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Abstract: In recent decades, acceptance of nanoparticles (NPs) in therapeutic applications has in-
creased because of their outstanding physicochemical features. By overcoming the drawbacks of
conventional therapy, the utilization of metal NPs, metal-oxide, or metal supported nanomaterials
have shown to have significant therapeutic applications in medicine. This is proved by a lot of clinical
and laboratory investigations that show improved treatment outcomes, site-specific drug delivery,
and fewer side effects compared to traditional medicine. The metal NPs interaction with living cells
(animal and plant) showed many ways to develop therapeutic models with the NPs. Despite all of
the advancements that science has achieved, there is still a need to find out their performance for
long-term use to solve modern challenges. In this regard, the present documentation reviews some
potential metals, including silver (Ag), gold (Au), zinc (Zn), copper (Cu), iron (Fe), and nickel (Ni)
NPs, as therapeutic agents in various areas such as anticancer, antimicrobial, antidiabetic, and appli-
cable for the treatment of many other diseases. Depending on the outstanding ongoing research and
practical trials, metal-based NPs can be considered the hope of prospective modern therapeutic areas.

Keywords: metal nanoparticles; nanotherapy; therapeutic uses; targeted strategy

1. Introduction

The implementation of nanoparticles (NPs) for the treatment and diagnosis of disease
is a revolutionary concept that has been developed over the past few decades. The nan-
otechnological approach can be divided into two branches: one is nanodevices and the
other is nanomaterials. The nanodevice can be defined as such tiny devices at the nanoscale
range, which includes microarrays and some devices such as respirocytes [1–3].

Particles smaller than 100 nanometers (nm) in any one of the dimensions are consid-
ered nanomaterials. Biomedical science found successful result by using nanoparticles
as therapeutic agents in the treatment of various diseases. As it is selective on the target
organ and receptors, it overcomes several limitations of conventional therapy, such as
nonspecificity, unwanted side effects, less efficiency, and low bioavailability [4].

Therefore, current research projects are considerably more focused on developing and
designing new drug delivery systems, and the most promising area is ensured by NPs
for their uniqueness in biological and physicochemical characteristics, as they can deliver
molecules to specific locations in the body [5].
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The therapeutic molecules which are insoluble in water can be complexed with NPs, re-
sulting in greater bioavailability and significantly fewer physiological barriers; for example,
NP carriers assist medication in passing the blood–brain barrier (BBB) [6–8]. Nevertheless,
because it is targeted, it will require lower doses than conventional therapy, and the thera-
peutic index will be higher as it will minimize the toxicity in the biological system. The
utilization of NPs in various fields of the health sector is possible because of their ability to
provide a visual image of the targeted delivery location by using some agents; moreover,
their pathway can be tracked.

Several studies have recently focused on the method of producing metal NPs us-
ing green synthesis, which has shown positive results against pathogens, cancer cells,
helminths, fungi, etc. using the metal NPs Zn, Ag, Au, Pt, Mn, Ni, and Ti [9]. Currently,
among other NPs, Ag-NPs are one of the top listed compounds being researched [10]. In
1857, Michael Faraday was the first person to study Au-NPs in a colloidal system and
report Au-NP’s optical features [11].

This documentation reviewed physicochemical properties of the NPs Au, Ag, Cu,
Fe, Ni, and Zn and generated a review of the recent year’s progression for their use as
nanomedicine with their application as targeted delivery in numerous physical disorders.

1.1. Significance of Metals in Human Body

For diagnostic and treatment purposes, metals are used in organic systems as
medicine [12]. There are some metals, such as mercury (Hg), cadmium (Cd), and ar-
senic (As), that are considered toxic when they cross a certain limit, but some metals are
necessary for the body’s enzymatic and metabolic functions. For instance, there are metal-
loproteins which contain metal ions as co-factors, and a greater portion of proteins are in
this category. There is a minimum 1000–3000 human proteins which contain a Zn ion as a
co-factor [13]. The comparative presence of metals in the human body shown in Table 1.

Table 1. Concentration of metals in some human organs [14].

Metals Liver (ppm) Kidney (ppm) Lung (ppm) Heart (ppm) Brain (ppm) Muscle (ppm)

Iron 16,769 7168 24,967 5530 4100 3500
Manganese 138 79 29 27 22 <4–40
Nickel <5 <5–12 <5 <5 <5 <15
Zinc 5543 5018 1470 2772 915 4688
Cobalt <2–13 <2 <2–8 - <2 150
Copper 882 379 220 350 401 85–305

1.2. Major Function of Metals in Human Body

Sections 1.2.1–1.2.7 aim to describe the significance of the selected metals in the general
physiological functions of the human body.

1.2.1. Manganese (Mn)

Manganese is significant for development, metabolism, and the antioxidant system.
Importantly, Mn is needed for amino acid, cholesterol, and carbohydrate metabolism and
in bone and thyroxin formation.

Mn is required for the action of enzyme families, such as oxidoreductases, hydrolases,
transferases, lyases, isomerases, and ligases. For normal immune protection, blood sugar
control, creating cellular energy, and reproduction, Mn works with various organ systems.
It is estimated by the National Research Council that for adults, 2 to 5 mg of dietary
manganese per day is safe [15].

It is particularly important for the detoxification of superoxide free radicals, and it
activates some metalloproteases. It assists the body in using biotin, thiamin, vitamin C, and
choline. However, excessive intake can lead to a stage called manganism, which causes
neuronal death and a Parkinson’s-like syndrome [16].



Drugs Drug Candidates 2023, 2 234

1.2.2. Iron (Fe)

Fe is a vital component of hemoglobin (RBC) [17]. Fe aids in the metabolism of muscle
and active connective tissue. It is needed for the synthesis of some hormones, neurological
development, maintaining physical growth, and cellular functioning [18,19].

For the synthesis of DNA and electron transportation, Fe is important [20]. Fe defi-
ciency is the reason for about 50% of the cases of anemia around the world, according to a
WHO report [21].

1.2.3. Cobalt (Co)

Co is a part of cobalamin, or vitamin B12, and therefore, it is significant for the function
of cells. Co is needed for the production of RBC and the production of antimicrobial
compounds (antibacterial and antiviral). Cobalt plays a vital role in amino acid and protein
generation and the formation of neurotransmitters. Co salt is used in the treatment of
anemia [22].

1.2.4. Nickel (Ni)

For regulating the proper function of the human body, Ni is an essential micronutrient.
This metal amplifies hormonal function and is also required in lipid metabolism [23].
Although the mechanism of toxicity is unknown, prolonged contact or higher intake can
result in a variety of side effects, including cancer [24]. Ni is required in trace amounts
for growth and reproduction [25]. It activates arginase and urease enzymes [12] and also
inhibits some enzymes, for instance, acid phosphatase [26].

1.2.5. Copper (Cu)

Cu is highly involved in energy production, iron metabolism, the formation of con-
nective tissue, and the activation of neuropeptides and neurotransmitters [17,18]. Ceru-
loplasmin (CP), a Cu-abundant enzyme involved in Fe metabolism, is mostly composed
of Cu and accounts for approximately 95% of total Cu in human plasma [27]. Cu is also
involved in various physiologic processes, including angiogenesis, brain development, pig-
mentation, neurohormone homeostasis, gene expression regulation, and immune system
functioning [24], as well as providing protection against oxidative damage [28,29].

1.2.6. Zinc (Zn)

Zn is required in a variety of ways for cellular metabolism. Zn is mandatory for the
activation of about 100 enzymes [30,31], and it has roles in the immune system, protein
synthesis [32,33], wound healing [34], DNA synthesis, and cell division [35,36]. It assists
the normal development of the fetus during pregnancy and is needed for further growth
from the stage of childhood to adolescence [37,38]. Moreover, Prasad et al. demonstrated
that Zn is responsible for a proper sense of smell and taste [39,40]. Because the human body
cannot store zinc, it must be consumed on a regular basis to keep these functions running
smoothly [41].

1.2.7. Gold (Au)

The average human body (for an average adult human weighing 70 kg) might contain
about 0.2 mg of Au [42]. Significant health functions include helping to maintain our
joints as well as facilitating the transmission of electrical signals throughout the body. It is
necessary for the maintenance and function of the joints. Additionally, Au it is an excellent
conductor of electricity, aiding in the transmission of electrical signals throughout the
body [39]. Several cell-mediated immune responses to various mitogens and antigens
are inhibited by gold compounds. This inhibition is accelerated by the Au’s impact on
macrophages [43].
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1.3. Size, Shape, Material, and Surface of Nanoparticles

NPs range from 1 to 100 nm (Figure 1) and could be a sphere, cube, rod, plate, or
star shape.
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Figure 1. Sizes of nanoscale items in comparison to other relevant objects.

The surface of the NPs can be PEGylation or another coating, which might have
present linkers containing surface functional group, surface charge, and targeting ligand
(antibody, peptide, aptamer, etc.); see Figure 2. Nanomaterial size, shape, and surface
coating are essential parameters that influence cell uptake and/or the pace and site-specific
drug delivery from the system. The shapes of nanoparticles also play a crucial role in
infrared absorption, which is particularly essential in phototherapy [44]. Rods are the most
absorbent, followed by spheres, cylinders, and cubes [45].
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1.4. Major Nanodrug Delivery Systems

This section will familiarize you with the various types of nanomedicine and provide a
general idea for further research. Based on the recent approaches, polymeric, metallic, and
ceramic NP drug delivery vehicles are widely used [8], such as liposomes [46], micelles [47],
dendrimers [48], etc. A large number of clinical and pre-clinical trials demonstrated their
efficacy in treating various diseases [49–51].

A process through which cells take in foreign material by enveloping it with their
membrane is known as endocytosis. Pinocytosis and phagocytosis are the two main
subtypes of endocytosis. Hormonal receptors, integrins, growth factor receptors, tyrosine
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kinase receptors, and lipids are just a few of the proteins that are transported via the critical
cellular process known as endosomal trafficking.

Pinocytosis, from the Greek “pino” meaning to drink, is the mechanism through which
the cell absorbs liquids and disperses tiny molecules. The cell membrane bends and forms
tiny pockets during this process, catching the cellular fluid and other dissolved materials
(Figure 3). In many cases, nanodrugs follow this endocytosis (pinocytosis) [52]. Other
delivery methods include clathrin-dependent delivery [53,54].
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Figure 3. Major cellular uptake methods of nanoparticles (cellular uptake occurs mainly through
endosomal trafficking, through clathrin-dependent delivery, and through ion channels).

Biomedical uses of nanohydrogels are wide in drug administration, tissue engineer-
ing [55], and wound dressing and healing due to their biocompatibility [56], nontoxicity [57],
and high absorption capacity [58]. Furthermore, site-specific targeted drug administra-
tion is possible with stimulus response factors such as temperature and pH-dependent
upgraded hydrogels [52,59]. There is evidence of the use of nanometal-hydrogel for tissue
regeneration [60].

