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Abstract: Exportin 1 (XPO1) is a crucial molecule of nucleocytoplasmic transport. Among others,
it exports molecules important for oncogenesis from the nucleus to the cytoplasm. The expression
of XPO1 is increased in numerous malignancies, which contributes to the abnormal localization of
tumor suppressor proteins in the cytoplasm and subsequent cell cycle dysregulation. Selective
inhibitors of nuclear export (SINEs) are novel anticancer agents that target XPO1, arrest tumor
suppressor proteins in the nucleus, and induce apoptosis in cancer cells. Selinexor, a first-in-class
SINE, has already been approved for the treatment of relapsed/refractory multiple myeloma and
relapsed/refractory diffuse large B cell lymphoma not otherwise specified. It has also been proven
effective in relapsed/refractory and previously untreated acute myeloid leukemia patients. In
addition, numerous studies have yielded promising results in other malignancies of the hematopoi-
etic system and solid tumors. However, future clinical use of selinexor and other SINEs may be
hampered by their significant toxicity.

Keywords: selinexor; selective inhibitor of nuclear export; multiple myeloma; diffuse large B cell
lymphoma; acute myeloid leukemia

1. Introduction

The transport of molecules between the nucleus and the cytoplasm is a crucial process
underlying the biology of eukaryotic cells. The nuclear envelope successfully separates
DNA replication and RNA transcription in the nucleus from protein synthesis and their
further modification in the cytoplasm. Small molecules can diffuse passively through the
nuclear pore complex (NPC) [1,2]. However, most macromolecules require nucleocytoplas-
mic transport factors in order to reach the other side of the nuclear envelope [3]. These
factors belong predominantly to the family of karyopherin-β. They are subdivided into
exportins, which transport cargo to the cytosolic compartment, and importins, which are
able to take cargo to the nuclear compartment [1,3,4].

Nuclear export requires the conversion of RanGTP to RanGDP, and phosphate to
provide energy for the process. Therefore, in order to reach the cytoplasm through NPC,
an exportin, RanGTP, and a cargo must create a complex. After the process, RanGDP is
transported back to the nucleus via NPC, in the presence of nuclear transport factor 2
(NTF2). The exportin itself shuttles back from the cytoplasm into the nucleus via NPC,
where it is ready to begin another cycle. Afterward, RanGDP is phosphorylated in the
nucleus to RanGTP by GTP, and therefore, further export is possible. A high concentration
of RanGTP in the nucleus is granted by the regulator of chromosome condensation 1
(RCC1), an element essential to maintain the Ran cycle [1–3,5]. The Ran cycle is shown in
Figure 1.
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Figure 1. The mechanism of the Ran cycle and exportin (exportin 1 as the example) transporting a 
cargo from the nucleus to cytoplasm in exportin 1-RanGTP-cargo complex. NPC—nuclear pore 
complex, NTF2—nuclear transport factor 2, RCC1—regulator of chromosome condensation 1. 

Chromosome maintenance protein 1 (CRM1), also known as exportin 1 (XPO1), is the 
first protein confirmed to provide nuclear export [6] and the most crucial exportin known 
to date [3]. XPO1 transports over 200 different cargoes, such as transcriptional factors, 
translational factors, or kinases [7,8]. The comprehensive molecular mechanism of the ex-
portin 1–RanGTP cargo complex creation has not been fully explained yet. Notably, trans-
ported cargoes must contain leucine-rich nuclear export signals (NES), while XPO1 in an 
unbound state has a ring-like hydrophobic structure which contains a NES-binding do-
main [4]. Moreover, XPO1 contains a loop in one of HEAT repeats, which regulates cargo 
binding through an allosteric mechanism [3]. The architecture of XPO1 was first modeled 
in 2004 based on X-ray crystallography, homology modeling, and finally, electron micros-
copy [9]. 

Some of the transported proteins are protooncogene products or tumor suppressor 
proteins, and therefore, XPO1 might impact oncogenesis [7]. Furthermore, the overexpres-
sion or increased activity of XPO1 is a common phenomenon in cancer cells, leading to 
nuclear deprivation of critical suppressor and regulatory proteins, such as p53, p21, IκB, 
RB, p27 [4,8,10]. As a result, these proteins are no more effective in counteracting genetic 
aberrations after being exported. Therefore, the cell cycle becomes dysregulated, leading 
to abnormal proliferation [8]. For instance, such a phenomenon was confirmed in breast 
cancer with BRCA1 mutation, where the altered localization of the BRCA1 protein product 
in the cytosolic compartment promotes metastasis [11]. 

