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Abstract: The birch tree-derived pentacyclic lupine type-triterpenoid Betulinic acid has demonstrated
a variety of biological activities BetA is known for its harmlessness on normal healthy cells. However,
recent investigations have indicated that BetA can cause cellular changes in mouse normal embryonic
fibroblasts even with a minimal concentration. This report cautioned the use of BetA at the clinical
level, which encouraged us to examine whether BetA could produce any key effect on normal healthy
cells of any organs in mice. The present study extended its investigation to evaluate whether BetA
could induce any changes in the renal system and the expression pattern of NADPH-diaphorase an
indirect marker of the enzyme nitric oxide synthase in mice. Our results indicated that BetA exposure
induced NADPH-d expression in both organs without causing any significant morphological changes.
Moreover, NADPH-d activity patterns in the organs of BetA-treated animals tremendously increased
(from day 4 until day 12) when compared to controls. The expression of NADPH-d in both the kidney
and bladder implies that NADPH-d-mediated nitric oxide signaling could be a mechanism involved
in BetA-induced nephroprotection. These outcomes are of direct clinical importance and could pay
the way for the improvement of BetA as an important pharmaceutical product.
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1. Introduction

The reactive oxygen species (ROS) play a prominent role in human well-being and are
beneficial when combating numerous human diseases [1,2]. The following free radicals such
as OH, O2

− H2O2, O3, HOCI, RO2, and RO produced during various metabolic activities [3].
Numerous urinary diseases including chronic kidney/renal failure (CRF) have been linked
c with redox imbalance, but the mechanism responsible remains unknown [4,5]). It is
established that NADPH oxidase is the major source of O2− ion formation and superoxide
dismutase (SOD) participates in the elimination [5].

Nitric oxide (NO) is a ubiquitous gaseous radical species [6,7] present in the im-
mune [8], and urinary system [9] of various species and endocrine tissues [10,11] among
others [12–14]. Many studies [15,16] have suggested various contributing factors for chronic
renal failure (CRF) like protein nitration, nitric oxide (NO) inactivation, hypertension, and
functional NO deficiency. Nitric oxide is a recognized mediator in numerous therapeutic as
well as immunomodulatory functions, suggesting its role in immune organs [8,17]. Three
different forms of nitric oxide synthases (NOSs) exist they are NOS1, NOS2, and NOS3,
which participate in NO and L-citrulline synthesis using cellular oxygen (O2) from the
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L-arginine amino acid, between this NOS1 and NOS3 is constitutive, whereas NOS2 is
inducible one [18]. It is known that all three types of NOSs express NADPH-d enzyme
activity of NADPH-d [10,12,14,19], suggesting NADPH-d expression pattern is an indirect
presence of the enzyme NOS or NO [17,18]. Since the beginning, NADPH-d considered an
indicator of NOS [10].

It is well known that NO is the main homeostatic regulator of renal hemodynamics [20,21]
and it has been determined as a key player in the pathogenesis of metabolic diseases [22]. To
support this, previous studies have established NO deficiency in numerous renal injury experi-
mental models [14,23]. These animal investigations reveal that abnormalities in endogenous
NO production are responsible for renal injury, due to the disparity between the production
of eNOS and iNOS [24]. Although NOS2 is known to play a considerable role in the urinary
system specifically in the kidney, however, its localization in the kidney is not known. How-
ever, [25] demonstrated inducible-NOS-positivity in the rat kidneys using immune- and enzyme
histochemistry with NADPH-d, further confirmed by RT-PCR. The results have shown the
expression not only in the following cell types like interstitial, and glomerular parietal epithelial
cells but also in the proximal part of the short-looped and the upper and middle papillary parts
of the long-looped descending thin limb. Besides, some inner medullary collecting duct cells
and calyceal and papillary epithelial cells also have been shown.

In line with this, numerous pieces of evidence have supported the role of NO in the
pathogenesis and cellular changes in diabetic nephropathy (DN), which is facilitated by
an increase/decrease in renal NO production and/or its action [14,26]. Despite the above,
many studies have raised the question that which isoform of NOS is responsible for NO
generation and which type of cells expresses which form of NOS isoform in the DN [27,28].
It is obvious that as of now there is no effective treatment or preventive mechanisms exist
for DN to stop its advancement [29]. However, numerous biomedical data indicate that
some herbal extracts have beneficial attribution on certain processes with reduced renal
function in DM [29,30].

