standards: Vienna, Austria, 2015; 28p.
- Buch, A.C.; Brown, G.G.; Niva, C.C.; Sautter, K.D.; Sousa, J.P. Toxicity of three pesticides commonly used in Brazil to Pontoscolex corethrurus (Muller, 1857) and Eisenia andrei (Bouche, 1972). Appl. Soil Ecol. 2013, 69, 32–38. [Google Scholar] [CrossRef]
- Pulleman, M.M.; Six, J.; van Breemen, N.; Jongmans, A.G. Soil organic matter distribution and microaggregate characteristics as affected by agricultural management and earthworm activity. Eur. J. Soil Sci. 2005, 56, 453–467. [Google Scholar] [CrossRef][Green Version]
- Pochron, S.; Simon, L.; Mirza, A.; Littleton, A.; Sahebzada, F.; Yudell, M. Glyphosate but not Roundup® harms earthworms (Eisenia fetida). Chemosphere 2020, 241, 125017. [Google Scholar] [CrossRef]
- Maderthaner, M.; Weber, M.; Takács, E.; Mörtl, M.; Leisch, F.; Römbke, J.; Querner, P.; Walcher, R.; Gruber, E.; Székács, A.; et al. Commercial glyphosate-based herbicides effects on springtails (Collembola) differ from those of their respective active ingredients and vary with soil organic matter content. Environ. Sci. Pollut. Res. 2020, 27, 17280–17289. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yu, Y.; Zhou, Q.-X. Adsorption characteristics of pesticides methamidophos and glyphosate by two soils. Chemosphere 2005, 58, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Pochron, S.T.; Mirza, A.; Mezic, M.; Chung, E.; Ezedum, Z.; Geraci, G.; Mari, J.; Meiselbach, C.; Shamberger, O.; Smith, R.; et al. Earthworms Eisenia fetida recover from Roundup exposure. Appl. Soil Ecol. 2021, 158, 103793. [Google Scholar] [CrossRef]
- Edwards, C.A.; Bohlen, P.J. Biology and Ecology of Earthworms, 3rd ed.; Chapman & Hall: London, UK, 1996. [Google Scholar]
- García-Torres, T.; Giuffré, L.; Romaniuk, R.; Ríos, R.P.; Pagano, E.A. Exposure assessment to glyphosate of two species of annelids. Bull. Environ. Contam. Toxicol. 2014, 93, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.-F.; Wang, Y.-J.; Li, C.-C.; Sun, R.-J.; Yu, Y.-C.; Zhou, D.-M. Subacute toxicity of copper and glyphosate and their interaction to earthworm (Eisenia fetida). Environ. Pollut. 2013, 180, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Casabé, N.; Piola, L.; Fuchs, J.; Oneto, M.L.; Pamparato, L.; Basack, S.; Giménez, R.; Massaro, R.; Papa, J.C.; Kesten, E. Ecotoxicological assessment of the effects of glyphosate and chlorpyrifos in an Argentine soya field. J. Soils Sediments 2007, 7, 232–239. [Google Scholar] [CrossRef]
- Yasmin, S.; D’Souza, D. Effect of pesticides on the reproductive output of Eisenia fetida. Bull. Environ. Contam. Toxicol. 2007, 79, 529–532. [Google Scholar] [CrossRef]
- Santadino, M.; Coviella, C.; Momo, F. Glyphosate Sublethal Effects on the Population Dynamics of the Earthworm Eisenia fetida (Savigny, 1826). Water Air Soil Pollut. 2014, 225, 2207. [Google Scholar] [CrossRef]
- Ma, W.C.; Bodt, J. Differences in toxicity of the insecticide chlorpyrifos to six species of earthworms (Oligochaeta, Lumbricidae) in standardized soil tests. Bull. Environ. Contam. Toxicol. 1993, 50, 864–870. [Google Scholar] [CrossRef]
- Fitzgerald, D.G.; Warner, K.A.; Lanno, R.P.; Dixon, D.G. Assessing the effects of modifying factors on pentachlorophenol toxicity to earthworms: Applications of body residues. Environ. Toxicol. Chem. 1996, 15, 2299–2304. [Google Scholar] [CrossRef]
- Pelosi, C.; Joimel, S.; Makowski, D. Searching for a more sensitive earthworm species to be used in pesticide homologation tests—a meta-analysis. Chemosphere 2013, 90, 895–900. [Google Scholar] [CrossRef] [PubMed]
