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Abstract: Recurrence of cancer after primary tumour resection is a leading cause of cancer-related
mortality. Preclinical research indicates that surgery induces a stress response that inhibits cell-
mediated immunity as a possible basis for risk of recurrence. Other preclinical evidence suggests
that, conversely, propofol and local anaesthetics diminish the effects of the surgical stress response
and so could directly inhibit cancer progression, and this is supported by several retrospective cohort
studies and meta-analyses. However, the first large-scale randomised clinical trial (RCT), comparing
recurrence after mastectomy in patients anaesthetised with either propofol/local anaesthetic or
sevoflurane/opioids, concluded that recurrence was not significantly improved in the propofol/local
anaesthetic group (p = 0.84). Other cancers may prove more responsive and results from a number of
ongoing RCTs, encompassing several cancer types, are currently awaited. These trials should establish
whether choice of anaesthetic technique is an important determinant of cancer recurrence risk.

Keywords: general anaesthesia; outcomes; mechanisms; cancer; perioperative medicine; clinical
pharmacology

1. Introduction

Surgical intervention is routinely employed as a potentially curative measure for
many solid tumours, but post-operative recurrence of metastatic cancer is a limitation to
improvements in outcomes. Surgery can directly contribute to metastasis and promotion of
tumour growth though manual handling. Moreover, the surgical stress response (SSR), and
its inhibitory effect on the immune system, are associated with oncogenesis [1]. Preclinical
findings about the effects of different anaesthetics on the immune system, and more directly
on the prevalence of recurrence, give rise to the proposition that local anaesthetics (LAs) [2]
and propofol could limit recurrence (Figure 1) [3,4].
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Figure 1. Outline of the effect of surgery (green lines) in promoting inflammation and a generalized 
surgical stress response that could in turn promote cancer recurrence; either directly or via 
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(red line) of cell-mediated immunity. Theoretically, drugs used in anaesthesia could inhibit this
cancer recurrence pathway at several points: non-steroidal anti-inflammatory drugs (NSAIDs) at the
inflammatory stage; or general anaesthetics (GA), local anaesthetics (LA) or opioids in obtunding the
stress response.

Clinical study of this hypothesis has, so far, yielded no unanimous conclusions. How-
ever, the first large-scale clinical trial, recently published in The Lancet, determined that
anaesthetic technique has no significant impact on recurrence following mastectomy [1].
It must now be established whether this study settles the issue or if further research is
required.

2. Primary Tumour Resection and the Risk of Metastasis

Plasma concentration of inflammatory cytokines increases during surgery [2], remain-
ing high up to 5 days post-operatively, depending on the degree of surgical insult [3]. Stress
hormones (e.g., catecholamines and prostaglandins) are released during surgery as a result
of sympathetic nervous system (SNS) and hypothalamic-pituitary-axis (HPA) signalling [4].
Dependent on the severity of the procedure, the SSR can last several days [5].

Cancer cells are released into circulation from the primary tumour handling during
resection [6], establishing micro-metastases in non-affected tissues at sites remote from the
primary tumour, where they can proliferate, develop their own blood supply, and ultimately
form large metastatic tumours [7,8]. Thus, 59% of preoperatively asymptomatic breast
cancer patients developed circulating tumour cells in the 22 years following mastectomy [9].
Cancer cell presence in plasma correlates strongly with increased risk of recurrence and
poor long-term survival [10–12].

Surgery might also promote angiogenesis, through a hypoxia-inducible factor (HIF)
pathway [13], driving metastatic tumour growth [14]. In a rabbit model of liver cancer,
tumour blood flow after surgery increased alongside expression of the angiogenic proteins
HIF-1α and related compounds [15]. Furthermore, study of human breast cancer patients
after mastectomy has found that angiogenic gene expression increases and growth in distant
metastases accelerates [16,17]. Additionally, the primary tumour can secrete both inhibitory
and inductive agents, facilitating communication with disseminated cells [18]. Surgical
resection disrupts the delicate balance of this control system, towards inductive signalling
that could activate circulating tumour cells, promoting metastasis and recurrence [19].
Thus, endostatin and angiostatin concentrations decrease after surgery, while vascular
growth and metabolic activity increase in metastases [15,20]. This implies that the primary
tumour exercises inhibitory control over vascularisation of distant metastases, which is
subdued following resection [21].