Many renal ailments including cancer need either immune modulation [31] or pro-
tection for disease management and care [32] under such circumstances, the host defense
system needs activation, which can offer alternates for the existing chemotherapeutics [33].
In this regard, few potential immunomodulatory agents [34,35] have been isolated from
several herbs [2,36] or various protective plant-derived natural products (NPs). NPs
are small molecules produced either by medicinal plants, microorganisms, or marine
sources [30,37,38]. They play a vital role in pharmaceutical drug development as they
exhibit a variety of biological properties and deliver different targets throughout the drug
discovery process [39]. As chemicals, NPs contain classes of compounds such as terpenoids,
amino acids, polyketides, peptides, lipids, proteins, carbohydrates, nucleic acid bases,
deoxyribonucleic acid, and ribonucleic acid [40]. Although all NPs have served to inspire
intellectual inquiry, one of the most interesting classes of molecules is the terpenes [41,42].

Terpenoids are groups of hydrocarbons that contain terpenes, which include oxygen-
containing groups [43,44]. They are usually found in plants and can form cyclic structures
such as sterols [8]. Triterpenes compounds were long considered biological inactive phy-
tocompounds until numerous recent investigations have shown their variety of potential
biological properties [45]. Normally, pentacyclic triterpenes’ dry weight accounts for less
than 0.1% of the plant [46]. However, the bark of white birch is one of the exceptions as
it contains 34% of triterpene pentacyclic betulin (BE) (Figure 1) [47]. Additional results
have further demonstrated that it is possible to obtain about 70 to 90% of active betulin
compound [48–50]. They are also present in various other natural sources, which include
animal products and microorganisms [51,52].

The ubiquitous presence of triterpenoids in the environment resulted in a variety of
medicinal properties [43]. BetA (3b-hydroxy-lup-20(29)-en-28-oic acid) is one of the penta-
cyclic lupine forms of triterpenoids (Figure 1) and botulin derivatives (betulin oxidation
product) [53]. It is widely found in the outer bark of the birch tree (Betula spp.) [54,55] but
also presents significant amounts of free BetA in the underground parts of the swampy
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plant Menyanthes trifoliata [56]. For decades, BetA has been employed in various traditional
practices [57]. Besides, it can be obtained from other plants source also like Sarracenia
flava (Sarraceniaceae) [58] trees and shrubs such as Inga punctata (Fabaceae), Diospyros spp.
(Ebenaceae) [59], Vauquelinia corymbosa (Rosaceae), Ziziphus spp. (Rhamnaceae) [60] and
Syzygium spp. [41,61].

Figure 1. Chemical structures of Betulinic Acid and Betulin.

Many studies have demonstrated that both BE and BetA from various sources dis-
played their potential through different biological activities such as anticancer [62], anti-
inflammatory [63], anti-HIV [64], and anti-bacteria [65]. Besides, it has shown further
actions like anti-malarial [66], anthelmintic [67], anti-platelet [68], cardioprotective [69], im-
munomodulation [8], and so on. It targets various parts of cells like mitochondria [70] and
enzyme aminopeptidase N [71], topoisomerase [72], acetyl-coA [73], DGAT [74], NF-kB [75],
cell cycle [76,77] and proteasome [78].

In line with this, previous investigations [70,79] have recognized the differential effects
or selective toxicity of BetA on cancer cells. These results have been identified as a potential
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cancer inhibitor in many in vitro studies using various human metastatic skin cancer cell
lines like MEL-1 to 4 [80] and animal models but this compound spared normal healthy
cells. This property is unique and different from the other conventional anticancer agents
such as vinblastine, taxol, vincristine, etoposide, and camptothecin as they exhibit very
toxic and cause damage to both cancer and normal cells [81]. To support further, no major
toxic effects of BetA have been witnessed in rodents [70]. Despite the above fact BetA is
still considered a weak anticancer agent because its requirements to control cell growth
at the in vitro level is µM concentrations, but higher concentrations (2.5 gm/kg/b.wt) are
required to inhibit cancer formation in immunodeficient nude mice l [82].

