
Citation: Safe, S.; Han, H.;

Jayaraman, A.; Davidson, L.A.;

Allred, C.D.; Ivanov, I.; Yang, Y.; Cai,

J.J.; Chapkin, R.S. Aryl Hydrocarbon

Receptor (AhR) Signaling in Colonic

Cells and Tumors. Receptors 2023, 2,

93–99. https://doi.org/10.3390/

receptors2010005

Academic Editor: Thomas Burris

Received: 14 December 2022

Revised: 5 January 2023

Accepted: 1 February 2023

Published: 8 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Brief Report

Aryl Hydrocarbon Receptor (AhR) Signaling in Colonic Cells
and Tumors
Stephen Safe 1,* , Huajun Han 2, Arul Jayaraman 3, Laurie A. Davidson 2, Clinton D. Allred 4, Ivan Ivanov 1,
Yongjian Yang 2,5, James J. Cai 5 and Robert S. Chapkin 2

1 Department of Veterinary Physiology and Pharmacology, Texas A&M University,
College Station, TX 77843, USA

2 Program in Integrative Nutrition and Complex Diseases, Department of Nutrition, Texas A&M University,
College Station, TX 77843, USA

3 Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
4 Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
5 Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
* Correspondence: ssafe@cvm.tamu.edu

Abstract: The aryl hydrocarbon receptor (AhR) is overexpressed in many tumor types and exhibits
tumor-specific tumor promoter and tumor suppressor-like activity. In colon cancer, most but not
all studies suggest that the AhR exhibits tumor suppressor activity which is enhanced by AhR
ligands acting as agonists. Our studies investigated the role of the AhR in colon tumorigenesis
using wild-type and AhR-knockout mice, the inflammation model of colon tumorigenesis using
mice treated with azoxymethane (AOM)/dextran sodium sulfate (DSS) and APCS580/+; KrasG12D/+

mice all of which form intestinal tumors. The effects of tissue-specific AhR loss in the intestine of
the tumor-forming mice on colonic stem cells, organoid-initiating capacity, colon tumor formation
and mechanisms of AhR-mediated effects were investigated. Loss of AhR enhanced stem cell and
tumor growth and in the AOM/DSS model AhR-dependent suppression of FOXM1 and downstream
genes was important for AhR-dependent anticancer activity. Furthermore, the effectiveness of
interleukin-22 (IL22) in colonic epithelial cells was also dependent on AhR expression. IL22 induced
phosphorylation of STAT3, inhibited colonic organoid growth, promoted colonic cell proliferation
in vivo and enhanced DNA repair in AOM/DSS-induced tumors. In this mouse model, the AhR
suppressed SOCS3 expression and enhanced IL22-mediated activation of STAT3, whereas the loss
of the AhR increased levels of SOCS3 which in turn inhibited IL22-induced STAT3 activation. In
the APCS580/+; KrasG12D/+ mouse model, the loss of the AhR enhanced Wnt signaling and colon
carcinogenesis. Results in both mouse models of colon carcinogenesis were complemented by single
cell transcriptomics on colonic intestinal crypts which also showed that AhR deletion promoted
expression of FOXM1-regulated genes in multiple colonic cell subtypes. These results support the
role of the AhR as a tumor suppressor-like gene in the colon.
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1. Introduction:

The aryl hydrocarbon receptor (AhR) is a basic helix-loop-helix protein that was
initially discovered as the intracellular receptor that bound the environmental toxicant
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin) with high affinity [1]. Subsequent stud-
ies showed that TCDD and structurally related chlorinated dibenzo-p-dioxins (PCDDs),
dibenzofurans (PCDFs) and biphenyls (PCBs) also bound the AhR and there was a corre-
lation between their receptor binding affinities and their toxic and biochemical potencies
in cellular and animal models [2]. TCDD and related halogenated aromatics induced a
common pattern of age, sex and species-dependent toxic responses including a wasting
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syndrome, chloracne, hepatic porphyria, thymic atrophy and teratogenicity [2]. The classi-
cal mechanism of action for dioxin-like compounds (DLCs) involves ligand binding to the
cytosolic AhR, nuclear translocation and formation of a heterodimer with the AhR nuclear
translocator (ARNT) protein and activation of gene expression through binding of the
heterodimer to cis-acting AhR response elements (AhREs) in target gene promoters [3,4].