Nanohydrogel molecules have the features of hydrophilic and hydrophobic compo-
nents, disperse in the solution to form micelles [61]. Micelles are generated by self-assembly,
where the process does not begin until a specific minimum concentration is reached. This
concentration is frequently referred to as the crucial micellar concentration [62]. Ag-NPs
form micelles to be stable in aqueous solutions [59]. Reverse micelles are used for bimetallic
(Au/Pd) NP formation [63].

Dendrimers are such structures that have branches or arms like trees and are globular,
nanodimensionally compact, and radially symmetric [64]. The capacity of dendrimers to
distribute drugs in a regulated and targeted manner is their most promising use. Higher
stability, a longer half-life, and greater bioavailability are characteristics of drugs conjugated
to such delivery systems. Additionally, prolonged drug release via the drug-dendrimer
combination lowers the systemic toxicity and maintains tumor tissue-specific aggrega-
tion [65,66].

A significant number of clinical and preclinical studies show how deeply the function
of NPs as carriers of therapeutic agents has been studied. NPs are regarded as one of the
most promising groups of medication delivery systems. NPs can bind macromolecules
such as proteins, antibodies, or nucleic acids and can encapsulate both hydrophilic and
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hydrophobic medicines [67]. Paclitaxel has been exemplified in polymeric NPs made by
impeding copolymers of mono-methoxy polyethylene glycol and poly-D,L-lactide [68].

Additionally, NPs may be programmed to react to many environmental factors, in-
cluding pH, light, temperature, enzymes, and other biological and chemical agents. The
most often employed of all these stimuli is pH responsiveness. The pH differential can aid
in distinguishing tumor tissue (pH 5.7–7.0) from normal tissue (pH 7.4). The capacity to
directly release medications at tumor sites has made this pH responsiveness valuable in a
variety of cancer and tumor therapies [69].

Inorganic NPs have been studied for their potential biomedical applications in ad-
dition to polymeric NPs. There are various ways to make inorganic NPs, including the
crystallization of inorganic salts, thermal breakdown, and other well-known synthetic
processes [70]. Several inorganic NPs, including Au, Ag, Pt, iron oxide (FeO), cerium oxide
(CeO2), and zinc oxide (ZnO), have been successfully synthesized and used in numerous
preclinical and clinical trials. However, because of their higher biocompatibility, higher
biodegradability, and lower systemic toxicity, polymeric nanoparticles are preferred over
inorganic NPs [71]. Many researchers have been interested in liposomes as a potential med-
ication delivery technology due to their capacity to selectively transport both hydrophilic
and hydrophobic medicines to their respective target sites [72].

Liposomes are capable of encapsulating and protecting both hydrophilic and hy-
drophobic medicines before releasing them at specific sites. Multilamellar vesicles are made
up of concentric spheres of phospholipids separated by water layers, while unilamellar
vesicles only have a single phospholipid bilayer encapsulating the aqueous solution [50].
Au-NPs enable green synthesis by using glycerol liposomes [73,74] and the selective release
of contents from liposomes caused by light [75]. Multifunctional metallic NPs can be
formed for medical imaging and micro-fluidity [76,77].

Scaffolds are important in biomedicine and tissue engineering because of their capabil-
ity to foster cell adhesion, proliferation, and differentiation, all of which are necessary for
tissue development. The scaffolding allows cells to develop in all the right places, which
results in the production of tissue. A biocompatible matrix is required for optimal cell
growth, the strategy of employing scaffolds is of utmost relevance [78,79]. Scaffolds have
great biocompatibility, mechanical strength, porosity, and interconnectivity, all of which
are necessary for clinical application [80]. There is evidence of a nanohybrid scaffold of
glycolic acid-g-chitosan-Pt-Fe3O4 being used as a drug delivery system [81].

1.5. Scopes of Metal Nanoparticles in Remedies

To ensure that the human body functions normally, specific levels of certain metals
must be present. The main functions of metals are to catalyze certain reactions and act as
cofactors or prosthetic groups of enzymes. The required metals for humans include Na, K,
Fe, Mg, Zn, Cd, Mn, Cu, V, Cr, Mo, Co, and Ni. In the absence of certain essential metals,
anemia could occur [41].

Iron deficiency causes the loss of functional blood proteins such as hemoglobin, myo-
globin, etc., whose function is to carry oxygen. Iron deficiency accounts for roughly half
of all anemia cases worldwide. As a first-line therapy, oral iron supplementation is rec-
ommended; however, IV iron formulation is a recent addition to anemia treatment, and
hepcidin could be a future diagnostic target [42]. Vitamin B12 is made of a cobalt complex
called cobalamin, and the lack of this vitamin results in pernicious anemia.

Zn is used as a catalyst for various enzymes. Importantly, it is required for red blood
cell production. That is why a deficiency in this metal can cause anemia. It can heal wounds,
and Zn ions (Zn2+) can be used for treating the herpes virus [82]. According to one study,
infant’s diets which had low in Zn; had higher rates of copper anemia, which can lead to
heart disease also [31]. Copper gluconate, copper chloride, or copper sulfate are used as
oral or IV copper supplements in copper anemia [83]. Some potential metallic NPs are
shown in Figure 4.
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For the treatment of rheumatoid arthritis [84], juvenile rheumatoid arthritis, and
psoriatic arthritis, gold salt complexes have been used. Though the mechanism is still
uncovered, it is assumed that Au salts interact with albumin and are taken up by the
immune cells, causing antimitochondrial effects and the apoptosis of cells [85–87]. Head
and neck tumors showed specificity towards the Pt-based compounds; they might work by
cross-linking the DNA in tumor cells [88]. For the treatment of manic-depressive disorder,
lithium carbonate (Li2CO3) is used [89].

To prevent the contagiousness of infection, Ag has been used for various remedies
since 4000 BC. The bactericidal effect of silver is well established, and topically, it is used
to prevent infection of burned skin; it is also being used for ulcerations, bone prostheses,
orthopedic surgery, catheters, heart devices, and surgical apparatus [90].

Diabetes, atherosclerosis, cancer, myocardial ischemia, pulmonary TB, asthma,
Alzheimer’s disease (AD), and Parkinson’s disease (PD) are only a few of the many chronic
diseases for which drug delivery vehicles have been extensively studied and shown to be
effective. A number of these medicines, including Caelyx®, Abraxane®, Myocet®, Mepact®,
Rapamune®, and Emend®, have been marketed for human use after positive results in
preclinical and clinical testing. The potential of innovative therapeutic agents, such as
peptides, nucleic acids (RNA and DNA), and genes, to be exploited as nanomedicines
for the treatment of numerous chronic diseases, has been demonstrated beyond that of
medications and chemicals [91].

Drugs Drug Candidates 2023, 2, FOR PEER REVIEW 7 
 

Iron deficiency causes the loss of functional blood proteins such as hemoglobin, my-

oglobin, etc., whose function is to carry oxygen. Iron deficiency accounts for roughly half 

of all anemia cases worldwide. As a first-line therapy, oral iron supplementation is rec-

ommended; however, IV iron formulation is a recent addition to anemia treatment, and 

hepcidin could be a future diagnostic target [42]. Vitamin B12 is made of a cobalt complex 

called cobalamin, and the lack of this vitamin results in pernicious anemia. 

Zn is used as a catalyst for various enzymes. Importantly, it is required for red blood 

cell production. That is why a deficiency in this metal can cause anemia. It can heal 

wounds, and Zn ions (Zn2+) can be used for treating the herpes virus [82]. According to 

one study, infant’s diets which had low in Zn; had higher rates of copper anemia, which 

can lead to heart disease also [31]. Copper gluconate, copper chloride, or copper sulfate 

are used as oral or IV copper supplements in copper anemia [83]. Some potential metallic 

NPs are shown in Figure 4. 

For the treatment of rheumatoid arthritis [84], juvenile rheumatoid arthritis, and pso-

riatic arthritis, gold salt complexes have been used. Though the mechanism is still uncov-

ered, it is assumed that Au salts interact with albumin and are taken up by the immune 

cells, causing antimitochondrial effects and the apoptosis of cells [85–87]. Head and neck 

tumors showed specificity towards the Pt-based compounds; they might work by cross-

linking the DNA in tumor cells [88]. For the treatment of manic-depressive disorder, lith-

ium carbonate (Li2CO3) is used [89]. 

To prevent the contagiousness of infection, Ag has been used for various remedies 

since 4000 BC. The bactericidal effect of silver is well established, and topically, it is used 

to prevent infection of burned skin; it is also being used for ulcerations, bone prostheses, 

orthopedic surgery, catheters, heart devices, and surgical apparatus [90]. 

Diabetes, atherosclerosis, cancer, myocardial ischemia, pulmonary TB, asthma, Alz-

heimer’s disease (AD), and Parkinson’s disease (PD) are only a few of the many chronic 

diseases for which drug delivery vehicles have been extensively studied and shown to be 

effective. A number of these medicines, including Caelyx® , Abraxane® , Myocet® , Mepact® , 

Rapamune® , and Emend® , have been marketed for human use after positive results in 

preclinical and clinical testing. The potential of innovative therapeutic agents, such as pep-

tides, nucleic acids (RNA and DNA), and genes, to be exploited as nanomedicines for the 

treatment of numerous chronic diseases, has been demonstrated beyond that of medica-

tions and chemicals [91]. 

 

Figure 4. A couple of possible metallic nanoparticles. Adapted with permission from Ref. [91]. 

NPs based on metals such as Au, Ag, Fe, Cu, Pt, Zn, and so on have attracted a lot of 

interest in the medical field. NPs of metals have been demonstrated to exist in aqueous 

solutions, as demonstrated by Faraday [11]. Metallic NPs’ hue and structure were 

Figure 4. A couple of possible metallic nanoparticles. Adapted with permission from Ref. [91].

NPs based on metals such as Au, Ag, Fe, Cu, Pt, Zn, and so on have attracted a lot of
interest in the medical field. NPs of metals have been demonstrated to exist in aqueous
solutions, as demonstrated by Faraday [11]. Metallic NPs’ hue and structure were analyzed
by Kumar et al. [92] many years later. NPs can be manufactured and optimized in the
present day by altering the chemical groups that aid in binding the antibodies. Ag-NPs
could be utilized to treat a variety of skin ailments. Biomedical applications of noble
metal NPs (Au, Ag, and Pt) include cancer treatment, drug transport, radiation therapy
augmentation, thermal ablation, fungus elimination, diagnostic testing, and gene delivery,
among many others. NPs of noble metals have special qualities that increase their worth.
Peptides, antibodies, RNA, and DNA are just some of the functional groups that can
be attached to metal NPs to make them more specific to the cells they are intended to
target [93]. Some key NPs as well as their physiological applications are summarized below
in Table 2.
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Table 2. Some applications of metal nanoparticles.