Despite its poor potency and no toxicity on normal cells, still BetA faces challenges in
its clinical usage [70] the reason may be that the existing data are not sufficient to support
its action on normal healthy cells. When compared to previous reports [70,80] that 10 µM
BetA can induce metabolic changes in normal cells without morphological changes [8,82].
The above concerns especially the use of BetA at the clinical level motivated the present
study to examine whether BetA could produce any major effect on healthy tissues and cells,
more specifically on the urinary organs of mice.

Therefore, the present study designed to determine whether minimal concentrations
(10 to 20 µM) of BetA could induce NO production or cause any changes in kidney and
urinary bladder cells. NADPH-d normally considered a marker for nitric oxide synthase
done by histochemical approach [83]. Thus, in this study, we have investigated the effect of
BetA on the NADPH-d or NOS expression pattern of kidneys and urinary bladders of mice
by using NADPH-d staining reaction.

2. Results

Based on our observation, in the normal standard and DMSO-treated vehicle con-
trol group, mild to moderately stained NADPH-d cellular structures (mean ± SD of
0.1479 ± 0.0408; p < 0.001) were observed both in the cortico-medullary parts of the kidney
(Figure 2a,d,g). While in the GTN group, the cortical radiate arteries as well as a renal
pyramid in the medulla region (mean ± SD of 0.2553 ± 0.0780; p < 0.001) showed only
moderate NADPH-d expression on day 4 after GTN treatment, that continued day 8th and
12th (Figure 2b,e,h) compared to DMSO control and BetA test group. A similar NADPH-d
staining pattern observed in the urinary bladder, however, there is mild or reduced staining
in the GTN group, but they showed no cellular changes in the kidney or urinary bladder.
This shows that GTN induces a time-dependent fashion of NADPH-d activity in the kidney.
Although NADPH-d distribution was like that of control groups at the beginning i.e., on
day 4, however, its distribution extends to the entire kidney (both cortex and medulla) for
the rest of the treatment periods (i.e., 8th and 12th day of treatment).

A similar but gradual steady increase of NADPH-d expression was evident in the
cortical radiate arteries and nephron in the kidney cortex as well as in the medullary
pyramids (mean ± SD of 0.3237 ± 0.1340; p < 0.001) of the BetA group (Figure 2c,f,i). The
NADPH-d activity increased along with the BetA treatment period, which means longer
the BetA exposure, the intensity of NADPH-d expression found to increase (Figure 2c,f,i).
It is interesting to note that on days 8 (Figure 2f) and 12 (Figure 2i) of BetA treated kidney
showed strong NADPH-d staining, however that occurred only in the peripheral cortical
radiate arteries (arrow) but not in the medullary arteries as they exhibit only mild staining.
It is noteworthy to mention that the cortical area of the kidney, where blood vasculatures
are highly oriented, so intense NADPH-d staining in this area (Figure 2i inset) likely to
support that NO has a prominent role in vascular physiology [84]. The graphical image
in Figure 2j shows the intensity (OD)/staining area (cm2) of the kidney tissue sections
obtained from 4, 8, and 12 days of treatment. In brief, increased NADPH-d activity implies
that the effect of BetA on the kidney depends on its exposure time.
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Figure 2. Representative photomicrographs demonstrating Kidney sections of the (a–g) VC (dimethyl
sulfoxide), (b–h) positive (GTN), and (c–i) BetA-treated groups on days 4, 8, and 12 after treatment.
The inset is representative of the area in the figure outlined in white. Black arrows identify the
NADPH-d-stained medullary rays and black arrow indicates blood vessels, the red arrowhead points
to the perivascular nerve fibers and the blue arrowhead demonstrates the NADPH-d positive radiate
arteries in the cortex (denoted by the letter C) and medulla (denoted by the letter M). The letter
‘N’ indicates the nephron. Scale bar, 100 µm. (j) The intensity (OD) of the NADPH-d staining was
quantified using Olympus Soft Imaging cell Sens software version 1.6. Data expressed as means ±
standard deviation of mice (n = 6 per group) p < 0.001 vs. the VC group, p < 0.001 vs. the GTN group.
p < 0.01 vs. the VC group. GTN, Goniothalamin; BetA, Betulinic acid; NADPH-d, nicotinamide
adenine dinucleotide phosphate diaphorase; VC, vehicle control; OD, optical density.