- Defarge, N.; Spiroux de Vendômois, J.; Séralini, G.E. Toxicity of formulants and heavy metals in glyphosate-based herbicides and other pesticides. Toxicol. Rep. 2018, 5, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Gill, J.P.K.; Sethi, N.; Mohan, A.; Datta, S.; Girdhar, M. Glyphosate toxicity for animals. Environ. Chem. Lett. 2018, 16, 401–426. [Google Scholar] [CrossRef]
- Sihtmäe, M.; Blinova, I.; Künnis-Beres, K.; Kanarbik, L.; Heinlaan, M.; Kahru, A. Ecotoxicological effects of different glyphosate formulations. Appl. Soil Ecol. 2013, 72, 215–224. [Google Scholar] [CrossRef]
- Wagner, N.; Reichenbecher, W.; Teichmann, H.; Tappeser, B.; Lötters, S. Questions concerning the potential impact of glyphosate-based herbicides on amphibians. Environ. Toxicol. Chem. 2013, 32, 1688–1700. [Google Scholar] [CrossRef]
- Contardo-Jara, V.; Klingelmann, E.; Wiegand, C. Bioaccumulation of glyphosate and its formulation Roundup Ultra in Lumbriculus variegatus and its effects on biotransformation and antioxidant enzymes. Environ. Pollut. 2009, 157, 57–63. [Google Scholar] [CrossRef]
- Tsui, M.T.K.; Chu, L.M. Aquatic toxicity of glyphosate-based formulations: Comparison between different organisms and the effects of environmental factors. Chemosphere 2003, 52, 1189–1197. [Google Scholar] [CrossRef]
- Folmar, L.C.; Sanders, H.O.; Julin, A.M. Toxicity of the herbicide glyphosphate and several of its formulations to fish and aquatic invertebrates. Arch. Environ. Contam. Toxicol. 1979, 8, 269–278. [Google Scholar] [CrossRef]
- Mesnage, R.; Bernay, B.; Séralini, G.E. Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity. Toxicology 2013, 313, 122–128. [Google Scholar] [CrossRef]
- Székács, I.; Fejes, Á.; Klátyik, S.; Takács, E.; Patkó, D.; Pomóthy, J.; Mörtl, M.; Horváth, R.; Madarász, E.; Darvas, B.; et al. Environmental and toxicological impacts of glyphosate with its formulating adjuvant. Int. J. Biol. Vet. Agric. Food Eng. 2014, 8, 213–218. [Google Scholar]
- Klátyik, S.; Bohus, P.; Darvas, B.; Székács, A. Authorization and toxicity of veterinary drugs and plant protection products: Residues of the active ingredients in food and feed and toxicity problems related to adjuvants. Front. Vet. Sci. 2017, 4, 146. [Google Scholar] [CrossRef] [PubMed][Green Version]
- EFSA. Request for the evaluation of the toxicological assessment of the co-formulant POE-tallowamine. EFSA J. 2015, 13, 4303. [Google Scholar] [CrossRef][Green Version]
- Straw, E.A.; Brown, M.J.F. Co-formulant in a commercial fungicide product causes lethal and sub-lethal effects in bumble bees. Sci. Rep. 2021, 11, 21653. [Google Scholar] [CrossRef]
- Mesnage, R.; Brandsma, I.; Moelijker, N.; Zhang, G.; Antoniou, M.N. Genotoxicity evaluation of 2,4-D, dicamba and glyphosate alone or in combination with cell reporter assays for DNA damage, oxidative stress and unfolded protein response. Food Chem. Toxicol. 2021, 157, 112601. [Google Scholar] [CrossRef] [PubMed]
- Belz, R.G.; Duke, S.O. Herbicides and plant hormesis. Pest. Manag. Sci. 2014, 70, 698–707. [Google Scholar] [CrossRef] [PubMed]
- Willing, A.; Messinger, H.; Aulmann, W. Ecology and Toxicology of Alkyl Polyglycosides. In Handbook of Detergents, Part B; Zoller, A., Ed.; Marcel Dekker Publishers: New York, NY, USA, 2004; Volume 121, pp. 516–551. [Google Scholar]
- EPA. Safer Choice Criteria for Surfactants. 2022. Available online: https://www.epa.gov/saferchoice/safer-choice-criteria-surfactants (accessed on 5 December 2022).