Furthermore, XPO1 exports miRNAs that regulate cellular quiescence, which is the 
reversible state of proliferative arrest [12]. However, this is only an alternative pathway, 
as exportin 5 seems to play a more significant role in miRNA transport than exportin 1 

Figure 1. The mechanism of the Ran cycle and exportin (exportin 1 as the example) transporting
a cargo from the nucleus to cytoplasm in exportin 1-RanGTP-cargo complex. NPC—nuclear pore
complex, NTF2—nuclear transport factor 2, RCC1—regulator of chromosome condensation 1.

Chromosome maintenance protein 1 (CRM1), also known as exportin 1 (XPO1), is
the first protein confirmed to provide nuclear export [6] and the most crucial exportin
known to date [3]. XPO1 transports over 200 different cargoes, such as transcriptional
factors, translational factors, or kinases [7,8]. The comprehensive molecular mechanism
of the exportin 1–RanGTP cargo complex creation has not been fully explained yet.
Notably, transported cargoes must contain leucine-rich nuclear export signals (NES),
while XPO1 in an unbound state has a ring-like hydrophobic structure which contains
a NES-binding domain [4]. Moreover, XPO1 contains a loop in one of HEAT repeats,
which regulates cargo binding through an allosteric mechanism [3]. The architecture of
XPO1 was first modeled in 2004 based on X-ray crystallography, homology modeling,
and finally, electron microscopy [9].

Some of the transported proteins are protooncogene products or tumor suppressor
proteins, and therefore, XPO1 might impact oncogenesis [7]. Furthermore, the overexpres-
sion or increased activity of XPO1 is a common phenomenon in cancer cells, leading to
nuclear deprivation of critical suppressor and regulatory proteins, such as p53, p21, IκB,
RB, p27 [4,8,10]. As a result, these proteins are no more effective in counteracting genetic
aberrations after being exported. Therefore, the cell cycle becomes dysregulated, leading
to abnormal proliferation [8]. For instance, such a phenomenon was confirmed in breast
cancer with BRCA1 mutation, where the altered localization of the BRCA1 protein product
in the cytosolic compartment promotes metastasis [11].

Furthermore, XPO1 exports miRNAs that regulate cellular quiescence, which is the
reversible state of proliferative arrest [12]. However, this is only an alternative pathway, as
exportin 5 seems to play a more significant role in miRNA transport than exportin 1 [13].
The role of miRNA transport in oncogenesis is still poorly understood, although it is claimed



Drugs Drug Candidates 2023, 2 461

that genetic abnormalities, such as deletions, might downregulate miRNA expression in
some cancers. It leads to the dysregulation of quiescence/proliferation checkpoints and
creates an opportunity for growth factors to increase proliferation [14]. Such a phenomenon
occurs in chronic lymphocytic leukemia (CLL) with 13q14 deletions (more than half of CLL
cases), where neoplastic cells are deprived of miRNA15 and miRNA16 [15].

Exportin 1 might also induce resistance to chemotherapy and to targeted cancer
therapies by preventing the agents from achieving proper concentration in the nucleus [4].
For example, XPO1 is responsible for resistance to imatinib, ibrutinib, or cisplatin [5,10].
Overall, inducing pharmacotherapy resistance and escaping the cell cycle as a result of
exporting tumor suppressor proteins both contribute to the poor prognosis of cancers with
increased XPO1 expression [16].

The action of XPO1 might be inactivated by an antibiotic leptomycin B, which
attaches covalently to the cysteine-528 residue of the NES-binding domain [4,5,17].
Although successful in vitro and in vivo, this drug has never been used by clinicians due
to its unacceptable toxicity, and subsequent recommendations to cease further clinical
trials [5,8,18]. XPO1 inhibition has also been achieved using other molecules such as
antibiotics (anguinomycins, ratjadones), natural substances (goniothalamin, valtrate,
curcumin), and most importantly, using selinexor and other selective XPO1 inhibitors
such as eltanexor [4]. These drugs, known as selective inhibitors of nuclear export
(SINEs), have the same mechanism of action as leptomycin B, targeting the cysteine-528
of XPO1. SINE molecules contain hydrophobic trifluoromethyl groups buried deeply in
the NES-binding domain of XPO1. However, the most significant part of their structures
is the triazole scaffold, which forms covalent yet reversible bindings with the cysteine-
528 of XPO1 [1]. The cellular mechanism of action is shown in Figure 2. The chemical
structures of SINEs are shown in Figure 3.
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pretreated MM patients as an alternative to BCL-2 inhibitor venetoclax, immunotherapy 
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agents [33]. Therefore, clinical trials assessing the effectiveness of selinexor + dexame-
thasone and another additional agent (bortezomib [34,35], carfilizomib [36,37], pomalido-
mide [38] or doxorubicin [39]) have also been performed. Hence, it is still possible that the 
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This review aims to summarize up-to-date clinical applications and preclinical findings,
and to discuss the potential future role of this category of drugs. It is necessary to search
for promising agents and new cancer treatment methods, as described malignancies of
the hematopoietic system and solid tumors remain a challenge for clinicians, despite
improvements in overall survival. In particular, the options for heavily pretreated patients
with relapsed or refractory disease are still limited, as mentioned in the newest reviews
and guidelines for multiple myeloma [19,20], diffuse large B-cell lymphoma [21,22], and
acute myeloid leukemia [23,24].