3. Urinary Bladder

Interestingly, a similar NADPH-d expression pattern was observed in the urinary
bladder. Both negative and DMSO-treated vehicle control group animals sacrificed on
days 4, 8, and 12 have shown NADPH-d staining in various cellular structures. Struc-
tures include neuron-like bodies and blood vessels mostly in the outer larger areas of
the bladder; however, the intensity of the staining found extremely low (mean ± SD of
0.0827 ± 0.0035; p < 0.001) (Figure 3a,d,g). The positive-control (GTN) group on day 4
showed less to mild staining (Figure 3b) but from day 8th and 12th after treatment, NADPH-
d activity continuously increased (Figure 3e,h). This shows that GTN induces NADPH-d
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in the urinary bladder in a time-dependent fashion like that of the kidney (mean ± SD of
0.1164 ± 0.1120; p < 0.001).

Figure 3. Representative photomicrographs demonstrating urinary bladder sections of the (a–g) VC
(dimethyl sulfoxide), (b–h) positive (GTN), and (c–i) BetA-treated groups on days 4, 8, and 12 after
treatment. Inset (IS) is representative of the area in the figure outlined in white. Black arrows identify
the NADPH-d-stained neuron-like cell bodies and black arrowhead indicate NADPH-d positive
blood vessels lining. ‘B’ indicates the bladder’s outer region. ‘U’ indicates the bladder’s inner region.
Scale bar, 100 µm. (j) The intensity (OD) of the NADPH-d staining was quantified using Olympus
Soft Imaging cell Sens software version 1.6. Data expressed as means ± standard deviation of mice
(n = 6 per group) p < 0.001 vs. the VC group, p < 0.001 vs. the GTN group, p < 0.01 vs. the VC group.
GTN, Goniothalamin; BetA, Betulinic acid; NADPH-d, nicotinamide adenine dinucleotide phosphate
diaphorase; VC, vehicle control; OD, optical density.

A steady increase of NADPH-d expression and distribution witnessed in every area
of the urinary bladder with the higher intensity (p < 0.001) in the test group because its
expression increased together with the BetA exposure (Figure 3c,f,i). Like the kidney, the
bladder also displayed mild to modest NADPH-d staining 4 days following the treatment
(Figure 3c) throughout the bladder but from days 8 (Figure 3f) and 12 (Figure 3i) onwards.
BetA-treated bladder showed moderate to stronger NADPH-d staining (mean ± SD of
0.2488 ± 0.1220; p < 0.001). Neither did we find any substantial structural changes in the
positive nor in the test agent-treated urinary bladder. The graphical image in (Figure 3j)
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shows the intensity (OD)/staining area (cm2) of the kidney tissue sections obtained from 4,
8, and 12 days of treatment. In brief, increased NADPH-d activity implies that the effect of
BetA on the kidney depends on its exposure time.

4. Discussion

The current study examined the distribution of NADPH-d expression in the GTN and
BetA-treated mice kidney and urinary bladder using NADPH-d histochemistry. The results
showed varied expression and diverse distribution of NADPH-d in these organs for the
entire study period. There are no phenotypical/structural changes have observed both in
the kidney as well as in the urinary bladder, however, NADPH-d expression was abundant
in the kidney, but less in the urinary bladder. The cortical region of the kidney expressed
stronger NADPH-d activity than the medulla region. Although the expression of NADPH-
d has seen only after 4 days of BetA treatment, however, significant activity witnessed after
8 and 12 days, suggesting NO production occurred throughout the complete study period.
A similar but constant increase of NADPH-d activity also found in the urinary bladder,
starting from day 4 may require an interactive outcome of NO in the vascular and other
regions of the kidney suggesting it may play a protective role for the nephron [9,85,86].
Although the role of NO in the kidney and urinary bladder not justified, the results of this
study corroborated that there is an association between the nephroprotective properties
attributed to BetA. The prime effect of BetA-mediated NO engages in the regulation of renal
organs [87–89] and our results support the statement in the occurrence of NO demonstrated
in the renal system.