Nanoparticles Name Site of Action Application References

Au-NPs Cancer gliblastoma-based
multiforme Radiosensitizer applications [94,95]

Au-NPs Cancer cell Radiosensitizer application [96]
Ag-NPs Skin Skin penetration evaluation [97]
Pt-NPs lined with polyvinyl alcohol Brain Toxicity evaluation [98]
Ag-NPs Antimicrobial agent Antimicrobial assessment [99]
Au-NPs/Ag-NPs Cancer cell Photothermal therapy, imaging therapy [100]

Au-branched shell nanostructure Breast cell Imaging therapy, photothermal therapy,
chemotherapy. [101]

1.6. Major Challenges of Using Nanoparticles in Medical Treatment

Firstly, though many testing procedures [102] have been developed for the evaluation
of NP toxicity [103], these procedures are not universal for all NPs; they are designed for
individual NPs and are not applicable for hybrid NPs. This fact leads to an undesirable
outcome from the real objects and could be harmful for the body. As its effect is dependent
on the size, shape, surface charging condition, and capping agents, it is really difficult
to develop an accurate strategy to find out the toxicity. On the other hand, Au-NPs’
effect also depends on its target receptor or organ; for example, different NPs show their
effect at different concentrations. Thus, it is urgent to formulate some universal methods,
such as good laboratory practice (GLP), to evaluate the safety of the NPs [103–105]. The
adsorption of proteins to the particles also correlated with their physical characteristics
(size, shape, charge, etc.) [106]. Significantly, metal oxide NPs have a high tendency to
produce toxicity, this toxicity can be caused by a variety of mechanisms, including oxidative
stress, coordination effects, nonhomeostatic effects, genotoxicity, and others. Size, solubility,
and exposure routes all have an impact on metal oxide nanoparticles [107].

Secondly, although Au-NPs show outstanding result in tumor disease, there is a lack of
studies to find out its pharmacokinetics (clearance and bio distribution) inside the human
body. In vitro and in vivo studies cannot give the full picture of the biodistribution in the
organism, which limits the wide use of gold NPs [108].

Third, this study discovered that in the case of tumor treatment, only 0.7% of NPs
were able to reach cancer cells, with some exceptions reaching more than 5%. Moreover,
when the NPs are injected in the blood circulation, they get absorbed in the mononuclear
phagocytic system (MPS) and renal system, which reduces the effectiveness of the MPS day
by day.

Finally, because there have been few Au-NP clinical trials, the data do not allow
for comprehensive research on clearance, distribution, and protein absorption. Thus, a
comprehensive trial for safety and toxicity should be carried out [109].

This review aims to highlight experiments conducted in the path of advancement in
the therapeutic use of above discussed six metal NPs, such as Ag, Au, Zn, Cu, Fe, and Ni;
additionally, we have used the literature to highlight the possible mechanism of action of
significant effects of the selected potential metal NPs.

2. Therapeutic Applications of Metal NPs
2.1. Therapeutic Interventions of Gold Nanoparticles (Au-NPs)

When Robert Koch discovered that gold cyanide had a bacteriostatic effect on My-
cobacterium TB, the medical use of gold for the treatment of tuberculosis was established
for the first time. This led to the introduction of gold as a medicine in the 1920s [110].

Au-NPs have a tendency to aggregate at tumor sites [95]. Tumor cells can be killed by
Au-NPs in a variety of ways, including as drug delivery systems for mechanical damage,
anticancer medicines, and photothermal ablation [111].

In particular, Au-NPs are used in drug delivery, imaging, photo-thermal therapy, sens-
ing, catalysis, and antimicrobials [112]. The list of applications of Au-NPs is much longer
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because of their unique properties (Table 3). The biocompatibility of gold nanoparticles
has been well documented; however, the typical reduction procedures used to create them
can leave behind harmful chemical species [113]. Consequently, Au-NPs manufactured
in an environmentally friendly manner hold far more promise in a variety of settings. Al-
though Au-NPs are not as widely used as Ag-NPs as antibacterial agents, they nonetheless
have considerable impact against a wide range of diseases due to their inherent biocidal
qualities [112,114].

Au-NPs of 60 nm showed a positive result in retinoblastoma treatment [115], Au
nanopopcorn 28 nm in size is used to diagnose prostate and breast cancer [116], and Au
nanostars (Au-NS) 30 and 60 nm in size can be used to identify brain tumors, and this same
NP showed a satisfying result against bladder cancer [117].

Silica-coated Au nanorods showed effective antitumor activity, both in vivo and
in vitro, against breast cancer by targeting CD44+ receptors [118]. Colloidal Au-NPs are of
interest as nontoxic carriers for drug delivery [119–121]. In a study, it was found that the
internalization of the 50 nm spherical gold nanoparticles (AuNPs) was the best of all the
nanoparticles investigated [122]. TrxR (thioredoxin reductase) function can be inhibited by
gold compounds, which causes tumor cells to accumulate reactive oxygen species (ROS)
and experience oxidative stress, which ultimately kills the tumor cells [123,124] and the
proposed anticancer mechanism of Au-NPs is illustrated in Figure 5.

Nanotherapeutic Application of Gold

Drugs Drug Candidates 2023, 2, FOR PEER REVIEW 10 
 

 

Figure 5. Proposed anticancer mechanism of gold nanoparticles. Here, Au-NPs pass through the 

cancer cell membrane by endocytosis, and endosomal release causes ROS (reactive oxygen species) 

production. These ROS cause mitochondrial dysfunction and result in caspase 3, 9, and 8 activations, 

which results in DNA damage and finally cell death [123–126]. 

Nanotherapeutic Application of Gold

Figure 5. Proposed anticancer mechanism of gold nanoparticles. Here, Au-NPs pass through the
cancer cell membrane by endocytosis, and endosomal release causes ROS (reactive oxygen species)
production. These ROS cause mitochondrial dysfunction and result in caspase 3, 9, and 8 activations,
which results in DNA damage and finally cell death [123–126].
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Table 3. Nanotherapy of gold nanoparticles.

Nanoparticles
(Diameter) Test Medium Concentration Effect/Result Disease Against References

Anticancer Effect

Au-nanopopcorn
(28 nm) LNCaP (prostate cancer cells) 0.5 mL Popcorn-shaped Au-NPs enhanced Raman

intensity to recognize prostate cancer cells.
Prostate and
breast cancer [105]

Au-NPs Y79
(MTT analysis)

1.75, 3.5, 7, 14, 28 and
56 µg/mL

Forty-eight hours after applying Au-NPs, 0.5 to
11 min hyperthermia is applied, which shows
50% cell viability after 4.5 min, but without NPs,
9 min is required to obtain same effect.

Hyperthermia
in cancer [115]

Au-NS (30 and 60 nm) MB49 bladder cancer cell
line in mice 0.1 nM

Synergistic immuno photo nanotherapy
(SYMPHONY) produce better survival than
other groups. In photo thermal monotherapy
Au-NPs has much efficiency than nanoshells.

Bladder cancer [117]

Silica coated Au nanorods Mammary carcinoma cells - Showed efficient in vivo and in vitro antitumor
activity in targeting CD44+ receptor. Breast cancer [118]

DOX@ Au-NPs
(2 nm Au-NPs)

Breast Cancer Cell lines (MCF-7 and
MDA-MB-231); Murine Mammary 4T1;
CD-1 Mice

5 mg/kg dose
Good renal clearance with fruitful targeting.
Decreased normal tissue toxicity with improved
antitumor efficacy.

Breast cancer [119]

PDC-PEG-Au-NPs
(25–50 nm GNPs) Murine lymphoma cells (A20) Up to 50 µM dose Half-life of drug increased, toxicity observed in

targeted cells, and effective for a long time. Anticancer [120]

BLM-DOX-PEG-Au-NPs
(13 nm GNPs) HeLa, cervical cancer cell line 10–100 nM dose Cancer cell environment-mediated drug release

and improve EC50
Cervical cancer [121]

Au-nanostars (Au-NS)
(30 and 60 nm) Glioblastoma model on mice 0.1 nM 7.2% ID/g uptake of Au-NPs in the brain tumor,

which is identified by PET/CT scan. Brain tumor [127]

Chitosan/Au-NPs HepG-2 and Caco-2 cell lines 0.1,
0.05, 0.025, 0.0015 mg/mL

Cancer cell proliferation is inhibited more
than chitosan.

Cancer and
bacterial infection [128]

NP-based nucleic acid
conjugates Au@GO
NP-NACs

Result identified by in vitro
microfluidic models.
Bcl-2

100 µg/mL of Au-NPs Better live cancer cell identification by SERS and
synergistic and specific killing of cancer cells. Anticancer [129]
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Table 3. Cont.

Nanoparticles
(Diameter) Test Medium Concentration Effect/Result Disease Against References

Cancer-targeting
peptide-functionalized NP
(3.52 nm) using Au-NPs (26.2
nm) and TA-peptide complex

MCF-7 and T47D (breast cancer cell
lines), on tumor containing mice -

Targeted cell death by apoptosis. Considerable
hemocompatibility, higher release of
cytochrome c, and higher antitumor activity
is found.

Breast cancer [130]

Chitosan coated
Au-nanospheres

RAW264.7 cells

IC50 value 127 µM
This study compares the cellular uptake of
Au-NPs and found that Stars < rods < triangles
(lowest to highest uptake order). The
mechanism of cellular uptake was endocytosis.
Au-NP nanorods showed greater cellular uptake
and high cytotoxicity against RAW264.7 cells.

Anticancer [131,132]Chitosan coated Au-NS IC50 value 81.8 µM

Chitosan-coated
Au-nanorods IC50 value 22.7 µM

Au-NPs Osteosarcoma mouse model -

Au-NPs with CD133 and hyaluronic acid
increased the photo thermal antitumor therapy.
HA can gourd the photosensitive drugs from
photo-degradation and inhibited the
proliferation of osteosarcoma cells.

Bone cancer [133]

Au-NPs covered with
multivalent hydrocarbon.
(6.9 ± 2.9 nm)

Xenograft mouse model with the HeLa,
SCC7, and SKBR3 cancer cell lines 100 nM–10 mM

Tumor growth was considerably suppressed in
C18@F127 injected in xenograft mice compared
with the control group.

Breast cancer [134]

Anti-HER2 functionalized
Au-on-silica nanoshells RAW 264.7 cells LD50: 1 mg/mL and

10 µg/mL for cationic carrier.
Targeted action; precisely eliminating cancer
cells while protecting healthy tissues Breast cancer [135]

Au-NPs produced from
Enterococcus sp. Colorectal tumor cells (HT-29) 5–24 µg/mL

Inducing ROS and caspase-3 expression,
weakening the potential of
mitochondrial membrane.