2. Selinexor in R/R MM

Selinexor (KPT-330, brand name—Xpovio) is the first-in-class oral SINE targeted at
exportin 1. The drug has been approved for the treatment of relapsed/refractory multiple
myeloma (R/R MM) [25–27]. It was registered by the FDA in July 2019 in combination
with dexamethasone for patients who have undergone at least four prior therapies and
are refractory to at least two proteasome inhibitors (PIs), at least two immunomodulatory
agents (IMIDs), and anti-CD38 monoclonal antibodies (MABs) [25,27]. Although these
three classes of drugs are crucial in MM treatment, the majority of patients become refrac-
tory to them at some point of the therapy (“triple refractory MM”) [26]. Some patients
undergo even more therapies (for instance, autologous stem cell transplantation) before
selinexor is administered, with a median of seven lines of prior treatment revealed by
some studies [28,29]. Management algorithms suggest considering selinexor in heavily
pretreated MM patients as an alternative to BCL-2 inhibitor venetoclax, immunotherapy
or CAR-T cell therapies [30]. In December 2020, selinexor was approved by the FDA in
combination with bortezomib and dexamethasone for patients who have undergone one
prior therapy only [31].

As SINE, selinexor affects cancer cells by trapping tumor suppressor proteins and on-
coprotein mRNA in the nucleus and rebalancing the cell cycle [16]. Additionally, selinexor
increases the expression of glucocorticoid receptors and inhibits the mTOR pathway syner-
gistically with dexamethasone. Hence, an accelerated registration pathway was used for
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combination of selinexor with dexamethasone [29,32]. Moreover, selinexor inhibits DNA
repair mechanisms in cancer cells and sensitizes these cells to DNA-damaging agents [33].
Therefore, clinical trials assessing the effectiveness of selinexor + dexamethasone and
another additional agent (bortezomib [34,35], carfilizomib [36,37], pomalidomide [38] or
doxorubicin [39]) have also been performed. Hence, it is still possible that the indications
could be widened, and selinexor could be used in earlier stages of MM in other combina-
tions, before the development of refractoriness to many other agents. Preclinical studies in
this field are also ongoing [40]. The combination of venetoclax and selinexor was proven
effective in R/R MM with translocation t(11;14) [41]. Moreover, selinexor was confirmed to
overcome hypoxia-induced drug resistance to bortezomib, which supports the use of the
currently approved combination: selinexor + bortezomib + dexamethasone [42].

Selinexor in combination with dexamethasone produced a 26% overall response
rate (ORR) in R/R myeloma. The median duration of remission was 4.4 months, the
median overall survival (OS) was 8.6 months, and the median progression-free survival
(PFS) was 3.7 months [28,43]. Other studies yielded similar results (the ORR of 21%, the
median duration of remission of 5 months) [29]. For the combination of selinexor + carfil-
izomib + dexamethasone, the overall response rate (ORR) was 38% and the median OS
was 22.7 months [36,44]. The combination of selinexor + bortezomib + dexamethasone
produced the ORR of 63% in patients with a median of three prior therapies [44,45].
However, these studies did not include a control group. The only phase III clinical trial
assessed the efficacy of selinexor in combination with bortezomib and dexamethasone
(SVd) versus bortezomib and dexamethasone (Vd) [34,46]. The median PFS was signifi-
cantly longer (13.9 months vs. 9.5 months, p = 0.0075), and the ORR was significantly
higher in SVd group (76% vs. 62%, p = 0.0012). The results were even more promising
in terms of ORR, if only subgroups with high-risk cytogenetics were compared (ORR:
77% vs. 56%, p = 0.0008). However, no significant differences in terms of PFS have
been observed in this subgroup. Moreover, no significant difference in OS between SVd
and Vd groups has been found [34]. Considering all collected data, selinexor is still
beneficial for patients with R/R MM, regardless of cytogenetic risk [47]. Interestingly,
the latest cytogenetic analyses revealed that sensitivity to selinexor is strongly correlated
with the expression of ABCC4 in MM cells, which implies the usefulness of ABCC4 as a
predictive biomarker [48].

According to numerous studies, selinexor was not well tolerated by the patients.
Due to adverse reactions, treatment was discontinued in 27% of cases. Over 50% of
patients required dose reductions or dose delays, and fatal adverse effects occurred in 9% of
cases [26]. Thrombocytopenia, anemia, leukopenia, neutropenia; hyponatremia; dyspnea,
and upper respiratory infections occurred frequently. Less serious reactions were nausea,
vomiting, diarrhea, decreased weight, and fatigue [26,38]. The occurrence of ocular adverse
events was estimated at 20% [49], while neurological adverse events occurred in 25% of
cases [50]. Due to the unsafe profile of selinexor, dedicated recommendations for dealing
with adverse reactions have been prepared [51].