Moreover, the present study’s histochemical approach revealed the strongest expres-
sion for NADPH-d in the renal capsules (comprised of macula densa cells), whereas
vascular endothelial showed weaker expression. Our results suggest that renal capsules
may produce a substantial quantity of NO. It is probable that in NO-produced target cells, it
stimulates soluble guanylate cyclase to generate cGMP from GTP [90,91] and it established
that NO/cGMP acts as a vaso-relaxant in the afferent branch of the artery [92]. Previous
investigations have also revealed the key outcome of NOS in the efferent branch artery [93].
The obvious discrepancy in inhibition [94] and stimulation [95,96] raises concern about
the impact of NO on renin production from granular cells. Since no or limited evidence is
available on the potential influence of cGMP on the extra-glomerular mesangial cells, the
present results hypothesize and support that NO produced from renal capsules diffuses
across the avascular space of the extraglomerular mesangium and may impact the vascular
tone of the afferent and/or the efferent arteriole. In addition, NO may enhance renin
secretions from granular cells [96].

Since nitric oxide is a gaseous messenger molecule, which has a role in various vital
functions including the communication between cells, involved in signaling for vasodila-
tion, neurotransmission, and platelet aggregation inhibition. Physiologically, a constitutive,
calcium-dependent isoform of NOS enzymes such as neuronal and endothelial NOS pro-
duces a meager quantity of NO for short period, whereas, the inducible isoforms of NOS,
which is calcium-independent and require de novo protein synthesis, and produce more
amount of NO [97–99].

In addition, NO can be found both in the peripheral as well as in the CNS [100] and
in other systems like the endocrine [101,102], immune [103], and renal systems [104,105].
NO exhibits numerous physiological roles in the kidney, which include the regulation of
renal and glomerular hemodynamics [106] and natriuretic pressure [107,108], and regula-
tion of medullary perfusion [109]. Furthermore, blunting of tubule-glomerular feedback
(TGF) [110], inhibition of tubular sodium reabsorption [111], and involvement in renal
sympathetic neural activity modulation also involved [108]. Besides the above, a significant
deficiency in NO production in response to increased dietary salt intake has been implicated
in the pathogenesis of hypertension [112]. Additionally, NO also plays a significant role in
tissue injury as a mediator and portrayed NO as a main r causative factor for end-stage
renal failure inflammation [113].
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Previous studies have also established that NO deficiency is responsible for the for-
mation and development of chronic kidney disease (CKD) and cardiovascular diseases
(CVDs) [114]. Since NO acts locally, the exact NO deficiency location dictates the nephron
pathology of renal disease, mediated by multiple molecular mechanisms [115,116]. In
agreement with this, previous results have demonstrated that the inhibition of induced
chronic NOS in vivo experiments caused various complications such as systemic, glomeru-
lar hypertension and ischemia, glomerulosclerosis, tubule-interstitial injury, and protein-
uria [116,117]. To support the key role of NO deficiency in renal disease formation, various
experimental models have also demonstrated that NO depletion by administration of
nitrite (NO2) or nitrate (NO3) delays kidney disease development and decreases blood
pressure [89,118]. In addition, routine consumption of NO3 from vegetables and fruits may
contribute to cardiovascular protection [119].

It is more evident that several chronic kidney diseases (CKDs) require an improved
as well as an effective therapeutic option for their management of them [120]. Pentacyclic
triterpene is a triterpenoid found in various medicinal plants. Both BE and BetA are birch
tree-derived secondary metabolites found in the leaves, stem bark, and fruit peels [121,122].
These NPs are the main important components employed in the oriental as well as in
the traditional medicine systems throughout the world [46,123]. These NPs possess and
have shown a variety of beneficial attributions against various disease conditions like
anticancer [62], anti-inflammatory [63], and anti-microbial including viruses and bacte-
ria [64,65]. Besides, it has shown further actions like anti-malarial [66], anthelmintic [67],
anti-platelet [68], cardio-protective [69], immunomodulation [8], and so on. Besides, its
additional targets are mitochondria [70] and the enzyme aminopeptidase N [71], topoi-
somerase [72], acetyl-CoA [73], DGAT [74], NF-kB [75], cell cycle [76] (Chen et al. 2008;
Rzeski et al. 2006) and proteasome [78]. The above targets are currently under drug devel-
opment for pipeline anti-cancer drugs [124]. However, its efficacy against various renal
diseases is unknown or not fully explored [125].