Anticancer [136]

PTX-TNFα-PEG-Au-NPs
(32.6 nm)

Ovarian cancer cell line (A2780);
B16/F10 tumor induce C57BL/6 mice 2.5 mg/kg dose Specific delivery of NPs to tumor and

improved efficacy Ovarian cancer [137]

DOX-PEG-Au-NPs
(41 nm Au-NPs)

Ovarian cancer cell line (A2780);
CD-1 mice 6 mg/kg dose Significantly reduced normal tissue toxicity Ovarian cancer [138]

CIS-GLC-PEG-Au-NP
(20 nm GNPs)

Skin cancer cell line A-431; A-431 cell
line bearing mice

10 mg/kg dose; 25 Gy at
6 MV

Same type effect to free cisplatin; improved
result when used in combination with radiation Skin cancer [139]
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Table 3. Cont.

Nanoparticles
(Diameter) Test Medium Concentration Effect/Result Disease Against References

Alginate conjugate with
Au-NPs and CIS (44 nm NP) Cervical cancer cell line (KB)

20 µg/mL dose of Au-NP
along with 5 µg/mL CIS;
4 Gy at 6 MV

ACA and radiotherapy found increased efficacy
over cisplatin and radiation. Using
photothermal therapy further enhanced the
anticancer effect.

Cervical cancer [140]

5-FU/GSH-GNPs
(9–17 nm Au-NPs)

Colorectal cancer cell lines (isolated
frompatients) 0.5–1.5 mg/mL dose Better anticancer effect, and minimized the drug

doses as a result. Colorectal cancer [141]

Cs-Au-NPs-DOX
(21 nm GNPs) MCF-7, Breast cancer cell line 0.05–0.3 mM dose; 0.5, 1, and

3 Gy at 6 MV

Improved test results, decreased survival
fraction, upregulated apoptosis, and
DNA damage.

Breast cancer [142]

Au-NP-PEG-RGD; CIS (10 nm
Au-NPs with 435 nM CIS) MDA-MB-231, Breast Cancer Cell line 0.3 nM dose; 2 Gy at 6 MV Increased efficacy of treatment compared to

cicplatin or radiation alone. Breast cancer [143]

Au-NP-PEG-RGD; DTX
(17.2 nm GNPs)

Breast Cancer Cell line (MDA-MB-231)
and Cervical Cancer Cell line (HeLa)

0.2 nM Au-NPs with
50 nM DTX; 2 Gy at 6 MV

Greater retention of Au-NPs due to cell
synchronicity induced by DTX. Synergistic
therapeutic action observed when Au-NPs and
DTX were combined.

Breast cancer [144]

Antimicrobial Effects

Gold-chitosan hybrid
NPs (16.9 nm)

Tested against the S. aureus
(Gram-positive) P. aeruginosa
(Gram-negative) bacteria

0.25 mg/mL The action is still not clear. Bacterial infection [145]

Au-NPs (17 nm) HIV-1 0.05–0.12 mg/mL Au-NPs inhibits HIV-1 but its mechanism
is unknown. Viral infection [146]

Au-NPs (25 nm) Candida sp 16–32 µg/mL Cell death for intracellular acidification by the
inhibition of H+ ATPase. Fungal infection [147]

IgG-Au-NPs (32 nm) MRSA cultures 1–50 mg/L
6.25% minimum inhibition concentration (MIC)
for the Ig-Au-NPs, while 25% MIC was found
for Au-NPs alone.

Methicillin-resistant
Staphylococcus aureus
(MRSA) infection

[148]
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Table 3. Cont.

Nanoparticles
(Diameter) Test Medium Concentration Effect/Result Disease Against References

Miscellaneous Effects

Au-NPs/chalcones conjugate
(2 to 12 nm) HEK293 cells 20–100 µg/mL

Therapeutic development of antidiabetic drug,
which is derived from H. foetidum by increasing
glucose uptake and no particle shows
cytotoxicity against HaCaT keratinocytes.
Helichrysetin is a potential compound for
antidiabetic effect.

Antidiabetic [149]

Au-NPs/chalcones conjugate
(2 to 12 nm) α-amylase and α-glucosidase enzyme 20–100 µg/mL Potential enzyme inhibitory activities against

α-amylase and α-glucosidase enzymes. Enzyme inhibition [149]

Au-NPs pBR322 (plasmid DNA) 64 ng/mL
(nanogram)

γ-ray radiation applied by HDR brachytherapy,
ROS (reactive oxygen species) formation and
DNA breaks occurred in positive charged
Au-NPs but not in negative charged Au-NPs.

Plasmid DNA
damage [150]

SPIO-Au-NPs (FeO-Au)
core-shell NPs PC-12 cells (Neuron like cell) 127 µg of SPION-Au-NPs Shows higher intracellular interaction with

PC-12 neuron-like cells. Neuroregenaration [151]

Synergistic Immuno
Photothermal Nanotherapy
(SYMPHONY)
30, 60 nm

Tumor cell treated 0.05 nM NPs with radiation
In murine animal models, it provides a ‘cancer
vaccine’ effect that leads to immunologic
memory and inhibits cancer recurrence.

Photoimmunotherapy [152]

Peptide-coated Au-NPs Human peripheral blood
mononuclear cells 12.5–50 µg/mL

Efficiently suppressed TLR signaling and
shielded mice from LPS-induced acute lung
injury. PPIs and the recently found that
Au-NPs-based TLR inhibitors have comparable
modes of action.

Acute Lung Injury [153]
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2.2. Therapeutic Interventions of Silver Nanoparticles (Ag-NPs)

Silver has excellent physicochemical features, such as catalytic, optical, electric, and,
of course, antibacterial capabilities, and these qualities make silver nanoparticles the most
marketable nanoparticles. In the presence of Ag-NPs, the synergistic impact of antibiotics
such as cefotaxime, azithromycin, cefuroxime, chloramphenicol, and fosfomycin against
E. coli was greatly boosted as compared to antibiotics alone [80].

Other metal NPs may exhibit equivalent efficacy against particular germs, but overall,
silver is said to be the most effective material against a variety of pathogens. Ag-NPs
inhibit the extracellular activity of severe acute respiratory distress syndrome coronavirus
2 (SARS-CoV-2) [154].

Ag-NPs are the preferred metal when antibacterial characteristics are required. The
antibacterial, antiviral, antioxidant, and anticancer characteristics of silver are well recog-
nized, and it has the potential to be developed into a unique therapeutic agent. Ag also has
antiparasitic, antiviral, and anticancer qualities [155,156], and the mechanisms of action of
these effects are illustrated in Figure 6. Ag-NPs, after entering cells by endocytosis, produce
ROS that damage the endoplasmic reticulum and mitochondria. The cellular pathways
NF-kB, PI3K/AKT/mTOR, Wnt/beta-catenin, MAPK/ERK, and ERK activation result
in DNA fragmentation, cell cycle arrest, and cell apoptosis [157–161]. Table 4 shows the
prominent nanotherapeutic applications of silver.

Nanotherapeutic Application of Silver
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Figure 6. Proposed anticancer mechanisms of silver nanoparticles (NF-kB: nuclear factor kappa-light-
chain-enhancer of activated B cells; PI3K: phosphoinositide 3-kinases AKT: protein kinase B; mTOR:
mammalian target of rapamycin; Wnt: wingless and Int-1; MAPK: mitogen-activated protein kinase;
ERK: extra-cellular receptor kinase).
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Table 4. Nanotherapy of some silver nanoparticles.

Nanoparticles
(Diameter) Test Medium Concentration Effect/Result Disease Against References

Anticancer Effects

Ag-NPs (5–20 nm) MCF7-FLV cell line 136 µM Cytotoxic effects against breast cancer. Breast Cancer [70]

Ag-NPs (26.18 nm) Human alveolar cancer cell line: A549 87 and 41 µg/mL Activity against the A549 cell line without
showing any damage in noncancer cells. Alveolar cancer [162]

Ag-NPs (50–70 nm) Human acute T cell leukemia cell line 10 to 50 µM Cytotoxic activity against leukemia. Leukemia [163]

Ag-NPs (33 nm) Human cervical cancer cells (HeLa) 10 to 50 µg/mL Induced cytotoxicity in HeLa cells in a
concentration-dependent manner. Cervical cancer [164]

Ag-NPs (24–150 nm) HCT-116 cells colon cancer cell 100 µg/mL
The sub-G1 phases of the cell cycle were
changed, and larger levels of fragmented DNA
were discovered.

Colon cancer [165]

Ag-NPs (6 nm) with
gemcitabine (GEM) Human ovarian cancer cell line A2780

50% inhibitory concentration
(IC50) of GEM and Ag-NPs
after a 24 h exposure was 100
and 90 nM

Lowering cell viability and proliferation, as well
as increasing LDH leakage and ROS production. Ovarian cancer [166]

Ag-NPs
(2.8 and 18 nm) PANC-1 and hTERT-HPNE

1.67 µg/mL for 2.8 nm size
and 26.81 µg/mL for 18 nm
size

Ag-NPs triggered programmed cell death in
PANC-1 cells, including apoptosis and
necroptosis, as well as autophagy and mitotic
catastrophe, in a concentration- and
size-dependent manner.

Pancreatic ductal
adenocarcinoma [167]

Ag-NPs (60 nm) MG63 osteosarcoma cell line 81.8 ± 2.6 and
75.5 ± 2.4 µg/mL

Chromatin condensation causes dose-dependent
cytotoxicity and ultimately cell death. Osteosarcoma [168]

Ag-NPs (lesser than 50 nm)

Pleomorphic hepatocellular carcinoma
(SNU-387), hepatic ductal carcinoma
(LMH/2A), morris hepatoma
(McA-RH7777), and novikoff
hepatoma (N1-S1 Fudr) cell lines

477, 548, and 605 µg/mL In the presence of Ag nanoparticles, the liver
malignant cells viability decreased. Liver cancer [169]

Ag-NPs (30 to 90 nm) A431 human skin cancer cells 64.2 µg/mL Showed a high level of cytotoxicity against the
A431 cell line. Skin cancer [170]
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Table 4. Cont.

Nanoparticles
(Diameter) Test Medium Concentration Effect/Result Disease Against References

Ag-Cys-NPs Glioma and neuroblastoma cells 100 and 1000 ng/mL
Ag-Cys-NPs is about 10-fold potent than the
Cu-NPs for SH-EP 1 cells and Ag-Cys-NPs is 20
folds more potent than Cu-NPs for glioma cells.