3. Selinexor in R/R DLBCL NOS

Selinexor was approved by FDA in June 2020 for the treatment of R/R diffuse large
B cell lymphoma (DLBCL) not otherwise specified (NOS) after at least two lines of sys-
temic therapy. As the third (or further) line of treatment, selinexor might be considered
alternatively to CAR-T cell therapies and antibody-drug conjugates (ADCs) (polatuzumab
vedotin, loncastuximab tesirine) [50].

Selinexor in monotherapy produced an ORR of 29%, where 38% of responses lasted
at least 6 months. The median duration of remission of 9.3 months was observed, while
the expected survival for R/R DLBCL patients is generally less than 6 months [50,52].
In another study, the ORR was estimated at 28%, the median PFS at 3.6 months, and the
median OS at 9.1 months [53,54]. Notably, similar ORRs were achieved regardless of DLBCL
subtype (germinal center B cell-like, non-germinal center B cell-like), but ORRs were lower
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for double-hit and triple-hit subtypes [55,56]. Patients with other non-Hodgkin lymphoma
(NHL) types (follicular lymphoma, mantle cell lymphoma, and Richter transformation) also
achieved an ORR of approximately 30% [50,55]. This would imply the possibility of creating
new drug combinations in the near future. Moreover, in NHL, selinexor was proven to
enhance the effectiveness of standard therapy R-CHOP (rituximab, cyclophosphamide,
doxorubicin, vincristine, prednisone) [57].

XPO1 overexpression was confirmed to worsen the prognosis of DLBCL patients with
unfavorable cytogenetics (BCL-2 overexpression, double-hit, triple-hit) [56]. Moreover,
targeting XPO1 with selinexor is only effective in the absence of the TP53 mutation. Oth-
erwise, resistance is induced [58]. Therefore, selinexor does not seem to be beneficial for
patients with unfavorable cytogenetic changes, but this phenomenon requires confirmation
on larger groups of patients in further studies. Comprehensive genomic profiling in DLBCL
revealed the recurrent mutation E571K of XPO1 [57]. Its role in pathogenesis and potential
responsibility for inducing resistance is still unclear. However, it might be another target
for future novel drugs.

Statistical analysis revealed that the adverse events of monotherapy with selinexor
did not have a clinically meaningful negative impact on patients’ quality of life, despite the
adverse events of grade 3 or 4 experienced in over 80% of cases [59]. Therefore, despite
the unsafe profile of selinexor, adverse reactions during therapy should be considered
manageable. It is worth noticing that the treatment response and stable disease groups
were associated with significantly higher quality of life than the group of patients who ex-
perienced progressive disease. This would imply that the incidence and severity of adverse
events during therapy had an impact on dose reductions or treatment discontinuation, and
therefore affected the eventual outcome.

4. Selinexor in Other Hematologic Malignancies

Research on selinexor as an anticancer agent is not limited to its current indications.
Its efficacy in acute myeloid leukemia (AML) has been assessed in numerous preclinical
and clinical trials. Moreover, compassionate use in some cases has also been reported [60].

Selinexor with a CLAG (cladribine, cytarabine, filgrastim) regimen in R/R AML
patients produced a complete remission (CR) rate of 45% [61]. In another study, the
combination of selinexor and decitabine in R/R AML produced an ORR of 30%, a CR rate
of 25%, a median OS of 5.9 months, and a median PFS of 5.9 months [62]. With selinexor as
monotherapy, the ORR was 14%, the median OS among responders was 9.7 months, and
the median PFS among responders was 5.1 months [63].

In previously untreated AML patients, selinexor added to standard therapy
(daunorubicin + cytarabine: ‘3+7’) produced a significantly higher CR rate in com-
parison with standard therapy alone (80% vs. 59%, p = 0.018) [64]. Moreover, selinexor
+ ‘3+7’ was proven to be a safe regimen, and it produced a median OS of 10.3 months
in previously untreated AML patients [65]. Maintenance therapy with selinexor after
allogeneic stem cell transplantation in high-risk AML patients was also proven safe and
effective [66]. A meta-analysis of the drug’s efficacy and safety in AML treatment is in
progress [67]. Therefore, new approval for an XPO1 inhibitor in AML is probable in the
near future. Moreover, an ORR of 26% was achieved in patients with myelodysplastic
syndrome (MDS) or oligoblastic AML, which implies the possibility of using an XPO1
inhibitor at even earlier stages of the disease [64,68].