On the other hand, previous studies have demonstrated the selective toxicity of BetA
on cancer cells [70,79]. Since BetA considered as potential inhibitor for its anti-cancer
action on various metastatic skin cancer cell lines (e.g., MEL-1-4) [80] as well as on animal
models [126], this compound specifically spares normal healthy cells [70]. This property is
unique and different from the other conventional anticancer agents like vinblastine, taxol,
vincristine, etoposide, and camptothecin as they exhibit very toxic and cause damage to
both cancer and normal cells [124]. To support further, no systemic toxic actions were
also observed in rodents [70] using BetA. Despite the above fact BetA is still considered a
weak anti-cancer agent as it requires µM concentrations for the inhibition of cell growth,
whereas higher concentrations (250 mg/kg b.wt) are required to control skin cancer in an
immunodeficient mouse model [82].

Despite its no of toxicity on normal cells, BetA faces hindrances in its clinical applica-
tions [70]. The reason may be due to the non-availability of much in vivo data to support
its toxic effect on healthy cells. On contrary, previous reports by [82] observed changes in
normal cellular metabolism together with morphological changes. A plausible explanation
provided by [82] aimed that the reason for the observed morphological changes by BetA in
normal cells may be due to its effect on decreasing oxidative capacity, eliciting increased
expression of mitochondrial uncoupling proteins 1 and 2 and triggering liver kinase B1-
dependent AMPK activation in mouse embryonic fibroblasts. This enzyme activation
further led to an increase in glucose uptake and the glycolysis process [127]. Unfortu-
nately, no in vivo or animal data are available to support the above claim. However, the
investigation by [8] described that a minimal concentration of BetA can induce NADPH-d
expression, without causing any morphological changes. These contrary reports raised
concern about the pharmaceutical significance of BetA and encouraged us to examine
whether it could produce any impact on urinary structures like the kidney and urinary
bladder of mice, especially on the NADPH-d expression.
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Recently, NO has been identified as the main mediator of renal hemodynamics and
homeostasis [23]. NO deficiency has also been demonstrated in several renal injury animal
models, including during cardiopulmonary bypass (CPB) surgery. Evidence from various
experimental data proposes that endogenous NO production abnormality linked with
renal injury, due to an imbalance in the production of inducible vs endothelial NOS [24].
Amino acid L-arginine-NO signaling is associated with many physiological roles in the
kidney and the disruption in this signaling lead to renal injury [20]. Various investiga-
tions have revealed that the macula densa of the kidney produces a significant amount of
nNOS/NOS1 [95,110,128,129], where NO has been demonstrated as a key player in the
TGF response [110]. Besides the above, [130] have reported that the expression of NOS1 in
various structures like non-adrenergic, non-cholinergic neurons within the renal arteries
of the hilus, arcuate and interlobular arteries, and rarely in the pre-glomerular afferent
branches of the artery. To support this, polymerase chain reaction (PCR) on micro-dissected
nephron segments has also shown an elevated level of NOS1 RNA in various regions like in-
ner and outer medullary and cortical collecting ducts (IMCD) [131]. Besides the above, NO
produced by eNOS/NOS3 has also shown protective nature in renal vasculature. Increased
angiotensin II activity is one of the causes of ROS through NADPH-dependent superoxide
generation in the damaged kidney [132,133]. In addition, many other oxidases like Xan-
thine oxidase, cyclooxygenases, and uncoupled NOS are also involved in the generation of
oxidative species, however, NADPH oxidase is the most crucial renal oxidase [5].

It is well known that factors like bradykinin (BK), acetylcholine (ACh), and various
other endothelium-dependent ones are promoting water and salt loss through the produc-
tion of cGMP and the formation of NO [134,135]. Previous studies have demonstrated
that these factors influence renal blood vessels by resulting in the alteration in glomerular
hemodynamics. In the kidney, like choroid plexus and ciliary processes, cGMP alters fluid
secretion and stimulates protein phosphorylation in the secretory epithelium [136,137]. In
line with this, the present study results also support the possible role of NO and cGMP.