3. The Perioperative Period and the Immune System

The occurrence and survival of metastases is linked, intrinsically, to the immune
system [20]. To understand how anaesthesia might affect recurrence, this relationship, and
the impact of surgery on it, must be understood.

Cancer cells dampen the immune response by modulating the activity of immune
cells [22]. Exacerbating inhibition of T, B and natural killer cells (NKCs) is commonly
exhibited following surgery [2,23]. NKCs display a particularly potent level of anti-tumour
activity and are thought essential in preventing spread and growth of metastases. NKCs
are cytotoxic and through recognition of surface signals (e.g., lack of major histocompati-
bility, MHC, class-1 or the presence of a stress ligand) can selectively recognise and lyse
cancer cells [24–26]. NKC inactivity correlates strongly with increased susceptibility to
a wide range of cancers and the inhibitory effect of surgical stress on NKC activity is
well documented in animals [27]. Surgery leads to reduced NKC activity and increased
prevalence of metastases in mice; reversed by treatment with a prostaglandin synthesis
inhibitor (indomethacin) and β-blocker (nadolol) [28]. Additionally, work in the MT/Ret
mouse model showed that perioperative β-blockade (propranolol) delays primary tumour
growth and metastasis development, while simultaneously increasing NKC infiltration
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into the tumour stroma [29]. Increased expression of programmed cell death-1 (PD-1)
and programmed cell death-ligand 1 (PD-L1) by immune cells activates the PD-1 and
PD-L1 pathways. These pathways increase caspase-3 activity which ultimately induces cell
death/apoptosis, depleting the NK and T cell population. The level of expression correlates
with the severity of surgical trauma [24,30].

T-helper lymphocytes, functionally divided into TH1 and TH2 subgroups, regulate
cytokine expression. Generally, an abundance of TH1 leads to stimulation of the immune
system, while TH2 is immunosuppressive [31]. Surgery shifts the ratio in favour of TH2,
leading to reduced levels of such immune-stimulating cytokines (termed IFN-γ, IL-2 and
IL-12) and an increase in levels of immune-suppressive cytokines (e.g., IL-10 [31]). This
shift towards TH2 can plausibly promote postoperative growth in micro-metastases as
cell-mediated immunity is suppressed.

4. General Anaesthesia: A Janus Effect?

Surgery for cancer cannot be dissociated from anaesthesia, and a wide range of agents
are used in general anaesthesia. A combination of intravenous and inhalational agents
induce and maintain unconsciousness. Analgesics include local anaesthetics, NSAIDs and
opioids.

4.1. Evidence of Anaesthesia Promoting Cancer Recurrence

Some pre-clinical evidence suggests that volatile anesthetics inhibit cell-mediated
immunity. In mice, both isoflurane and halothane inhibit NKC cytotoxicity and metastatic
spread of melanoma can increase [32]. Isoflurane upregulates expression of the angiogenic
and growth-promoting proteins HIF-1α, insulin-like growth factor-1, vascular endothelial
growth factor (VEGF), angiopoietin-1, and other factors, increasing the malignant activity
of ovarian cancer in-vitro [33,34]. Noting that volatile agents are commonly used in combi-
nation with nitrous oxide, N2O, work in vitro found that sevoflurane increases expression
of HIF-2α and key proteins in human head and neck squamous cell carcinoma; while N2O
disrupts DNA, purine and thymidylate synthesis and inhibits neutrophil chemotaxis, all of
which suppress the response from tumour-surveying haematopoietic cells [35,36]. N2O also
significantly accelerates postoperative growth of lung and liver metastases in mice [37].

Intravenous agents were used historically to induce, rather than maintain anaesthe-
sia (but see below). Some intravenous anaesthetics have, like the volatiles cited above,
exhibited immune-suppressive properties in pre-clinical study. In human T lymphocytes
in-vitro, thiopental inhibits activation of nuclear factor-kappa B (NF-κB) and neutrophil
function. NF-κB suppression reduces activity of the NF-κB reporter gene which in turn lim-
its expression of the important pro-immune factors (termed IL-2, IL-6, IL-8 and IFN-γ) [38].
Ketamine also inhibits expression of pro-immune IL-6, in addition to tumour necrosis
factor-α, in-vitro [39]. Both agents have been shown to suppress NKC activity. Ketamine
additionally induces apoptosis in T lymphocytes [39,40]. The action of thiopental is more
protective against T lymphocyte apoptosis, suggesting complex interactions may be at play
and all ‘anaesthetics’ cannot be regarded as equivalent [40].