Anticancer [171]

Antibacterial Effects

Ag-NPs (10 nm) Vibrio cholerae 40 µg/mL Antibacterial efficacy of microbial GLP-capped
Ag-NPs against V. cholerae. Cholera [172]

Ag-NPs (70 nm) Microbacterium tuberculosis, H37Rv 6.25–50 mM Mild growth-inhibitory effect. Tuberculosis [173]

Ag-NPs (12.62–27.45 nm)
with imipenem Klebsiella pneumoniae clinical strain Concentration below 3 mg/L

The antibacterial properties of AgNPs in
conjunction with imipenem were extended
against IRKP infection.

Pneumoniae [174]

Antiviral Effects

Ag-NPs (10 nm) SARS-CoV-2 1–10 ppm Inhibiting extracellular activity of SARS-CoV-2. COVID-19 [154]

Ag-NPs (30–50 nm) HeLa-CD4-LTR-β-gal cells, MT-2 cells,
human PBMC

3.9 ± 1.6 mg/mL against
HeLa-CD4-LTR-β-gal cells, as
1.11 ± 0.32 mg/mL applied
against human PBMC, and
1.3 ± 0.58 mg/mL used
against MT-2 cells.

HIV particles are turned inactive quickly,
allowing for early disruption of the viral
replication cycle.

HIV [155]

Ag-NPs (3.5, 6.5, 12.9
nm)/Ch composite H1N1 influenza A virus 250 µL Ag NP/Ch composite

suspension
Antiviral activity against H1N1 influenza.
Provides a concentration-dependent effect. Influenza [175]

Ag-NPs (13, 33 and 46 nm) HSV-1 and HSV-2 2.5 µL Vero cell infection by HSV-1 and HSV-2 is
downregulated in a dose-dependent manner. Herpes [176]

Ag-NPs (10 nm) HepAD38 cell line 5 to 50 µM Suppressing HBV RNA and extracellular virions
generation in vitro. Hepatitis B [177]

Ag-NPs (70–95 nm) Chikungunya virus (CHIKV) 31.25 µg/mL By inhibiting the cytopathic impact, showing
excellent efficacy against CHIKV. Chikungunya [178]

Ag-NPs (100 nm) Serotype DEN-2 20 µL/mL Plaque assay estimates of dengue virus output
were lowered. Dengue [179]
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Table 4. Cont.

Nanoparticles
(Diameter) Test Medium Concentration Effect/Result Disease Against References

Miscellaneous Effects

Ag-NPs (37 nm) Propionibacterium acnes 3.1 µg/mL
The mechanism of silver colloid particles
bactericidal action on bacteria is still
being investigated.

Acne [180]

Ag-NPs (37 nm) Malassezia furfur 25 µg/mL Antifungal activity was highest against
M. furfur. Dandruff [180]

Ag-NPs (53 nm) α-amylase and α-glucosidase 54.56 and 37.86 mg/mL
Inhibition of carbohydrate digestion enzymes,
for example α-amylase and α-glucosidase,
was effective.

Diabetes [181]

FA-Ag-NPs Murine macrophage cells (RAW264.7),
mice, age: 7–8 weeks. 0.652 nmol/kg

Rheumatoid arthritis treatment was performed
by simultaneously M1 macrophage apoptosis
and M1-to-M2 macrophage re-polarization.

Rheumatoid
arthritis [182]

Ag-NPs-PADM hydrogel
(PADM = porcine dermal
extracellular matrix), 5 and
50 nm

Rat, age: 6-month, weight: 200–300 g 20, 50, and 80 µg/mL In vivo, Ag-NPs-PADM hydrogel enhanced
angiogenesis and repaired infected skin defects. Skin infection defect [183]

Ag-NPs
20–35 nm Rat model

Orally administered Ag-NPs
concentrations of 175 and
350 ppm

Ag NPs have a gastroprotective effect in rats
against ethanol-induced gastric ulcer.
Superoxide dismutase (SOD) and catalase (CAT)
activities were increased by Ag NPs.

Gastroprotective [184]
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2.3. Therapeutic Interventions of Copper Nanoparticles (Cu-NPs)

Researchers and health care professionals have been drawn to cupric oxide (CuO) NPs
for their physical, chemical, high temperature, and photocatalytic capabilities, but most
notably for their antibacterial properties [185]. Copper nanoparticles’ synergistic activity
with amoxicillin, ampicillin, ciprofloxacin, and gentamicin against both Gram-positive and
Gram-negative bacteria was investigated, and ampicillin showed comparatively improved
activity compared to alone [186]. Cu-NPs inactivate glycosidase to provide an antidiabetic
effect, and the study found that Cu-NPs showed an anticancer effect by activating BAX
and p53 and by decreasing Bcl-2 expression, which result in apoptosis in cancer [187].
Cu-NPs increase ROS production in bacterial cells and cause bacterial DNA and protein
destruction; on the other hand, accumulation of Cu-NPs in the bacterial cell wall causes
cell wall disruption [188–194].

The mechanisms underlying these effects are depicted in Figure 7. Other nanothera-
peutic applications of copper are presented in Table 5.

Nanotherapeutic Application of Copper
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Figure 7. Proposed mechanism of nanotherapeutic applications of copper. Here Cu-NPs showed an
anticancer effect by increasing BAX and p53 expression and Bcl-2 downregulating, an antidiabetic
effect by glycosidase inactivation, an antimicrobial effect by ROS production cell wall disruption, and
a larvicidal effect against Aedes aegypti (Dengue virus carrier).
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Table 5. Nanotherapy of copper nanoparticles.

Nanoparticles (Diameter) Test Medium Concentration Effect/Result Disease Against References

Anticancer Effect

Cu-NPs/CS-Starch
(5–7 nm) TPC1, BCPAP and FTC133 207 µg/mL TPC1, BCPAP, and FTC133 cell lines shown

substantial antihuman thyroid activity. Thyroid cancer [95]

Cu-NPs (62.7 nm)
with albumin MDA-MB 231 cell line 70 µM Suppressed cancer cell viability while being less

harmful to normal cells. Breast cancer [190]

Cu-NPs
(4.7 to 17.4 nm) HepG2 cells 19.88 µg HepG2 cells have a high cytotoxic activity. Hepatic cancer [193]

Cu-NPs
(4.7 to 17.4 nm) Caco-2 cells 11.21 µg Inhibition of Caco-2 cell growth. Colon cancer [193]

Cu-NPs (10–20 nm)
with chitosan

UM-UC-3 (Transitional cell carcinoma),
SCaBER (Squamous cell carcinoma),
and TCCSUP (Grade IV, transitional
cell carcinoma)

238, 404, and 569 µg/mL Cytotoxic activity against common bladder
cancer cell lines in humans. Bladder cancer [195]

Cu-NPs
(39.3 ± 5.45 nm)

Human skin carcinoma cells (B16F10)
and mouse embryonic fibroblast cell
line (NiH3T3)

40 and 120 µg/mL
Mice showed potential suppression of B16F10
melanoma cell proliferation and tumor
development inhibition.

Melanoma [196]

Cu-NPs
(12–16 nm) Human lung carcinoma cells (A549) 20–100 µg/mL

In a dose-dependent way, lung cancer cells
showed extensive structural damages and
increased oxidative stress indicators.

Lung carcinoma [197]

Bimetallic CuFe (copper–iron)
PBA and CoFe (cobalt–iron)
PBA NPs

Tumor tissues for in vitro and BALB/c
mice for in vivo test

5, 10, 20, 40, 80, and
160 µg/mL

Prussian blue analogs (PBA-DDSs) prepared
with metal NPs doxorubicin (DOX) delivery and
pH-controlled release development.

Breast cancer [198]

Cu-NPs
(15 ± 1.7 nm) HeLa, A549, and BHK21 cell lines 120 µM Caused the death of tumor/cancer cells

through apoptosis. Antitumor [199]

Cu-NPs with chitosan
(<20 nm)

CHO cells and MC3T3-E1
preosteoblast cells 1–1000 µg/mL A higher degree of mitochondrial

ROS production. Osteosarcoma [200]

CuHARS
(20–80 nm) Cell line of a glioma tumor 20 µg/mL

CuHARS decreases the glioma cell and
BMVECs viability 20% and 200% respectively.
Immune supportive by the production of NO.

Antitumor and im-
munomodulatory [201]
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Table 5. Cont.

Nanoparticles (Diameter) Test Medium Concentration Effect/Result Disease Against References

Antiviral Effects

Cu-NPs
(20 nm) SARS-CoV-2 500 µL

By putting virus-containing media onto
copper-coated PP filters and then adding Vero
cells, inactivation was assessed.

COVID-19 [189]

Cu-NPs
(13.5 ± 0.6 nm)

Culex quinquefasciatu, Anopheles
stephensi, and Aedes aegypti 500 µg/mL A mortality rate that was dosage and

time dependent. Chikungunya [191]

Cu-NPs
(132 nm) Aedes aegypti larvae 55.12 mg/mL Assessing the larvicidal efficacy of Aedes aegypti. Dengue [192]

Miscellaneous Effects

Cu-Epigallocatechin-3-
gallate
(Cu-EGCG)

Female Sprague rats 50, 100, 200 µg/mL Inhibited bacteria such as E. coli and S. aureus to
protect from wound infection. Wound healing [56]

Cu-NPs
(30 and 50 nm) Streptomyces griseus - Nanocopper has the potential to be an effective

new fungicide. Red root-rot disease [185]

Cu-NPs
(12–16 nm) - 10 µg/mL Inhibitory actions of glycosidase in vitro. Antidiabetic [188]

Cu-NPs
(100 nm)

Fusarium equiseti F. oxysporum and
F. culmorum 25, 20 and 19 mm Exhibited antifungal efficacy against F.

oxysporum. Crop diseases [194]

Cu-NPs (spherical 2.88 ±
0.94, triangular 1.27 ± 0.37
and hexagonal
1.81 ± 0.52 nm)

Cultured porcine ovarian
granulosa cells 1, 10, or 100 ng/mL The ability to influence viability, proliferation,

apoptosis, and the release of steroid hormones.
Reproductive
disorders [202]

Cu-NPs
(17 and 41 nm) T. gondii tissue cysts

0.2 and 0.3 mL/kg and in
combined with atovaquone
(100 mg/kg)

Infected mice with T. gondii had substantial
prophylactic effects when combined
with atovaquone.