Previous studies have demonstrated that BetA upregulates eNOS but reduces NADPH
oxidase induction in human endothelial cells through PKC-independent mechanisms [121,122].
Triterpenoids have the potential to reverse eNOS uncoupling and augment eNOS enzyme
activity by phosphorylation of eNOS at serine 1177 and dephosphorylation of eNOS at threonine
495 [138]. However, the effect of BetA on eNOS expression remains unclear [139] so as in the
renal organs, hence it needs further investigation.

In line with this, emerging evidence indicates that BetA has shown renal-protective
properties [46,70]. Renal fibrosis considered as an end-stage renal failure that progresses
from CKD. It is because of the abnormal increase of extracellular matrix (ECM), as a result, it
leads to kidney tissue loss and function [140]. However, in the experimental model of CKD,
BetA treatment reversed the loss of functions [125] and up-regulate pro-fibrotic proteins
like TGF-β, CTGF, hydroxyl proline, type I collagen, and fibronectin. Besides, tubule
dilation, degeneration of glomerulus, and vacuolation with the deposition of collagen fibers
also attenuated [69,125]. If there is an impact in the renal tissues due to BetA exposure, it
predicted that NO might play regulatory roles in these tissues. In addition to the above,
BetA exhibits protection against myocardial ischemia-reperfusion injury mouse model by
increasing blood flow but reducing oxidative and nitrosative stress [141].

It is well known that NO function as a vasodilator following its release [142,143]
from endothelial cells even from the BetA-treated ones [138,144]. The innervation of NO-
positive perivascular nerves has been established in numerous vascular tissues [145,146].
The distribution of such neural structures reported also inside the thymus [8,147,148].
Besides, NADPH-d expression also demonstrated in several regions of the mammalian
brain [149–151]. The present study results agree with the earlier investigation that NADPH-
d-positive cells exist in the mammalian kidney including rats and mice [25,136]. Although
the present study witnessed only NADPH-d, positive nerve fibers not neuronal body-like
structures in the perivascular area of the kidney. It is interesting to note that the reasonable
distribution of NO-positive nerves traveling alongside the blood vessels could reflect the
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role of neuronal NO may be controlling blood flow through both the kidney and urinary
bladder. Both NO-positive nerves and blood vessel endothelium may produce NO to
influence bloodstream has been reported in the neural system [150] and endocrine organs
like the pancreas [152], thyroid [11–13], and a series of other organs. These findings allow if
NO can participate in neurotransmission in the kidney and urinary bladder. It is interesting
to note that apart from blood vessels, NO may also involve in the regulation of regulatory
activity of cortical and medullary cells of the kidney by its production in these cells [103].
Thus, BetA may be a promising pharmaceutical or biological response modifier and may
reinforce the renal protection of a host. Although the present study employed a simple but
most reliable NADPH-diaphorase histochemical method to demonstrate the presence of
NO in the renal system, however, authors admit that involving combined NOS indirect
immunofluorescence or immunohistochemistry, immunoelectron microscopy techniques
along with more advanced techniques like next-generation sequencing or by microarray
analysis at the mRNA level could have been adopted to confirm these interesting results
obtained in the current study as they may reproduced NO presence and provided more
detailed information and new insights to identify more pharmacological targets, which
may benefit for future investigations.

5. Materials and Methods
5.1. Experimental Animals and Chemical Requirements

All animal model investigations conducted in this study were under the Universiti
Kebangsaan Malaysia (UKM) Animal Ethics Committee (UKMAEC; FF/2020/ALI/20-
MAY/685-JUNE-2020) guidelines. Female BALB/c mice (six weeks old) subjected to the
study monitored under appropriate conditions. Betulinic acid (Sigma-Aldrich, St. Louis,
MO, USA) used as a test (BetA 10 µM) drug, and Goniothalamin (GTN 50 µM) used as a
positive control drug obtained from Merck—Life Science, Malaysia, whereas DMSO (Merck,
Darmstadt, Germany) (0.05% DMSO) used as vehicle control.