4.2. Evidence of Anaesthesia Inhibiting Cancer Recurrence

Propofol appears to have the opposite effect, promoting aid cell-mediated immunity.
Propofol increases cytotoxic T-lymphocyte activity and inhibits enzymatic production of
inflammatory cytokines by cycolooxygenase-2 (COX-2) and the prostaglandin PGE2 [41–43].
Melamed and colleagues tracked radiolabelled cancer cells in a rat model of breast cancer
following administration of thiopental, ketamine and propofol. They found that thiopental
and ketamine both significantly increased metastasis and tumour retention in the lungs 24 h
after treatment, probably owing to reduced NKC activity. Propofol, in contrast, caused no
such effect [44]. In vitro, propofol decreases survival in hepatocarcinoma, colorectal cancer,
gastric cancer, lung cancer and glioblastoma cell lines via varying mechanisms [45–48].
Propofol also inhibits production of VEGF in-vitro, leading to suppression of angiogene-
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sis [49]. If this effect were preserved clinically, as one comparative clinical trial of propofol
and volatile anesthetics suggests, this might significantly limit tumour growth [50]. These
preclinical studies are potentially important as propofol, in contrast to many other intra-
venous agents, is now administered as part of maintenance anaesthesis throughout surgery
(the technique of ‘total intravenous anaesthesia, TIVA), and not just as a single bolus dose
for induction [51].

4.3. The Janus Effect: Analgesics

The Roman god Janus is depicted as having two faces looking in opposite directions.
The summary of preclinical findings for general anaesthetic drugs above indicates poten-
tially dichotomous effects, and this is also seen with opioids. On the one hand they are
decidedly used to relieve pain and so obtund the stress response to surgery. Yet, some
preclinical evidence suggests potential for promotion of cancer recurrence.

Morphine impedes NKC cytotoxicity with dose dependency in rats; and stimulates
TH2 activity and inhibits T cell differentiation in mice [52–54]. A study using human breast
cancer xenografts concluded that morphine induces endothelial cell proliferation and an-
giogenesis (emulating VEGF by activating the mitogen-activated protein kinase signalling
pathway and triggering extracellular signal-regulated kinase phosphorylation); inhibits
apoptosis; and promotes cell cycle progression [54]. Fentanyl, sufentanil, remifentanil
and alfentanil all suppress NKC activity in animal models [55]. Additionally, sufentanil
inhibits leukocyte migration and remifentanil significantly impedes leukocyte proliferation
in rats [56,57].

Overexpression of the µ-opioid receptor (MOR), due to cancer, may account for several
pro-oncogenic side-effects of opioid treatment [58]. Histological analysis of lung tissue
from patients with non-small cell lung carcinoma (NSCLC) revealed a 5 to 10-fold increase
in MOR expression. In the same comprehensive study, Mathew and colleagues found
that administration of morphine and enkephalin (MOR agonists) increases in vitro lung
carcinoma growth. Meanwhile, treatment with the opioid antagonist methylnaltrexone
or silencing of MOR expression reduces growth by 50–80%. Additionally, if injected with
lung cancer cells, MOR-knockout mice develop no significant tumours compared with
wild-type controls. Furthermore, chronic methylnaltrexone administration suppresses
tumour growth and limits metastasis in mice injected with lung cancer cells [59]. In human
non-small cell lung cancer cells, activation of MOR regulates opioid-induced growth factor
receptor signaling, stimulating proliferation and migration of cancer cells. MOR activation
may also promote pro-metastatic, epithelial-mesenchymal transition [60].

In contrast, animal studies indicate that higher doses of morphine do not promote
tumour growth. Surgery-induced metastasis of mammary adenocarcinoma is blocked
in rats administered high doses of morphine. An equivalent high dose had no effect on
metastasis in non-operated rats [61]. Additionally, peri-operative, and in particular pre-
operative, administration of morphine attenuated surgery-induced tumour growth in rats
undergoing laparotomy [62]. It is important to note that a significantly higher dose of
morphine is necessary to inhibit release of stress hormones than to induce analgesia [2,63].
Peri-operative administration of high-dose opioids may, therefore, be effective in dimin-
ishing the oncogenic effects of the SSR, despite the incidence of direct opioid-mediated
suppression of immunity.