Moreover, in mouse AML models, selinexor was proven to synergize with topoiso-
merase inhibitors, increase sensitivity to idarubicin, and reduce DNA damage repair [69].
A synergistic anticancer effect with azacitidine was confirmed in AML cell lines [70].

Selinexor in combination with DICE (dexamethasone, ifosfamide, carboplatin, etopo-
side) produced an ORR of 82% and a 1-year survival of 67% in patients with R/R peripheral
T cell lymphoma (PTCL) or natural killer/T cell lymphoma (NKTL) [71]. It is an alterna-
tive for other targeted agents in PTCL treatment (PI3K inhibitors, monoclonal antibodies,
ADC—brentuximab vedotin) [72].
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Selinexor was proven to synergize with ibrutinib, to increase OS in mouse CLL models,
and to be effective in ibrutinib-resistant CLL in vitro [73]. The efficacy of selinexor in
monotherapy was confirmed in CLL cells in vitro [74].

Selinexor combined with imatinib selectively targets chronic myeloid leukemia (CML)
stem cells, implying the possibility of successfully eliminating residual disease in patients
resistant to imatinib alone [75].

Examples of clinical studies involving selinexor in malignancies of the hematopoietic
system are shown in Table 1.

Table 1. Examples of clinical studies involving selinexor in malignancies of the hematopoietic system
(alphabetical order). Abbreviations: AML—acute myeloid leukemia, CR—complete remission,
DICE—dexamethasone, ifosfamide, carboplatin, etoposide, DLBCL—diffuse large B cell lymphoma,
MDS—myelodysplastic syndrome, MM—multiple myeloma, NHL—non-Hodgkin lymphoma, ORR—
overall response rate, PFS—progression-free survival, R-CHOP—rituximab, cyclophosphamide,
doxorubicin, vincristine, prednisone, ‘3+7’—daunorubicin + cytarabine therapy.

Number of
Reference Type of Malignancy Type of Study Year of

Publication
Outcomes/

Conclusions

[61] AML phase I clinical study 2020 CR = 45% in combination with cladribine,
cytarabine and filgrastim

[62] AML phase I clinical study 2020 CR = 25%, PFS = 5.9 months in combination
with decitabine

[63] AML phase I clinical study 2017 ORR = 14% and safe profile in monotherapy

[64] AML (previously
untreated) phase II clinical study 2022 significantly higher CR rate in combination with

standard therapy ‘3+7’ than ‘3+7’ alone

[65] AML (previously
untreated) phase I clinical study 2019 OS = 10.6 months and safe profile in combination

with ‘3+7’

[68] AML (+MDS) phase II clinical study 2020 ORR = 26% in monotherapy

[50] DLBCL phase II clinical study 2021 ORR = 29% in monotherapy

[54] DLBCL phase II clinical study 2020 ORR = 28%, PFS = 3.6 months in monotherapy

[55] DLBCL (and other NHL) phase I clinical study 2017 ORR = 31% and safe profile in monotherapy

[57] DLBCL (and other NHL) phase I clinical study 2021 synergistic effect with R-CHOP therapy,
safe profile

[28] MM phase I clinical study 2019 ORR = 26%, OS = 8.6 months in combination
with dexametasone

[36] MM phase I clinical study 2019 ORR = 38%, OS = 22.7 months in combination
with dexamethasone and carfilizomib

[45] MM phase I clinical study 2018 ORR = 63% in combination with dexamethasone
and bortezomib

[34] MM phase III clinical study 2020

significantly higher ORR rate and PFS in
combination with dexamethasone and

bortezomib vs. dexamethasone and
bortezomib alone

[39] MM phase I/II clinical study 2017 ORR = 15% in combination with dexamethasone
and doxorubicin

[38] MM phase I clinical study 2019
ORR = 31% and PFS = 12.2 months in

combination with dexamethasone
and pomalidomide

[71] T-cell lymphomas phase I clinical study 2021 ORR = 82% and 1-year survival of 67% in
combination with DICE

5. Selinexor in Solid Tumors

Selinexor has been approved for malignancies of the hematopoietic system, and current
research is mainly focused on its use in these diseases. However, it has also been considered
for the therapy of solid tumors [76].
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Selinexor has demonstrated anticancer activity in advanced gynecological malignan-
cies [77,78]. In a phase I clinical study of selinexor with carboplatin and paclitaxel (CP)
in patients with ovarian or endometrial cancer, the ORR was 57%, and the regimen was
proven safe [77]. Furthermore, in the phase II clinical study of patients with recurrent ovar-
ian, endometrial or cervical cancer, single-agent selinexor produced the CR rates of 30%,
35%, and 24%, respectively, and a median OS of 7.3 months, 7.0 months, and 5.0 months,
respectively. Moreover, in this study, selinexor was safe for and tolerated by the patients.
The majority of adverse events were mild (grade 1 or 2), reversible and fully manageable
with supportive care [78].