5.2. Animal Treatment and Sample Collection

Animals used in this study broadly divided into four separate groups and each
contains 48 animals: (1) test, (2) positive, (3) negative and (4) a normal control groups.
The above-categorized mice were further subdivided equally into three subgroups with
each having 6 animals following the treatment regimen (4 days, 8 days, and 12 days). The
present study followed the protocol described by [12].

5.3. NADPH-Diaphorase Histochemistry and Tissue Morphology Analysis

Cryo-protected tissue sections collected from each group thawed at normal RT for
30 min, washed twice in PBS, and subjected to NADPH-d staining. β-NADPH (Sigma-
Aldrich (M) Sdn Bhd, Subang Jaya, Malaysia) used as a substrate with the addition of
nitro blue tetrazolium (NBT) (FISHER SCIENTIFIC (M) SDN BHD), a salt that produces an
insoluble blue formazan precipitate visible under the light microscope [8,12].

5.4. Statistical Analysis

One-way ANOVA followed by Bonferroni multiple comparison tests (GraphPad
PRISM v. 4.0, San Diego, CA, USA) used to perform intensity data analysis. All numerical
data expressed as mean ± SEM and the differences considered statistically significant at
p < 0.05.

6. Conclusions

In summary, our findings indicate that NADPH-d activity correlates with NOS activity.
Although the present study employed a simple but most reliable NADPH-diaphorase
histochemistry to demonstrate the presence of NO, still it requires NOS indirect immunoflu-
orescence/immunohistochemistry or immunoelectron microscopy and more advanced
techniques like next-generation sequencing or by microarray analysis at the mRNA level
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to confirm the NO presence. These additional techniques may provide more detailed
information and identified new pharmacological targets. However, the present results
reveal that BetA treatment induces NADPH-d expression in both the kidney and urinary
bladder without producing any substantial morphological changes in these renal struc-
tures. The outcome of the present study has direct pharmaceutical importance, which
may contribute to the development of new novel drugs to improve the quality of human
health and life. Based on the available literature and our understanding of BetA in the
renal system, the present results are particularly important as it describes BetA-induced
NADPH-d-mediated nitric oxide signaling in the kidney and urinary bladder, which could
be the potential molecular mechanism underlying BetA-elicited renal protection in the
treated animals.
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BE Betulin
NADPH-d NADPH-diaphorase
µM micro-Molar
NO Nitric Oxide
NOS Nitric Oxide Synthase
eNOS endothelial nitric oxide synthase
iNOS Inducible nitric oxide synthase
OH Hydroxyl radical
O2

− Super Oxide
H2O2 Hydrogen Peroxide
O3 Ozone
HOCI Hypochlorous acid
RO2 Alkoxyl radical 2
RO Alkoxyl radical
CR Chronic Renal
CRF Chronic Renal Failure
SOD Superoxide Dismutase
NOS1 Neuronal nitric oxide synthase
NOS3 Endothelial nitric oxide synthase
NOS2 Inducible nitric oxide synthase
DN Diabetic nephropathy
NPs Natural products
HIV Human Immunodeficiency Virus
DGAT Diglyceride acyltransferase
NF-kB Nuclear factor kappa
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MEL-1 Human metastatic Skin Cancer cell line 1
UKM Universiti Kebangsaan Malaysia
UKMAEC Universiti Kebangsaan Malaysia (UKM) Animal Ethics Committee
GTN Goniothalamin
DMSO Dimethyl sulfoxide
ANOVA Analysis of variance
cGMP Cyclic guanosine monophosphate
cGTP Cyclic guanosine diphosphate
CNS Central Nervous System
TGF Tubule-glomerular feedback
CKD Chronic kidney disease
NO2 Nitrite
NO3 Nitrate
b. wt. body weight
AMPK 5’ AMP-activated protein kinas
CPB Cardiopulmonary bypass
PCR Polymerase chain reaction
IMCD Inner medullary cortical collecting ducts
ROS Reactive Oxygen Species
BK Bradykinin
Ach Acetylcholine
PKC Protein kinase C
ECM Extracellular matrix
TGF Transforming growth factor
CTGF Connective tissue growth factor
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