Non-steroidal anti-inflammatory drugs (NSAIDS) inhibit COX enzymes, impeding
prostaglandin synthesis. Cancer cells express high levels of COX-2 and synthesise PGE2,
potentially as a mechanism of immune evasion [64]. PGE2 is associated with promotion
of cancer progression [65]. In animal models of cancer, COX-2 inhibitors attenuate angio-
genesis; increase NKC cytotoxicity; and inhibit metastasis [66–69]. If administered after
surgery, NSAIDS may also reverse some of the deleterious effects of surgical stress and
treatment with opioids. An interesting study, using a murine model of breast cancer treated
chronically with morphine, found the COX-2 inhibitor celocoxib inhibits opioid-induced
angiogenesis, tumour growth and metastasis, improving survival while not compromising,
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and potentially benefitting, analgesia [70]. Clinically, meta-analysis indicates that long-term
use of NSAIDs could reduce both risk of developing cancer, and risk of metastasis in cancer
patients [71,72]. A randomised clinical trial (RCT) into the effects of perioperative NSAID
administration on recurrence is ongoing (NCT03172988).

In preclinical study, local anaesthetics appear to successfully suppress tumour growth
and metastasis by modulating gene expression; inhibiting proliferation, migration and
invasion; and are directly cytotoxic [73]. However, precise mechanisms have not yet
been elucidated. Local anaesthetics work by inhibiting voltage gated sodium channels
(VGSCs) thus disrupting neural nociceptive signal transmission. VGSCs are overexpressed
in many cancer cells, which additionally express a range of ion channels not present in
their terminally differentiated equivalents [74,75]. Importantly, continuous intravenous
lidocaine infusion throughout surgery is now being promoted to aid analgesia, albeit with
caution [75].

The local anaesthetic procaine demonstrates significant demethylating ability and
can inhibit tumour cell proliferation by modulating cell-signalling pathways [76]. In lung
cancer cell culture, procaine reactivates Wnt inhibitory factor-1 and down-regulates the
Wnt canonical pathway (an important inhibitor of proliferation) [77]. Procaine also up-
regulates expression of RASSF1A mRNA in nasopharyngeal carcinoma cells, inhibiting
proliferation [78]. In vitro, ropivacaine, lidocaine and bupivacaine have all shown an
antiproliferative effect on mesenchymal stem cells [79]. Epidermal growth factor receptor
(EGFR) mutations are frequent in cancer cells [80]. EGFR, a tyrosine kinase receptor, is
important in the epithelial cell proliferation pathway. Lidocaine can inhibit EGFR in
tongue cancer (HT1080 fibrosarcoma). This inhibits proliferation by preventing shedding
of heparin-binding epidermal growth-factor-like growth factor, which consequently cannot
phosphorylate EGFR [81].

Tetracaine and lidocaine demonstrate an interesting ability to inhibit kinesin motil-
ity and protrusion of microtubules in breast cancer cells [82]. This inhibition hinders
aggregation and reattachment, ultimately decreasing invasive ability and metastasis. A
direct association has been shown between invasiveness of cancer and its relative VGSC
activity, with greater expression of VGSCs exhibited in the most invasive ovarian cancer
variants [83,84] Additionally, VGSCs appear to exercise control over VEGF signaling and
other angiogenic functions in cultured umbilical vein endothelial cells [85]. A murine
study found that peri-operative intravenous lidocaine reduces pulmonary metastasis after
surgical resection with sevoflurane anaesthesia, likely by inhibiting expression of pro-
inflammatory and angiogenic cytokines [86].

Administration of a clinically relevant dose of lidocaine or bupivacaine results in
apoptosis of neuroblastoma, breast cancer, and thyroid cancer cells, [87–89] perhaps with
sparing of healthy (mammary epithelial) cells. Apoptosis was triggered by induction of
caspase-7, 8 and 9. Caspase-7 activity and evidence of apoptosis were also present in
human breast cancer xenografts following local anaesthetic administration [88].