Selinexor reduced angiogenesis, tumor growth, and the incidence of metastases and
increased the OS in preclinical models of prostate cancer [79]. However, clinical activ-
ity could not be fully assessed, as the phase II clinical study of patients with refractory,
castration-resistant metastatic prostate cancer was terminated before completion due to
unacceptable toxicity of selinexor in combination with abiraterone and enzalutamide [80].

Selinexor was proven to decrease the concentration of hypoxia-inducible factor
1 (HIF-1) and, subsequently, to decrease radioresistance in human osteosarcoma cell
lines [81]. Notably, selinexor successfully inhibited the growth of xenografts derived
from other sarcoma types (liposarcoma, leiomyosarcoma, rhabdomyosarcoma, gastroin-
testinal stromal tumor, undifferentiated sarcomas) [82]. However, despite potential
activity in numerous preclinical studies of sarcoma cell lines [83,84], the phase I clin-
ical study did not yield promising results. Single-agent selinexor did not produce an
objective response (by RECIST) in any of the evaluated patients [85].

Additionally, despite significant tumor reduction, no partial or complete responses
were observed in the phase II clinical study of single-agent selinexor in patients with
recurrent or metastatic salivary gland tumors [86].

There are numerous in vitro/in vivo preclinical studies that have assessed the efficacy
of selinexor in these and other solid tumors. The examples are presented in Table 2.
However, despite promising results and a further improvement in our understanding of
the underlying molecular background, actual clinical prospects are still limited, and the
safety profile is questionable.

Table 2. Examples of preclinical and clinical studies involving selinexor in solid tumors (alpha-
betical order). Abbreviations: CR—complete remission, OS—overall survival, PFS—progression-
free survival.

Number of
Reference Type of Solid Tumor Type of Study Year of

Publication Outcomes/Conclusions

[87] anaplastic thyroid
carcinoma in vitro/in vivo preclinical study 2017 synergistic effect with daunorubicin

[88] bladder malignancies in vitro preclinical study 2018 decreased tumor growth

[89] breast cancer (triple
negative) in vitro preclinical study 2017 antitumor activity in monotherapy

[90] breast cancer (triple
negative) in vitro preclinical study 2021 antitumor activity in combination with olaparib

[91] chordoma in vivo preclinical study 2022 tumor growth inhibition in 78–92% in
combination with abemaciclib

[92] colorectal cancer in vitro/in vivo preclinical study 2017 synergistic effect with bortezomib

[93] colorectal cancer in vitro/in vivo preclinical study 2016 increased efficacy of anticancer radiation

[94] gastric cancer in vitro preclinical study 2018 synergistic effect with irinotekan

[95] glioblastoma in vitro/in vivo preclinical study 2015 decreased tumor growth, increased OS
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Table 2. Cont.

Number of
Reference Type of Solid Tumor Type of Study Year of

Publication Outcomes/Conclusions

[96] glioblastoma in vitro/in vivo preclinical study 2018 increased efficacy of anticancer radiation

[97] head and neck squamous
cell carcinoma in vitro preclinical study 2018 reversion of anthracycline resistance

[98] hepatoma, osteosarcoma in vitro preclinical study 2021 reversion of radioresistance

[83] liposarcoma in vitro/in vivo preclinical study 2017 decreased tumor growth

[84] liposarcoma review article 2022 -

[99] lung adenocarcinoma in vitro preclinical study 2021 decreased tumor growth

[100] neuroblastoma in vitro preclinical study 2021 synergistic effect with bortezomib

[77] ovarian cancer,
endometrial cancer phase I clinical study 2020 safety and good tolerance of selinexor +

carboplatin therapy

[78]
ovarian cancer,

endometrial cancer,
cervical cancer

phase II clinical study 2019
CR rates of 30%, 35% and 24% respectively,

median OS of 7.3 months, 7.0 months and 5.0
months respectively

[79] prostate cancer in vitro/in vivo preclinical study 2014 decreased tumor growth, increased OS

[80] prostate cancer phase II clinical study 2018
anticancer activity, yet poor tolerability in

combination with abiraterone and
enzalutamide

[101] renal cell carcinoma in vitro/in vivo preclinical study 2014 anticancer activity similar to sunitinib

[86] salivary gland tumor phase II clinical study 2022 tumor reduction in 61%, median PFS of 4.9
months

[85] sarcoma phase I clinical study 2016 partial responses, no CRs, safety and good
tolerability in monotherapy

[82] sarcoma in vitro/in vivo preclinical study 2016 anticancer activity in different sarcoma
subtypes

[81] sarcoma review article 2021 -

6. Other SINEs

Eltanexor (KPT-8602) is a second-generation SINE proven to inhibit XPO1 in malig-
nancies of the hematopoietic system in preclinical models in vitro and in vivo. In AML and
DLBCL patient-derived xenografts, eltanexor exerts a significant synergistic effect when
co-administered with a BCL-2 inhibitor (venetoclax) [102]. Moreover, the drug demon-
strates potent activity in both B cell and T cell acute lymphoblastic leukemia (ALL) models
in vivo [103], and synergizes with dexamethasone in these malignancies in vitro [104].