Toxoplasmosis [203]

CuHARS (polymer-coated
copper cystine high-aspect
ratio structures); 60–100 nm

Escherichia coli and Staphylococcus
epidermidis 5 µg NO production facilitates antimicrobial action

of CuHARS. Antibacterial [204]
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Nanoparticles (Diameter) Test Medium Concentration Effect/Result Disease Against References

CuO.MBGs; Mesophorus
bioactive glasses (MBGs)
(10–20 nm)

In vitro simulated body fluid (SBF) 5% of CuO NPs in MBG
Outstanding biomaterial for bone regeneration.
MBGs released therapeutic amounts of Ca2+

and Cu2+ ions.
Bone defect [205]

CuS incorporated hyaluronic
acid (injectable hydrogel);
average 35 nm

SD male rats; weight range 200∼220 g 200, 100, 50, 20, and
10 µg/mL

Improved wound healing and
angiogenesis occur. Wound healing [206]
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2.4. Therapeutic Interventions of Zinc Nanoparticles (Zn-NPs)

Zinc is a material that is frequently used in biomedical applications due to its unique
features, such as electric conductivity, optical capabilities, and piezoelectric qualities [207].
Beyth et al. defined the method of killing bacteria using zinc oxide (ZnO) NPs as having two
pathways of action [208]. The first involves cell wall penetration, and the second includes
the formation of ROS. Zn-NPs follow the Bcl-2/BAX/BAK pathway to cell apoptosis by
caspase-3 and -9 and ROS-induced DNA fragmentation leading to cell cycle arrest and
apoptosis, and also follow the mitochondrial disruption for an anticancer effect [209–211],
as shown in Figure 8.
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Figure 8. Proposed anticancer mechanism of Zn-NPs (ZnO-NPs create stress in endoplasmic reticu-
lum, and produce ROS, which results DNA fragmentation and cell cycle arrest; on the other hand,
produced ROS disrupts mitochondrial membrane and activates caspase 3, 7, and 9, which results
in apoptosis).

ZnO-NPs have antibacterial, antifungal, anticancer, antidiabetic, and antitubercular
activity, and breast cancer inhibition is an optimistic property that this study observed in a
number of studies (presented in Table 6). Even 100 nm Zn-NPs supplemented at 30 ppm
improved growth and serum glucose levels in layer chicks [212].

Nanotherapeutic Application of Zinc
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Table 6. Nanotherapy of some zinc nanoparticles.

Nanoparticles (Diameter) Test Medium Concentration Effect/Result Disease Against References

Anticancer Effects

ZnO-NPs (16–19 nm) Breast cancer cell (MCF7), and Lung
Cancer cell (A549) 31.2 µg/mL The cell viability is reduced by NPs, which

induces cytotoxicity in cancerous cells. Anticancer [213]

ZnO-NPs (100 nm) Human Breast Cancer (MCF-7) cells 10 µg/mL
Apoptosis is provoked and induced through an
intrinsic mitochondrial pathway, depending on
caspase activation.

Anticancer [214]

ZnO (36.91 ± 1.21 nm),
ZnO@Ce6 (47.75 ± 0.05 nm)
and ZnO@Ce6-PDA
(51.92 ± 1.96 nm)

HeLa cells 30 µg/mL Photothermal and photodynamic action, and
increased the cell viability by more than 90%. Anticancer [215]

ZnO-NPs (30.4–40.8 nm) MCF-7 cell line; (Breast cancer cell line) 25 µg/mL
The growth of Gram-positive Bacillus
licheniformis is inhibited, reducing the viability
of MCF-7 cells.

Breast cancer [216]

ZnO-NPs (30.4–40.8 nm) MCF-7 cell line; (Breast cancer cell line) 25 µg/mL
The growth of Gram-positive Bacillus
licheniformis is inhibited, reducing the viability
of MCF-7 cells.

Breast cancer [216]

ZnO-NPs (66.25 nm) MDA-MB 231 and MCF-7 breast cancer
cell lines. 0.1, 0.05 and 0.01 M The activity of MDA-MB 231 cells is inhibited

with increased concentration. Breast cancer [217]

ZnO-NPs (10–15 nm) MCF-7 cell lines 15.88 µg/mL

Inducing apoptosis in MCF-7 cell line via the
Caspase-8 and p53 pathway.
Cancer cells may develop and spread
throughout the body as a result of mutations
(changes) in the p53 gene.

Breast cancer [218]

PBA-ZnO (<40 nm) MCF-7 cell lines 35 and 50 µg/mL
Cell death by apoptosis was induced in the
MCF-7 cell line by enhancing oxidative stress
and mitochondrial damage.

Breast cancer [219]

ZnO-NPs (10–70 nm) MCF-7 cell lines 50 µg/mL Inhibiting apoptosis. Breast cancer [220]

Zn-Fe2O4-NPs (17.12 nm) MCF-7 cell lines 25–500 µg/mL Decrease in cell viability by cytotoxic activity. Breast cancer [221]
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Table 6. Cont.

Nanoparticles (Diameter) Test Medium Concentration Effect/Result Disease Against References

ZnO-NPs (31.5 nm) MCF-7, MDA-MB-231, and HFF
cell lines. 11.16 µg/mL Reduction of the expression of micro-RNAs. Breast cancer [222]

Triton-X modified ZnO-NPs
(13.45 ± 1.42 nm)

Breast cancer cell line (MDA-MB-231)
and normal cell line (NIH 3T3)
were used.

55.24 µg/mL Cytotoxicity is enhanced through
surface modification. Breast cancer [223]

PEG-ZnO-NPs
(150 nm) DMEM medium (HiMedia) 6.25–37.5 µg/mL

The impairment of DNA damage repair enzyme
NEIL2 by inducing apoptosis in breast cancer
cells through ROS.

Anticancer [224]

MSN-ZnO-Au-NPs
(76.5 ± 11.8 nm)

Breast cancer cells (MCF-7: estrogen
receptor-positive, CAL51:
triple-negative).

25 µg/mL The viability of all cell lines is reduced. Resistant breast
cancer [225]

ZnO-NPs (12–14 nm) MDA-MB 231 cancer cells. 7.103 µg/mL Decreasing cell viability by cytotoxic impact. Breast cancer [226]

ZnONPs (25–40 nm)
Michigan Cancer Foundation-7
[MCF7], and murine (TUBO) breast
cancer cell lines

8, 4, and 2µg/mL Inducing apoptosis by increasing the
concentration of ZnO-NPs. Antitumor [227]

Zn-NPs (9–17 nm) MCF-7 (breast carcinoma cell line),
HCT-116 (colon carcinoma cells)

3.9, 7.8, 15.6, 31.25, 62.5, 125,
250 and 500µg/mL
were used.

For MCF-7, concentrations of 373 µg/mL and
>500 µg/mL and for HCT-116, concentrations of
226 and 317 µg/mL were found effective in the
in vitro test.

Antitumor [228]

Antibacterial Effects

ZnO-NPs
(2–28 nm) Psedomanas sp., Fusarium sp. 0.1 M

Bacterial membranes are disrupted by the
formation of ROS, for example superoxide and
hydroxyl radicals.

Bacterial and
fungal infection [229]

ZnO-NPs (45–150 nm)
Helicobacter pylori and
human mesenchymal stem
cells (hMSc)

3.125–100 µg/mL
Biocompatibility to hMSC and described as safe
in mammalian cells and can be used
as antibiotics.

Antibacterial [230]

RF-contained Zn2+

ion-cross-linked SA-g-AA-M
PNPs. <300 nm

Vero cells 100 µg/mL The gene transcription is inhibited by inhibiting
the β-subunit of the bacterial RNA polymerase. Tuberculosis [231]
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Table 6. Cont.

Nanoparticles (Diameter) Test Medium Concentration Effect/Result Disease Against References

ZnO-NPs (125 nm) Streptococcus mutans 3.90–4000 µg/mL Bacteriostatic and bactericidal effects. Microbial infection [232]

ZnO-NPs (12 nm) Staphylococcus aureus and
Escherichia coli 5.6 µg/mL

The ROS production was increased, while the
cellular function and cell membrane
were disrupted.

Bacterial infection [233]

MgZnO-NPs/PU (52.65 ±
2.58 nm) E. coli, DH5α strain 9 × 10−5 CFU/mL

The damage of the structure and function of cell
originals (mesosome), consequently affecting
the deoxyribonucleic acid (DNA) replication by
promoting ROS.

Bacterial infection [234]

ZnO-NPs
(20–45 nm) Ciprofloxacin 500, 1000, and 2000 µg/mL Increasing antimicrobial activity

of ciprofloxacin. Bacterial infection [235]

ZnO-NPs
(80.1–90 nm)

Staphylococcus aureus, Salmonella
Typhimurium, Bacillus cereus and
Pseudomonas aeruginosa

0.05 and 0.5 mg/L
ZnO NPS were used in packaging that increased
safety against microbes as well as food shelf-life
by inhibiting bacterial growth.

Bacterial infection [236]

ZnO-NPs (30 nm) Campylobacter jejuni 0.025, 0.03, 0.04, 0.05, and
0.10 mg/mL

Damaging membrane integrity by increasing
cell membrane permeability. Bacterial infection [237]

ZnO-NPs (60–70 nm) S. aureus and P. aeruginosa and
standard strain of E. coli.

1028, 516, 256, and 125
µg/mL were used.

Producing of reactive oxygen species (ROS) is
caused disruption of bacterial membranes. Bacterial infection [238]

ZnO-NPs (≈66 nm) Eel kidney cell line (EK-1). 15.75, 31.5, and 3.15 µg/mL Decreasing cell viability and growth rate
of microorganism.

Microbial infection [239]

ZnO-NPs (15 nm) S. pneumoniae 12 µg/mL Reducing in microbial biofilm formation. Bacterial infection [240]

Antifungal Effects

ZnO-NPs (12–14 nm) Aspergillus and Penicillium 5, 10, 15, 20, and 25 g/mL
Cell membrane is damaged and growth rate is
inhibited by interaction of zinc ion with
cell membrane.

Fungal infection [226]

ZnO-NPs
(35–129 nm) Candida parapsilosis 15.65 µg/mL Growth is inhibited and surface damage

is pronounced. Fungal infection [236]

ZnO-NPs (70 ± 15 nm) Botrytis cinerea and
Penicillium expansum 0, 3, 6, and 2 mmol/L Fungal hyphae is deformed, while development

of conidiophores and conidia are prevented. Fungal infection [241]
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Table 6. Cont.

Nanoparticles (Diameter) Test Medium Concentration Effect/Result Disease Against References

ZnO-NPs (430 nm) Candida albicans, A. niger and A. terreus. 30, 60, and 90 µL Leading to the death of fungal hyphae by
deforming of fungal hyphae.

Candidiasis,
athlete’s foot,
mycosis, and
ring worm

[242]

ZnO-NPs Candida albicans 5, 10, 15, and 20 mg/mL
Producing reactive oxygen species (ROS), for
example hydrogen peroxide, superoxide anion,
hydroxyl radical, and hydroxyl ion.

Fungal infection [243]

ZnO-NPs (76.15 nm)
Alternaria alternata, Botrytis cinerea,
Aspergillus niger, Penicillium expansum,
and Fusarium oxysporum.