5. Evidence from Clinical Research

In summary, the pre-clinical evidence highlights propofol and local anaesthetics as the
most promising agents to prevent cancer recurrence. The results from clinical research for
these agents are mixed [90–104].

5.1. Propofol

Table 1 summarises some of the results of retrospective and prospective studies. It is
not intended to be a meta-analysis (which are discussed below) but presented to reflect
the inconsistency in results. In a large-scale study involving 7030 patients, encompassing
several cancer types, volatile agents were associated with significantly lower survival after
multivariable analysis [91]. This was corroborated in retrospective study of colorectal,
gastric and liver cancer patients [97,100,102] However, the evidence does not unanimously
support a beneficial effect for propofol. Several retrospective studies found no significant
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difference in recurrence or survival between volatile and propofol groups. Furthermore,
no significant benefit was shown in, small-scale, RCTs [92,103] A recent meta-analysis of
12 retrospective cohort studies found significant benefit to overall survival in TIVA groups
(hazard ratio, HR = 0.73, 95% CI = 0.60–0.89) and improved, although not significant,
recurrence-free survival with TIVA (HR = 0.73, 95% CI = 0.47 − 1.14) [104].

Table 1. Summary of some clinical studies comparing propofol (TIVA) vs. volatile-based anaesthesia
in cancer recurrence. The second column of study type indicates whether the study is retrospective
cohort (RC) or randomized control (RCT). The third column shows the numbers of patients in the
propofol vs. volatile (VA) arms. The next columns indicate the agent used, the cancer type. The sixth
column is the end point, being overall survival (OS); recurrence-free survival (RFS); tumour-node-
metastasis stage (TNM); presence of metastasis (PM); biochemical recurrence (BCR), or not reported
(nr). The last three columns indicate the hazard ratio, confidence intervals and rank (marked + for a
‘positive’ result or − for a ‘negative’ outcome indicating no effect on cancer recurrence).

Study Study
Type Propofol/VA Volatile

Agent
Cancer
Type End Point Hazard

Ratio 95% CI Result

Enlund
et al. (2014) [90] RC 1935/903 Sevoflurane Various OS 0.86 0.60–1.24 −

Wigmore
et al. (2016) [91] RC 3316/3714 Sevoflurane

or isoflurane Various OS 0.68 0.60–0.78 +

Sofra
et al. (2013) [92] RCT 14/14 Sevoflurane Bladder OS nr nr, p = 0.14 −

Lee
et al. (2016) [93] RC 152/173 Sevoflurane Breast OS nr nr, p = 0.38 −

RFS 0.48 0.27–0.86 +

Kim
et al. (2017) [94] RC 56/2589

Sevoflurane,
isoflurane,

enflurane or
desflurane

Breast OS 1.14 0.49–2.60 −

Yoo
et al. (2019) [95] RC 3085/2246

Sevoflurane,
isoflurane,

enflurane or
desflurane

Breast OS 0.96 0.69–1.33 −

RFS 0.96 0.69–1.32 −
Huang

et al. (2019) [96] RC 344/632 Desflurane Breast OS 1.13 0.67–1.92 −

Wu
et al. (2018) [97] RC 657/706 Desflurane Colorectal OS 0.27 0.22–0.35 +

Oh
Et al. (2016) [98] RC 194/749 Sevoflurane Non-small

cell lung OS 0.90 0.64–1.26 −

RFS 1.31 0.84–2.04 −

Jun
et al. (2017) [99] RC 731/191

Sevoflurane,
isoflurane or
desflurane

Oesophageal OS 0.63 0.50–0.81 +

RFS 0.70 0.56–0.89 +
Zheng

et al. (2018) [100] RC 1506/1350 Sevoflurane Gastric OS 0.65 0.56–0.75 +

Dong
et al. (2019) [101] RC 154/140 Sevoflurane Glioma OS nr nr, p = 0.76 −

OS (Low
Karnofsky) 0.60 0.39–0.93 +

There are several factors to consider in interpreting these results. It is indeed interesting
that retrospective studies point to some potential effect (i.e., elicit some ‘signal’ from
the ‘noise’). However, a true effect requires an RCT and even with randomisation it is
not possible to even out potential patient factors that are more influential than the type
of anaesthetic. Note also that, even with a volatile-based anaesthetic, bolus propofol is
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invariably used for induction [105]. Study across a wider range of cancer types is warranted,
because not all are identical in, for example, how they exhibit recurrence or the types of
receptor targets they express. Finally, as a pragmatic observation, TIVA is currently used in
less than 10% of all surgeries, in part because of concerns about other complications and
side effects including accidental awareness during surgery [106].