In the phase I clinical trial, oral high-dose eltanexor produced an ORR of 40%, a
median PFS of 4.5 months, and a median OS of 17.8 months in patients with R/R MM [105].
These results are promising, but they require a comparative study with selinexor in order to
determine actual usefulness in the clinic. In patients with high-risk MDS that is refractory to
hypomethylating agents (azacitidine), eltanexor produced an ORR of 53%, a CR of 47% and
a median OS of 9.9 months [106]. Eltanexor has also been investigated in preclinical models
of solid tumors, with promising results in glioblastoma [107] and castration-resistant
prostate cancer [108]. The severity and incidence of adverse reactions associated with
eltanexor were lower than for selinexor in R/R MM patients. The majority of events were
cytopenias and gastrointestinal abnormalities, and rarely, mild neurological abnormalities.
Patient withdrawal due to adverse events was only 8% [105].

KPT-185 is a SINE that has demonstrated anticancer activity in mantle cell lymphoma
(MCL) in vitro [109] and in MM in vitro [110]. However, the efficacy was lower in MCL
cells with high expression of TP53 [111]. In in vitro and in vivo preclinical models of AML,
KPT-185 induced the apoptosis and downregulation of the FLT3 oncogene [112]. This
activity has also been shown in non-small-cell lung cancer in vitro and in vivo [113].



Drugs Drug Candidates 2023, 2 468

KPT-276 is a SINE of similar properties to KPT-185. Both agents have demonstrated
co-activity in MCL [114] and NHL [115] cell lines. Moreover, KPT-276 was proven effective
in MM in vitro and in vivo, which contributed to the initiation of the phase 1 clinical trial
in this indication [116].

Verdinexor (KPT-335) has demonstrated anticancer activity in preclinical models
of esophageal cancer [117] and neuroblastoma [118] in vitro and in vivo. However, the
research on this SINE is mainly focused on antiviral activity against the influenza A
virus [119] and RSV [120]. Interestingly, according to the most recent studies, selinexor has
demonstrated antiviral activity against Merkel cell carcinoma virus [121,122]. Apparently,
the potential of this category of drugs is not limited to neoplastic diseases.

Other examples of using SINEs in preclinical models of malignancies of the hematopoi-
etic system are felezonexor (SL-401) in CML, AML, MM, and Hodgkin lymphoma [123];
KPT-251 in AML [124]; and CBS9106 in MM [125]. Although all these drugs significantly
decreased the proliferation of cancer cells in vitro, no clinical trials have been initiated for
many years, and these drugs are far from clinical application. The most probable candidate
for a second-generation SINE in cancer therapy is eltanexor. Its efficacy and safe profile
have already been proven by the phase I clinical studies in the years 2021–2022. Hopefully,
a safer alternative for selinexor will find its place in clinics in the near future. The chem-
ical structures of selinexor and other SINEs are shown in Figure 3. Examples of studies
involving other SINEs in neoplastic diseases are shown in Table 3.

Table 3. Examples of studies involving selective inhibitors of nuclear export other than selinexor
in malignancies of the hematopoietic system and solid tumors (alphabetical order). Abbreviations:
ALL—acute lymphoblastic leukemia, AML—acute myeloid leukemia, DLBCL—diffuse large B cell
lymphoma, MCL—mantle cell lymphoma, MM—multiple myeloma, NHL—non-Hodgkin lymphoma,
NSCLC—non-small-cell lung carcinoma, ORR—overall response rate, OS—overall survival.

Number of
Reference

Selective Inhibitor of
Nuclear Export Type of Study Year of

Publication Outcomes/Conclusions

[125] CBS9106 in vitro preclinical study 2011 decreased proliferation of MM cells

[102] eltanexor in vitro/in vivo preclinical study 2020 synergistic effect with venetoclax in AML and
DLBCL models

[103] eltanexor in vitro/in vivo preclinical study 2017 decreased proliferation of ALL cells

[104] eltanexor in vitro/in vivo preclinical study 2020 synergistic effect with dexamethasone in ALL
models

[105] eltanexor phase I clinical study 2021 OS = 17.8 months, ORR = 40% in combination
with dexamethason in MM

[106] eltanexor phase I clinical study 2022 ORR = 53% in high-risk
myelodysplastic syndrome

[107] eltanexor in vitro preclinical study 2022 anticancer effect in glioblastoma cells

[108] eltanexor in vitro preclinical study 2021 synergistic effect with PARP inhibitors in
prostate cancer cells

[123] felezonexor (SL-401) in vitro preclinical study 2016 anticancer effect in numerous
hematologic malignancies

[109] KPT-185 in vitro preclinical study 2012 anticancer effect in MCL

[110] KPT-185 in vitro preclinical study 2011 anticancer effect in MM

[111] KPT-185 in vitro preclinical study 2014 anticancer effect via p53-dependent mechanism
in MCL

[112] KPT-185 in vitro/in vivo preclinical study 2012 decreased proliferation of AML cells,
increased OS

[113] KPT-185 in vitro/in vivo preclinical study 2014 anticancer effect in NSCLC

[124] KPT-251 in vitro/in vivo preclinical study 2013 anticancer effect in AML
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Table 3. Cont.