- Bruckner, A.; Schmerbauch, A.; Ruess, L.; Heigl, F.; Zaller, J. Foliar Roundup application has minor effects on the compositional and functional diversity of soil microorganisms in a short-term greenhouse experiment. Ecotoxicol. Environ. Saf. 2019, 174, 506–513. [Google Scholar] [CrossRef]
- Brühl, C.A.; Zaller, J.G. Indirect herbicide effects on biodiversity, ecosystem functions, and interactions with global changes. In Herbicides: Chemistry, Efficacy, Toxicology, and Environmental Impacts; Mesnage, R., Zaller, J.G., Thomas, B.F., Eds.; Emerging Issues in Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2021; pp. 231–272. [Google Scholar]
- Baier, F.; Jedinger, M.; Gruber, E.; Zaller, J.G. Temperature-dependence of glyphosate-based herbicide’s effects on egg and tadpole growth of Common Toads. Front. Environ. Sci. 2016, 4, 51. [Google Scholar] [CrossRef][Green Version]
- Baier, F.; Gruber, E.; Hein, T.; Bondar-Kunze, E.; Ivanković, M.; Mentler, A.; Brühl, C.A.; Spangl, B.; Zaller, J.G. Non-target effects of a glyphosate-based herbicide on Common toad larvae (Bufo bufo, Amphibia) and associated algae are altered by temperature. PeerJ 2016, 4, e2641. [Google Scholar] [CrossRef][Green Version]
- Leeb, C.; Schuler, L.; Brühl, C.A.; Theissinger, K. Low temperatures lead to higher toxicity of the fungicide folpet to larval stages of Rana temporaria and Bufotes viridis. PLoS ONE 2022, 17, e0258631. [Google Scholar] [CrossRef]
- Holmstrup, M.; Sørensen, L.I.; Bindesbøl, A.-M.; Hedlund, K. Cold acclimation and lipid composition in the earthworm Dendrobaena octaedra. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2007, 147, 911–919. [Google Scholar] [CrossRef]
- De Silva, P.M.C.S.; Pathiratne, A.; van Gestel, C.A.M. Influence of temperature and soil type on the toxicity of three pesticides to Eisenia andrei. Chemosphere 2009, 76, 1410–1415. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission regulation (EU) No 284/2013 of 1 March 2013 setting out the data requirements for plant protection products, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market. Off. J. Eur. Union 2013, L93, 85–152. [Google Scholar]
- Jungers, G.; Portet-Koltalo, F.; Cosme, J.; Séralini, G.-E. Petroleum in Pesticides: A Need to Change Regulatory Toxicology. Toxics 2022, 10, 670. [Google Scholar] [CrossRef] [PubMed]
- Zaller, J.G.; Kruse-Plaß, M.; Schlechtriemen, U.; Gruber, E.; Peer, M.; Nadeem, I.; Formayer, H.; Hutter, H.-P.; Landler, L. Unexpected air pollutants with potential human health hazards: Nitrification inhibitors, biocides, and persistent organic substances. Sci. Tot. Environ. 2022, 862, 160643. [Google Scholar] [CrossRef]
Substance | Conc. AI (g l−1) | Recomm. Applic. Rate (l ha−1) | Field Rate (l ha−1) | Dosage in Lab. Experiments (µL kg−1) |
---|---|---|---|---|
Roundup PowerFlex (RP) | 480 | 3.75 | 3.75 | 5.00 |
Potassium salt in RP | 588 | 3.75 | 2.21 § | 2.94 §§ |
Alkyl polyglucoside in RP | 20% | 3.75 | 0.75 | 1.00 |
Touchdown Quattro (TQ) | 360 | 5.00 | 5.00 | 6.67 |
Ammonium salt in TQ | 435 | 5.00 | 2.18 § | 2.90 §§ |
Alkyl polyglucoside in TQ | 10% | 5.00 | 0.50 | 0.70 |
Parameter | Low SOM | High SOM | Intermediate SOM § |
---|---|---|---|
pH | 7.5 | 7.5 | 7.6 |
Phosphorus (mg kg−1) | 81 | 125 | 113 |
Potassium (mg kg−1) | 173 | 245 | 227 |
Magnesium (mg kg−1) | 140 | 97 | 106 |
Soil organic matter (%) | 3.2 | 4.3 | 3.9 |
Factors | Df | F Value | Pr (>F) |
---|---|---|---|
Substances | 5 | 0.649 | 0.663 |
Soil organic matter | 1 | 7.434 | 0.008 |
Temperature | 1 | 0.026 | 0.871 |
Substances × Soil organic matter | 5 | 0.292 | 0.916 |
Substances × Temperature | 5 | 1.559 | 0.179 |
Substances × Soil organic matter × Temperature | 5 | 2.107 | 0.071 |
Parameters | Substances | Temperature | Subst. × Temp. | |||
---|---|---|---|---|---|---|
F/Chi2 | p | F/Chi2 | p | F/Chi2 | p | |
Biomass change (%) | 2.644 | 0.035 | 165.160 | <0.001 | 2.090 | 0.083 |
Cocoon production (no.) | 11.795 | <0.001 | 59.170 | <0.001 | 14.275 | 0.014 |
Juvenile production (no.) | 71.198 | <0.001 | 178.89 | <0.001 | 8.410 | 0.038 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmidt, R.; Spangl, B.; Gruber, E.; Takács, E.; Mörtl, M.; Klátyik, S.; Székács, A.; Zaller, J.G. Glyphosate Effects on Earthworms: Active Ingredients vs. Commercial Herbicides at Different Temperature and Soil Organic Matter Levels. Agrochemicals 2023, 2, 1-16. https://doi.org/10.3390/agrochemicals2010001
Schmidt R, Spangl B, Gruber E, Takács E, Mörtl M, Klátyik S, Székács A, Zaller JG. Glyphosate Effects on Earthworms: Active Ingredients vs. Commercial Herbicides at Different Temperature and Soil Organic Matter Levels. Agrochemicals. 2023; 2(1):1-16. https://doi.org/10.3390/agrochemicals2010001
Chicago/Turabian StyleSchmidt, Ricarda, Bernhard Spangl, Edith Gruber, Eszter Takács, Mária Mörtl, Szandra Klátyik, András Székács, and Johann G. Zaller. 2023. "Glyphosate Effects on Earthworms: Active Ingredients vs. Commercial Herbicides at Different Temperature and Soil Organic Matter Levels" Agrochemicals 2, no. 1: 1-16. https://doi.org/10.3390/agrochemicals2010001