5.2. Local Anaesthetics

Encouraging findings from early retrospective cohort studies have indicated that use
of local anaesthetics during the peri-operative period could reduce incidence of cancer
recurrence [107]. Table 2 summarises some of the results [108–143]. Like Table 1, this is
not a meta-analysis and there are some important caveats to interpretation. Results from
retrospective studies are inconsistent. A meta-analysis of 10 retrospective studies found
that local anaesthesia during prostatectomy was associated with improved overall survival
(HR = 0.81, 95% CI = 0.68 − 0.96) [144]. Similarly, a meta-analysis of 21 studies indicated
that administration of neuraxial blockade (epidural or intrathecal) was associated with both
longer recurrence-free survival (HR = 0.85, 95% CI = 0.72 − 1.0) and overall survival (HR-
0.85, 95% CI = 0.74 − 0.98) [145]. However, another meta-analysis of 28 studies, found no
association between local anaesthesia and improved survival or reduced recurrence [146].
As described previously, Sessler et al. determined that the combination of local anaesthesia
and propofol (putatively the most promising combination) did not improve recurrence in
breast cancer patients following mastectomy [1]. While this provides strong evidence that
local anaesthetics are unlikely to improve breast cancer patient outcome specifically, this
does not exclude the possibility, however remote, that other cancer types may respond
more positively.

Table 2. Studies investigating recurrence following surgery with LA analgesia/anaesthesia or any
opioid analgesia and general anaesthetic (GA). RC = retrospective cohort study; RCT = randomised
clinical trial; OS = overall survival; RFS = recurrence free survival; TTR = time to recurrence;
P/O = postoperative; I/O = intraoperative; SP = systemic progression; CSS = cancer specific sur-
vival; BCR = biochemical recurrence; PVB = paravertebral block; PCA = patient-controlled analgesia;
IP = intraperitoneal; nr = not reported.

Study Study
Type LA/Control LA Technique Control

Technique
Cancer
Type End Point Hazard

Ratio 95% CI Result

Sessler et al.
(2019) [1] RCT 1043/1065 LA PVB +

propofol
Opioid +

sevoflurane Breast RFS 0.97 0.74–1.28 −

Biki et al. (2008)
[107] RC 102/123 Epidural LA +

GA Opioid + GA Prostate BCR 0.43 0.22–0.83 +

Tsui et al. (2010)
[108] RCT 49/50 Epidural LA +

GA GA Prostate BCR 1.33 0.64–2.77 −

Wuethrich et al.
(2010) [109] RC 103/158 Epidural LA +

GA
Opioid +

NSAID + GA Prostate OS 0.61 0.29–1.28 −

PFS 0.45 0.27–0.75 +
Forget et al.
(2011) [110] RC 578/533 Epidural LA +

GA GA Prostate BCR 0.84 0.52–1.17 −

Wuethrich et al.
(2013) [111] RC 67/81 Epidural LA +

GA
Opioid +

NSAID + GA Prostate OS 1.17 0.63–2.17 −

Local RFS 1.16 0.41–3.29 −
Distant

RFS 0.56 0.26–1.25 −

Roiss et al. (2014)
[112] RC 3047/1725 Spinal LA +

GA GA Prostate OS 0.90 0.51–1.60 −

RFS 1.11 0.54–2.27 −
BCR 1.09 0.85–1.41 −

Sprung et al.
(2014) [113] RC 486/486 Epidural LA +

GA Opioid + GA Prostate OS 0.81 0.61–1.08 −

RFS 1.27 0.96–1.67 −
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Table 2. Cont.