256 µg/mL Disruption of fungal membrane and inhibition
of fungal growth. Fungal infection [244]

ZnO-NPs (27 ± 5 nm) Aspergillus flavus and Aspergillus niger 25 µg/mL Inhibiting the growth of fungus. Fungal infection [245]

ZnO-NPS (60 nm)
Trichophyton mentagrophyte,
Microsporum canis, Candida albicans,
and Aspergillus fumigatus

40 mg/mL Inhibiting the growth of fungus. Ring worm [246]

ZnO-NPs (≤50 nm) Aspergillus fumigatus Fungus and
Candida Albicans 3, 6, and 12 mL/L Lowering the growth rate of fungus. Fungal infection [247]

ZnO-NPs (13.92 nm) Alternaria alternata 20–160 mg/L The mycelia growth is inhibited. Early blight disease [248]

CS–Zn-CuNCs (16.6–100 nm) A. alternata, R. solani, and B. cinerea 90 µg/mL Inhibiting growth by in vitro application. Fungal infection [249]

Antidiabetic Effects

ZnO-NPs (≤10 nm) Streptozotocin-induced type 1 and 2
diabetic rats 1, 3, and 10 mg/kg

Glucose tolerance was improved, higher serum
insulin (70%) and blood glucose (29%) was
reduced. Nonesterified fatty acids and
triglycerides was also reduced.

Diabetes [250]

ZnO-NPs (80–100 nm) Diabetic rats 1, 3, and 10 mg/kg Glucose disposal, insulin levels, and zinc status
are increased. Diabetes [251]

ZnO-NPs (10 to 20 nm) Alpha-amylase 13.085434 µg/mL The activity of α-amylase is inhibited. Diabetes [252]

ZnO-NPs (<100 nm) Mice 8 and 14 mg/kg Decreasing blood glucose. Diabetes [253]
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Nanoparticles (Diameter) Test Medium Concentration Effect/Result Disease Against References

ZnO-NPs (22.6 nm) Wistar rats 70 mg/kg
Hyperlipidemia is controlled through lowering
the levels of lipids and lipoproteins in the
blood plasma.

Diabetes [254]

ZnO-NPs Albino rats 10 mg/kg Ameliorative effect. Diabetes [255]

Miscellaneous Effects

Zn-NPs (1–100 nm) Layer chicks 30 ppm
Increasing the level of serum glucose and
alkaline phosphate, while decreasing alanine
transferase.

Increased chicken
growth rate [212]

ZnO-NPs (48.2 nm) Xanthomonas oryzae 16.0 µg/mL
The bacterial membrane is collapsed and
ruptured by interacting with ZnO NPs and as a
result in the leakage of bacterial cytoplasm.

Leaf blight [256]

ZnO-NPs (≤40 nm) Rats 10 mg/kg Heart injury is induced by ionizing
radiation (IR).

Cardiovascular
disorders [257]

Zn-NPs (50–100 nm) Swiss albino rats 10 mg/kg Controlling blood glucose level. Testicular diabetic
complications [258]

Vacuoles-ZnAA-NPs
(AA = ascorbic acid)

B16F10 (KCLB 80080) cells. Used
African–American, Asian, White
donors’ tissues.

ZnAA-Vac treated for 12 days
at 100 and 1000 ppm

It had a stronger depigmenting impact,
reducing the melanin hue by 75%. Melanin treatment [259]
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2.5. Therapeutic Interventions of Nickel Nanoparticles (Ni-NPs)

Ni-NPs have anticancer action [260,261]. A complex structure of Qu–PEG–NiGs
(48–72 nm), green synthesized by Ocimum sanctum leaf extract, showed mitochondrial-
mediated apoptosis against the MCF-7 cell line [262], antimicrobial activity, antioxidant
action, and activity against human ovarian cancer, liver and spleen injury [260,263–265],
lung inflammation [266], human lung cancer [267], lymphatic filariasis [268], and larvicidal
parasitic activity [269]. Bacterial protein leakage induced by ROS activation [270] and
disruption of the cell membrane [271] is one way of causing bacterial cell death. The
antimicrobial mechanism is shown in Figure 9. It has numerous other therapeutic properties
in a single formulation or a complex formulation, as shown in Table 7.

Nanotherapeutic Application of Nickel
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Figure 9. Antimicrobial mechanism of action of Ni-NPs. Ni-NPs cause ROS production that cause
oxidative damage of the cell wall and destroy the membrane. ROS cause protein leakage and interrupt
electron transport; these processes result in the antimicrobial effect of Ni-NPs.
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Table 7. Nanotherapy of nickel nanoparticles.

Nanoparticles (Diameter) Test Medium Concentration Effect/Result Disease Against References

Anticancer Effect

DPMC-Ni-NPs
(55 nm)

MCF-7, HepG2, A549, NHDF, and
MTT cell lines

25, 22.47, 25.11 and 64.23
µg/mL concentration
were used.

Cytotoxicity against breast cancer cell line
(MDA-MB-231) was concentration dependent. Breast cancer [224]

Ni-NPs (1–100 nm) Leukemia cancer cells -
Increasing cell membrane permeability and
promoting intracellular absorption in
cancer cells.

Anticancer [261]

Qu–PEG–Ni-NPs
(48–72 nm) MCF–7 cells 6.25 and 50 µg/mL Mitochondrial-mediated apoptosis is induced

through ROS overproduction. Breast cancer [262]

Ni-NPs@F. officinalis
(16.85–49.04 nm)

PA-1, SK-OV-3, Caov-3, and SW-626
cell lines were used 375, 225, 246, and 279 µg/mL Reducing viability of malignant ovarian

cell line. Ovarian cancer [265]

NiO-NPs (5.46 nm) Human lung cancer cell line (A549) 93.349 µg/mL Cytotoxicity is exhibited. Lung cancer [267]

Nickel-Ferrite (NiFe2O4)
nanorod, rosemary leaves
used to prepare NPs,
40–200 nm

Human breast cancer (MCF-7) cell
lines were used.

2, 4, 8, 16, 32, 64, 128, 256 and
512 µg/mL NiFe2O4 NP had cytotoxicity effect on MCF-7. Anticancer [272]

Antibacterial Effects

Ni-NPs (30 nm) Pseudomonas aeruginosa, Staphylococcus
aureus, and Klebsiella sp. 2.5, 5, 10, 15 and 20 µg/mL

Penetrating the bacteria and damaging them by
interacting with phosphorous- and
sulphur-containing compounds such as DNA.

Bacterial infection [263]

NMMNPs (300 to 800 nm)
(NMMNPs = nickel magnetic
mirror nanoparticles)

S. aureus and E. coli in S. aureus 0.01 g Bacterial growth is inhibited and bacteria
are killed. Bacterial infection [264]

NiGs-NPs
(12–36 nm)
Gs:green synthesized

K. pneumoniae, E. coli, S. typhi, B.
subtilis, and S. epidermidis 25–100 µg/mL Induced ROS generation. Bacterial infection [270]

Ni-NPs (0.5 nm)
Staphylococcus aureus, Klebsiella
pneumoniae, Pseudomonas aeruginosa,
Vibrio cholerae, and Proteus vulgaris.

1–0.125 mg/mL Microbial growth inhibition. Bacterial infection [273]

Ni-NPs (40–80 nm) Escherichia coli 21, 29 and 36 µM Growth is inhibited. Bacterial infection [274]
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Nanoparticles (Diameter) Test Medium Concentration Effect/Result Disease Against References

Ni-NPs
(10 nm and 50 nm)

Staphylococcus aurous and Escherichia
coli were used.

0.42 and 0.21 µg/mL, 0.84
and 0.42 µg/mL Destroyed bacterial cells. Bacterial infection [275]

Ni-NPs (<100 nm) S. aureus and Escherichia coli 0.05, 0.1, and 1 mg/mL Inhibited the growth of bacterial bioflim. Bacterial infection [276]

Miscellaneous Effects

DPMC-Ni-NPs
(55 nm)

DPPH, hydrogen peroxide, and
super oxide - - Oxidative stress [260]

Ni-NPs@F. officinalis
(16.85–49.04 nm) DPPH free radicals 253, 145, and 107 µg/mL DPPH is inhibited by adding radical species. Oxidative stress [265]

Ni-NPs
(50 nm) Sprague Dawley rats 1, 10, and 20 mg/kg

concentrations were used. Increasing number of WBC.
Liver and spleen
injury, lung
inflammation

[266]

NiO-NPs (5.46 nm) α-amylase enzyme 268.13 µg/mL Inhibited α-amylase enzyme and produced a
hypoglycemic effect. Diabetes [267]

Ni-NPs (80–100 nm) Culex quinquefasciatus. 250, 500, and 1000 ppm Larvicidal effect. Lymphatic filariasis [268]

Ni-NPs (150 nm)
Larvae of R. (B.) microplus, H. a.
anatolicum, C. quinquefasciatus, A.
subpictus, and C. gelidus.

10.17, 10.81, 4.93, 5.56, and
4.94 mg/L Caused larvae death. Parasitosis [269]

NiFe2O4/C nanocomposite. In vitro: C540 (B16/F10) cells; in vivo:
mice model (intratumorally injected)

1.0-MHz radiation was
applied with 100 µg/mL NPs

NPs and radiation can recover tumor cells and
necrosis, up to 60%.

Sonodynamic
therapy [277]

NiO-NPs preparation with
Neem leaf extract.
(12 nm)

S. aureus and E. coli - Antibacterial effect was found
concentration dependent. Antibacterial [278]

NiFe2O4 nanoparticles
(chitosan- and PEG-coated
nickel ferrite), 2–58 nm

Mössbauer spectroscopy Temperature value from
200–800 ◦C

Hyperthermia heating requires specific particle
size, shape, magnetism, and solution
concentration.

Hyperthermia
heating [279]

Nickel silicate nanoplatforms
(LNS NPs) Mouse model -

LNS NPs may produce enough superoxide
radicals when exposed to a 660 nm laser; it may
simultaneously form oxygen and create
superoxide radicals (O2

−•).

Hypoxic tumor
therapy [280]
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2.6. Therapeutic Interventions of Iron Nanoparticles (Fe-NPs)

Among the Fe-NPs, prominently used NPs include magnetite (Fe3O4), hematite, or
iron (III) oxide (Fe2O3), and the less abundant iron (II) oxide (FeO) [281]. Magnetite
(Fe3O4) NPs are used in biomedical applications due to their magnetic characteristics,
biocompatibility, and, in particular, their superparamagnetic capabilities [282].