Number of
Reference

Selective Inhibitor of
Nuclear Export Type of Study Year of

Publication Outcomes/Conclusions

[114] KPT-276 (+ KPT-185) in vitro/in vivo preclinical study 2013 anticancer effect in MCL

[115] KPT-276 (+ KPT-185) in vitro/in vivo preclinical study 2014 decreased proliferation of NHL

[116] KPT-276 in vitro preclinical study 2013 decreased proliferation of MM

[117] verdinexor in vitro/in vivo preclinical study 2022 decreased proliferation and migration of
esophageal cancer

[118] verdinexor in vitro/in vivo preclinical study 2021 anticancer effect in neuroblastoma

7. Summary and Future Directions

Selinexor is a promising agent already registered for the second or further line therapy
of R/R MM [31] and in the third or further line therapy of DLBCL NOS [50]. The drug
has already been and is still being assessed in numerous clinical and preclinical studies.
Significant achievements have been demonstrated in R/R AML [64,65], which might
contribute to the approval of selinexor for this indication in the near future. Although
research has mainly focused on malignancies of the hematopoietic system [126], using
XPO1 as a target may also be useful in solid tumors (Table 2). Moreover, due to numerous
novel SINEs with promising anticancer activity, it is possible that selinexor will not be
the only agent with this mechanism of action in the clinic. Eltanexor, whose efficacy has
already been documented in a phase I clinical trial for R/R MM, is a possible candidate for
a registered second-generation SINE in the longer term [105]. A timeline of the crucial facts
and events in the history of SINEs is shown in Figure 4.
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On the other hand, the unsafe toxicity profile of selinexor might be a potential barrier to
its clinical application. The ratio and wide spectrum of adverse events in R/R MM patients
led to dedicated guidelines based on independent clinical trials [51]. In DLBCL patients, the
impact on quality of life was not that explicit [59]. Moreover, unacceptable toxicity was the
reason for the termination of the phase II clinical trial in patients with castration-resistant
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metastatic prostate cancer [80]. On the other hand, a phase II clinical trial in patients with
advanced gynecological malignancies yielded more promising results [78]. According
to the only clinical trial, eltanexor had a safer toxicity profile than selinexor [105]. Other
SINEs have not been investigated yet, but hopefully they will show similarities to eltanexor,
leading to another SINE being applied in clinics. This would be a significant event, as the
options for patients with R/R malignancies of the hematopoietic system and solid tumors
are still limited.

However, even the approval and successful clinical application of next-generation
SINEs would probably not constitute a breakthrough, due to the heterogeneity of neo-
plasms. The wide spectrum of genetic abnormalities and different protein expression
profiles has a decisive impact on patients’ response to treatment and prognosis in DL-
BCL [127] or AML [128], as examples. Therefore, especially in relapsed/refractory
diseases, personalized therapy is necessary to maximize clinical benefits. However,
the more unique options are available, the more we can offer to patients, and this is
the purpose of novel, promising categories of drugs such as SINEs. Considering the
recent success of selinexor in different malignancies and current attempts to optimize
new candidates, this category of drugs is likely to play a greater role in the future, if its
toxicity profile and accessibility are improved [129].

XPO1 is a vulnerable target in different malignancies of the hematopoietic system,
especially MM and solid tumors [116]. However, although XPO1 is crucial, it is not
the only molecule that regulates nuclear export [130]. Multiple exportins have already
been identified. Therefore, targeting one of them might not fully exploit the potential
of anticancer activity. Examples of these exportins include Cse1, Pse1, Kap123, Sxm1
and Mtr10 [130]. There are also potential prospects of finding promising nuclear import
inhibitors [131], the examples of which include karyostatin 1A, importazole, ivermectine,
and mifepristone. Although these molecules are widely used as biological tools to
identify cargo proteins, none of them have entered clinical trials for neoplastic disorders
thus far [131].

Overall, nuclear transport has fundamental importance for a variety of pathophysio-
logical processes. Therefore, understanding the interplay of exportins and importins will
be crucial for the further perfection of compounds affecting nuclear transport. Hopefully,
this will result in even more success of the aforementioned category of agents in the future.
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