Study Study
Type LA/Control LA Technique Control

Technique
Cancer
Type End Point Hazard

Ratio 95% CI Result

Scavonetto et al.
(2014) [114] RC 1642/1642 Neuraxial LA

+ GA GA Prostate OS 0.76 0.57–1.00 +

SP 0.36 0.17–0.76 +
Tseng et al. (2014)

[115] RC 1166/798 Spinal LA +
Sedative GA Prostate BCR 0.91 0.70–1.18 −

Christopherson
et al. (2008) [116] RCT 85/92 Epidural LA +

GA GA Colorectal OS 1.43 0.75–2.70 −

Gottschalk et al.
(2010) [117] RC 256/253 Epidural LA +

GA GA Colorectal RFS 0.82 0.49–1.35 −

Gupta et al.
(2011) [118] RC 562/93 Epidural LA +

GA PCA + GA Colorectal OS (colon) 0.82 0.30–2.19 −

OS (rectal) 0.45 0.22–0.90 +
Cummings et al.

(2012) [119] RC 9278/40377 Epidural LA +
GA GA Colorectal OS 0.91 0.87–0.94 +

RFS 1.05 0.95–1.15 −

Day et al. (2012)
[120] RC 251/173

Epidural or
Spinal LA +

GA
PCA + GA Colorectal OS Nr nr, p = 0.622 −

Holler et al.
(2013) [121] RC 442/307 Epidural LA +

GA GA Colorectal OS 0.73 nr, p < 0.002 +

Vogelaar et al.
(2015) [122] RC 399/189 Epidural LA +

GA GA Colorectal OS 0.77 0.63–0.95 +

MacFater et al.
(2020) [123] RCT 37/19 IP LA + GA IP Saline

+GA Colorectal OS 0.65 nr, p = 0.620 −

Hiller etc. (2014)
[124] RC 97/43 Epidural LA +

GA GA Gastric OS 0.42 0.0.21–0.83 +

TTR 0.33 0.17–0.63 +
Cummings et al.

(2014) [125] RC 766/1979 Epidural LA +
GA GA Gastric OS 0.93 0.84–1.03 −

Shin et al. (2017)
[126] RC 4325/374 Epidural PCA i.v. PCA Gastric OS 0.67 0.43–1.13 −

RFS 1.10 0.86–1.40 −
Wang et al. (2017)

[127] RC 1390/2856 Epidural LA +
GA GA Gastric OS 0.65 0.58–0.73 +

Li et al. (2016)
[128] RC 178/178 Epidural LA +

GA GA Oesophageal OS Nr nr, p = 0.470 −

RFS Nr nr, p = 0.460 −
Lin et al. (2011)

[129] RC 106/37 Epidural LA +
GA Opioid + GA Ovarian OS 0.82 0.70–0.96 +

de Oliviera et al.
(2011) [130] RC 55/127 Epidural LA +

GA GA Ovarian P/O TTR 0.86 0.52–1.41 −

I/O TTR 0.37 0.19–0.73 +
Capmas et al.
(2012) [131] RC 47/47 Epidural PCA

+ GA GA Ovarian OS 1.25 0.39–4.04 −

RFS 1.18 0.61–2.31 −
Lacassie et al.
(2013) [132] RC 37/43 Epidural LA +

GA GA Ovarian TTR 0.72 0.40–1.33 −

Tseng et al. (2018)
[133] RC 435/213 Epidural LA +

GA GA Ovarian OS 0.64 0.49–0.82 +

RFS 0.75 0.60–0.94 +
Doiron et al.
(2016) [134] RC 887/741 Epidural LA +

GA GA Bladder OS 0.91 0.80–1.03 −

Weingarten et al.
(2016) [135] RC 195/195 Spinal LA +

GA GA Bladder OS 1.09 0.77–1.53 −

Choi et al. (2017)
[136] RC 718/158 Spinal LA GA Bladder RFS 0.62 0.48–0.79 +

Koumpan et al.
(2018) [137] RC 135/96 Spinal LA GA Bladder RFS 0.49 0.27–0.88 +

TTR 0.64 0.46–0.88 +
Chipollini et al.

(2018) [138] RC 215/215 Epidural LA. +
GA GA Bladder RFS 1.67 1.14–2.45 −

CSS 1.53 1.04–2.25 −
Zimmitti et al.

(2016) [139] RC 390/120 Epidural LA
+GA GA Liver OS 0.72 0.49–1.07 −

RFS 0.74 0.56–0.95 +
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Table 2. Cont.