Magnetic NPs, also known as superparamagnetic iron oxide, are used in drug deliv-
ery [283,284] and hyperthermia therapy [285–287]. Magnetite NPs can produce receptive
oxygen species (ROS), which kill microbes, making them a promising contender for an
antimicrobial agent. Lung cancer cells terminated by ferroptosis as a result of Zerova-
lent Fe-NPs (ZVI-NPs) induce mitochondrial malfunction, intracellular oxidative stress,
and lipid peroxidation; here, AMPK/mTOR activated by ZVI-NPs cause upregulation of
GSK3/β-TrCP, which results in NRF2 degradation and ultimately results ferroptosis, which
causes cancer cell damage [288–292], as shown in Figure 10.
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Figure 10. Possible anticancer mechanisms of iron (Fe) nanoparticles (zerovalent Fe-NPs cause
ROS production, AMPK/mTOR activation, NRF2 degradation by GSK3/β-TrCP, and mitochondrial
disfunction, which results in ferroptosis.

Superparamagnetic iron oxide nanoparticles (SPIONs) provide action against the
human breast cancer cell MCF7 [284]. Different nanotherapeutic studies of Fe-NPs are
arranged in Table 8.

In the treatment of different types of cancer, ferroptosis, a new Fe- and ROS-dependent
form of controlled cell death, has received a lot of attention. The potential of ferroptosis in
combination with NPs for cancer therapy is becoming more and more clear as a result of
the development of nanomaterials [293]. After cells consume Fe-based NPs, an excess of
iron ions released from the lysosome in an acidic environment activates the fenton reaction,
which causes ROS formation and cell ferroptosis [294].

Importantly, when antibiotic drugs are coupled with the iron nanoparticles of neem
extract, the dose of traditional antibiotics can be decreased by nearly half without affecting
efficiency. As a result, the use of natural antibiotics aids in the reduction of regular antibiotic
doses [295]. There was also a trial of producing bimetallic NPs (Ag-Fe) that established
the synergistic antibacterial (bactericidal) impact of the two metals forming the bimetallic
nanoparticles when compared to the effects of the monometallic nanoparticles against yeast
and both Gram-positive and Gram-negative multidrug-resistant bacteria [296].

Nanotherapeutic Application of Iron
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Table 8. Nanotherapy of Fe-NPs.

Nanoparticles
(Diameter) Test Medium Concentration Effect/Result Disease Against References

Anticancer Effects

Superparamagnetic iron
oxide nanoparticles
(SPIONs (7.3, 15.1, and
30.0 nm

Human breast cancer cell MCF7 80 µg/mL
Higher measurements and more reasonable size
of SPIONs upgraded the take-up sum into
MCF7 cells.

Breast cancer [162]

SPIONs Liver cancer cells (HepG2) (in vitro) 100 µg/mL A potent cytotoxicity on HepG2 under
hyperthermia condition. Cancer [287]

Zero valent iron NPs
(ZVI-NPs)
(97.1–55.77 nm)

BALB/c mice, age: 5–6 week 5 and 10 µg/mL

Lung cancer cells died by ferroptosis as a result
of ZVI-NP-induced mitochondrial malfunction,
intracellular oxidative-stress, and
lipid-peroxidation.

Lung cancer [288]

CA-coated Fe3O4 NPs
(50 nm) 4T1 cells 10 µg/mL Induced tumor cell ferroptosis. Breast cancer [297]

SPION-deferasirox AS1411 DNA aptamer 100 mg In vivo tumor growth inhibitory effect. Antitumor [298]

Rosemary-Fe-NPs
(100 nm) 4T1 and C26 cancer cell lines 3.12 to 200 µg/mL Rosemary-Fe-NPs exerted more cytotoxic effect. Anticancer [299]

CAP and iron oxide-based
magnetic NPs (MNPs) A549 cells in vitro 50 emu/g Potentially inhibited tumor growth. Lung cancer [300]

SPIONs (44.6 nm) Breast cancer cell lines T-47D, BT-474,
MCF7, and MDA-MB-231 25, 50 and 75 µg/mL

Extremely moderate molecule take-up and low
cytotoxicity, while SPIONLA meaningfully
affected cell take-up and cell harmfulness.

Breast cancer [301]

Fe3O4@PEI-Pt(IV)-PEG-
LHRH@siEZH2
nanoparticles

A2780/DDP cells (cisplatin resistant) 0.78 to 50 µM Killing performance to A2780/DDP cells. Anticancer [302]

34DABA coated SPIOs (less
than 20 nm) HepG2 liver cancer cells 5, 10, 15, 20, and 25 µg Good cytocompatibility and higher

killing efficiency.
Liver cancer [303]

Fe-NP nanopowder
(35–45 nm) PC12 cell nervous system (in vitro) 100 µg/mL Fe-NPs induced apoptotic cytotoxicity. Cancer [304]
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Table 8. Cont.

Nanoparticles
(Diameter) Test Medium Concentration Effect/Result Disease Against References

Au-Fe3O4 -NPs (20.8 nm) MCF-7 cells 50 µg/mL Effective and promising photothermal therapy. Breast cancer [304]

Iron oxide nanoparticles
(Fe2O3-NPs) (20 to 60 nm) Lung cancer cell (A549) lines Highest concentration of

adsorbent (50 mg/L) No toxicity against A549 cell lines. Lung cancer [305]

Miscellaneous Effects

Magnetic Fe2O3-NPs
(50–110 nm) S. aureus

DMF arrangement with 40
and 60 MJ laser fluencies
showed the most noteworthy
antibacterial action.

ROS disrupting bacterial cell membrane. Bacterial infection [289]

Fe2O3-NPs
(10–15 nm)

A/Puerto Pico/8/1934H1N1 influenza
virus strain (PR8-H1N1) 1.1 pg

Inactivation of cell protein through the
communication of nanoparticles and -SH bunch
(proposed, not examined at this point).

Viral infection [291]

Fe2O3-NPs
(10–15 nm) H1N1 Influenza A 4.25 ± 0.2 pg

Change in viral RNA transcripts within 24 h,
eight-fold reduction when treated with
iron oxide.

Viral infection [291]

Fe2O3-NPs
(10–30 nm)

Trichothecium roseum, Cladosporium
herbarum, Penicillium chrysogenum,
Alternaria alternate, and
Aspergillus niger

0.063–0.016 mg/mL
Development of ROS, protein and DNA damage
oxidative stress was the way of producing
antifungal effect.

Fungal infection [292]

Zero-valent iron (Fe0) NPs,
spherical (31.1 nm)

Staphylococcus aureus (Gram-positive)
and E. coli (Gram-negative)

MIC at 30 µg/mL and
complete growth inhibition
concentration at 60 µg/mL

Oxidative stress generation via ROS and visible
damage to bacterial protein and DNA. Bacterial infection [298]

4 nm core Fe2O3 coated with
tartaric/adipic acid

Mitochondrial DNA (mtDNA),
mitochondrial function, and
autophagy in colorectal cell lines
(HT-29)

0.5 mM/L
Reduced the number of mtDNA copies
(indicative of a reduction in the number of
mitochondria in these tumor cells).

Mitochondrial
dysfunction [306]
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3. Metal Nanoparticles Elimination from Body

The elimination of NPs depends on their particle size, intrinsic biodegradability, core
density, surface charge, and surface chemistry [307]. The liver is the major clearance
organ in the oral administration of NPs. Intravenously administered NPs are cleared from
the bloodstream by two main mechanisms: (i) renal elimination and (ii) hepatobiliary
elimination. Choi et al. [308] reported that smaller-sized (<5.5 nm diameter) quantum dots
undergo efficient urinary excretion due to the pore size limit of glomerular filtration in the
kidneys. According to estimates of Si-NPs in rats, 7–8% of NPs were eliminated in urine
and 75–80% were expelled in feces [309]. Nonbiodegradable and larger-sized (>5.5 nm)
NPs are supposed to be eliminated through the hepatobiliary route. The hepatobiliary
elimination involved the following pathways: (1) the liver sinusoid; (2) the space of Disse, a
tiny perisinusoidal space containing blood plasma, nutrients, oxygen, and body waste that
has become crucial in the treatment of liver disease, which is located between endothelial
cells and hepatocytes; (3) hepatocytes; (4) bile ducts; (5) intestines; and finally (6) out of
the body, as shown in Figure 11. In hepatobiliary elimination, the liver nonparenchymal
cells (e.g., Kupffer cells and liver sinusoidal endothelial cells) influence and determine the
elimination fate. The removal of Kupffer cells increased the fecal elimination of NPs by
more than 10-fold [310].
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NPs can enter the body through multiple routes, including the skin, respiratory tract,
dermal exposure, mucosal, oral, intravenous, subcutaneous, intramuscular, etc., and can
induce acute or chronic toxicities [311]. The anionic NPs are less toxic than the cationic
NPs, which cause hemolysis and clotting [312]. Singh et al. [313] reported that ceramic
NPs, commonly used for drug delivery, exhibit oxidative stress and cytotoxic activity in
the lungs, liver, heart, and brain, as well as having teratogenic or carcinogenic effects. NPs
have been shown, both in vivo and in vitro, to increase cellular reactive oxygen species,
induce multiple minor and severe toxicities, and even disrupt host homeostasis [311].
Although NPs are useful for numerous medical applications, there are still some concerns
for ecosystems and living organisms due to their uncontrollable use and discharge to the
natural environment; thus, it should be considered to make the use of NPs more convenient
and environmentally friendly. Preclinical studies have revealed the importance of renal-
clearable luminous metal NPs in cancer therapy, which offers tremendous promise for
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potential clinical translation [314]. The retention of NPs in the body, especially in the vital
organs, usually depends on the density of the particles. In a study of gold and silver NPs by
Tang et al., it was demonstrated that the lower-density metal NPs have a higher distribution
and shorter retention time than the higher-density metal NPs [315].

4. Conclusions

Nanodrugs can be highlighted as the future of medicine, and using potential metals
such as Fe, Au, Cu, Ag, Ni, and Zn in NPs showed optimistic results against various types
of cancers, as well as displaying antitumor, antidiabetic, and antimicrobial activity. They
are also applicable for other purposes, and it was found that metal NPs have significant
synergistic activity with commercially available antibiotics. Since we already have cer-
tain levels of most metals in our bodies, they are compatible with our immune systems,
which is of benefit to metal nanotherapy. Research has found that metals enhance the
pharmacological activity considerably.

Despite recent advances in metal nanotherapy, the majority of nanotherapeutics are
still being studied. The main concerns are not only their long-term safety for the patient,
but also the ecological and toxicological aspects that need to be considered.

The generation of ROS is a significant challenge for metal NPs and metal oxide NPs.
Diameter, structure, interface, content, solubility, accumulation, and particle absorption
are factors that can affect ROS generation. A metallic nanomaterial’s toxicity may vary
based on its oxidation reaction, ligand, solubility, shape, environment, and medical factors.
For example, characterization and cell type are important factors in the uptake of Au-
NPs. If the Au-NPs are absorbed by a healthy cell, they will eventually be removed, but
if they are absorbed by a malignant cell, they will cause cell death. More in vivo metal
nanotherapeutic studies are needed to find out the toxicological conditions in normal cell
lines when targeting cancer cells.
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