Study Study
Type LA/Control LA Technique Control

Technique
Cancer
Type End Point Hazard

Ratio 95% CI Result

Gottschalk et al.
(2012) [140] RC 52/221 Spinal LA GA Melanoma OS Nr nr, P = 0.087 +

Merquiol et al.
(2013) [141] RC 111/160 Epidural LA +

GA Opioid + GA Head and
neck OS 0.82 0.70–0.96 +

Myles et al. (2011)
[142] RCT 230/216 Epidural LA +

GA GA

Abdominal
surgery

(e.g.,
colorectal)

RFS 0.95 0.76–1.17 −

Wu et al. (2018)
[143] RC 1799/392 Epidural LA +

GA Opioid + GA NSCLC OS 0.81 0.58–1.31 −

RFS 0.93 0.76–1.14 −

Table 2 reflects the caution that in all these studies, the local anaesthesia intervention
is not equivalent. Paravertebral blocks are very different from epidural or intraperitoneal
injection of local anaesthetic, and so on. Moreover, the plasma levels of local anaesthetic
achieved with any of these are very low, so the only putative mechanism is through
obtunding the stress response to surgery with analgesia.

6. Conclusions: Drug Development

The currently negative outcomes from RCTs do not support routine use of either
propofol, local anaesthetic, or any other anaesthetic regimen as something to reduce risk of
cancer recurrence. Studies may have failed to take account of several other perioperative
factors, including blood transfusion and hypothermia, have been associated with increased
recurrence [147–150]. Several large-scale RCTs are nearing completion that in part address
these limitations (Table 3). However, an argument could also be made that if even these
RCTs fail to demonstrate any positive results, then a time may come when research efforts
and expense should be directed elsewhere rather than seeking marginal gains in this field
of enquiry.

Table 3. Some ongoing registered clinical trials examining questions related to anaesthesia technique
and cancer outcomes. The first column is the trial registration number; the second the study design;
the third the target sample size; the fourth column is the comparison (TIVA, total intravenous
anaesthesia; VA, volatile anaesthesia; LA, local anaesthesia; GA, general anaesthesia; PCA, patient-
controlled analgesia). The fifth column shows the cancer type; the sixth column the end-points (OS,
overall survival; RFS, recurrence-free survival). The last column indicates the planned/expected
study completion date.

Study Study Design Participation Agents Cancer Type End Point Expected
Completion Date

NCT03034096 Multicentre
prospective 2000 Propofol TIVA vs.

VA Various OS +RFS December 2020

NCT01975064 Multicentre
prospective 8000 Propofol TIVA vs.

sevoflurane
Breast +

Colorectal OS December 2023

NCT02786329
Single-centre
prospective,

2 × 2 factorial
450

Propofol TIVA vs.
VA and lidocaine

vs. placebo
Colorectal OS + RFS December 2021

NCT02840227 Multicentre
prospective 2000 Epidural LA + GA

vs. opioid + GA
Non-small cell
lung carcinoma RFS December 2021

NCT01318161 Single-centre
prospective 300 Ropivacaine vs.

morphine PCA Colorectal OS + RFS December 2021

However, the preclinical evidence of beneficial properties of propofol and local anaes-
thetics with regard to cancer recurrence is more persuasive. While the dichotomy may be
disappointing—interpreted for example as a failure in translating from bench to bedside—
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in fact the preclinical data may guide drug discovery. General anaesthetics are chemically
diverse, and it is increasingly appreciated that they work on a range of molecular target re-
ceptors. If their primary mechanism of action with respect to hypnosis is poorly understood,
then it would seem more difficult to ascertain their mechanisms with respect to ‘secondary’
actions such as on cancer recurrence. Indeed, the notion of a ‘common’ mechanism of action
for all agents is superceded by the theory that each agent produces unconsciousness in its
own unique way [151]. Secondly, it is also being appreciated that, even for a given type of
cancer (breast, prostate, etc), the surface cell markers and expression of relevant molecules
or receptors may differ greatly across patients. Therefore, the positive results with prevent-
ing cancer recurrence may reveal, with further research, precisely which molecular targets
are susceptible to the positive effects of general and/or local anaesthetics. In other words,
the way forward may not be ever larger RCTs, in which the ‘average’ effect in a randomly
sampled patient group is analysed; but, instead, more discrete analysis of which cancer
subtypes (characterised by receptor expression) are amenable to beneficial effects of which
anaesthetic agents.
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