A number of subsequent studies demonstrated that the AhR was not only a receptor
that mediated the toxic effects of a specific small set of structurally related toxicants but also
had multiple endogenous functions for maintaining cellular homeostasis and pathophysi-
ology [5,6]. It was also discovered that the AhR also bound and is activated by structurally
diverse ligands including health promoting phytochemicals, microbial metabolites, endoge-
nous biochemicals, pharmaceuticals and many other structurally diverse compounds [7–9].
Development of AhR knockout mice demonstrated that the AhR has multiple functions in
organs/tissues [10–14]. Differences in the effects of AhR ligands are due, in part, to their
activity as selective AhR modulators (SAhRMs) and the tissue persistence of the toxic AhR
ligands (Figure 1).
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Figure 1. AhR ligands as Selective AhR Modulators (SAhRMs). The toxicities associated with TCDD,
and related compounds is associated with their persistence and as yet other unknown factors [7–9]
whereas SAhRMs such as diindolylmethane (DIM) do not induce the toxic responses.

The AhR has emerged as a potential drug target for multiple diseases including cancer;
however, there are still some conflicting reports regarding the pro-oncogenic or tumor
suppressor-like activity of the receptor and its ligands and this is particularly true for
breast cancer [15,16]. Some reports show that the AhR exhibits pro-oncogenic activity in
colon cancer [17–19]; however, most studies on colon cancer indicate that the AhR is a
tumor suppressor and tumor growth is inhibited by AhR agonists [20–23]. This paper
will highlight the role of the AhR in colon cancer and the mechanisms associated with its
anticancer activities.

2. AhR and Its Role in Colon Cancer

The role of the AhR in colonic inflammation models of inflammatory bowel disease and
colon cancer have been previously investigated in cell culture and in in vivo models and
with some exceptions, the AhR and selected agonists have been associated with decreased
colonic inflammation and increased tumor suppression [20,21]. AhR−/− knockout mice
develop cecal tumors with high accumulation of beta-catenin in the tumors whereas this
response was not observed in heterozygous or wild type mice (20). Cecal carcinogenesis
was also observed in AhR−/− and AhR+/− and AhR+/+ mice crossed with the Apcmin/+

mouse with a decreasing order of susceptibility, respectively, and cecal tumorigenesis
was inhibited in AhR-expressing mice or after dietary treatment with AhR ligands indole-
3-carbinol and diindolylmethane [0.1 and 0.01%, respectively, in the diet]. Cecal tumor
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formation is also enhanced by microbial bacteria and apoptosis-associated speck such as
proteins containing a caspase recruitment domain (ASC) [21]. The AhR and AhR agonists
also inhibited colon tumor formation in an inflammation model of colon cancer where mice
are treated with the carcinogen azoxymethane (AOM) in combination with inflammatory
stressor dextran sodium sulfate (DSS), and in a syngeneic mouse model using MC38 colon
cancer cells injected into the right flank [22]. In contrast, some studies reported alternative
results showing that the AhR exhibited pro-oncogenic activity primarily in colon cancer cell
models [17–19]. Our studies investigated the role of the AhR and AhR ligands in various
models of colon carcinogenesis and also focused on the mechanisms associated with the
tumor suppressor-like activity of this receptor.

3. Inflammation-Associated Colon Carcinogenesis-Role of AhR

The inflammation-induced colon cancer mouse model [23–25] was used for investi-
gating the mechanisms of AhR-mediated effects on colonic stem cells and colon tumor
formation [23,24]. This model used AOM (10 mg/kg) as the carcinogen which is then
promoted by three cycles of DSS followed by termination 6 weeks after the final dose of
DSS (Figure 2A). A comparison of AhR+/+ and AhR−/− mice in the combined carcinogen-
inflammation (AOM/DSS) model showed that significantly higher levels of overall tumor
incidence, the number of adenomas per mouse, tumor volume and the number of adenocar-
cinomas per mouse were observed in the AhR knockout mice [25]. These data complement
results of a previous study using this same model [23]. Since colon stem cells are precursors
of intestinal tumors [26], we used an inducible deletion of the AhR in an Leucine-rich-
containing G-protein coupled receptor 5 (LGR5) expressing model and examined the role
of the AhR in colonic stem and progenitor cells. Loss of the AhR had dramatic effects
on stem and progenitor cells and these included increased organoid forming efficiency
and diameter whereas some parameters were decreased by treatment with 25 nM TCDD
in wild type but not AhR−/− cells. The observation that the AhR and TCDD treatment
decrease colonic stem and progenitor cells correlated with the AhR-dependent decrease
of colonic tumor formation. RNAseq and subsequent pathway analysis of differentially
expressed genes in stem and progenitor cells from AhR+/+ and AhR−/− mice demonstrated
that the AhR repressed Forkhead box protein M1(FOXM1) expression which was further
decreased by TCDD. AhR-dependent repression of FOXM1 was observed in crypts adjacent
to colon tumors and tumors, stem and progenitor cells and chromatin immunoprecipitation
showed that TCDD induced formation of the AhR:ARNT complex in regions of the FOXM1
promoter containing a cis-acting AhRE binding site (Figure 2B). The discovery that the AhR
represses FOXM1 expression in the colon is consistent with a previous report showing that
FOXM1 signaling contributes to formation and growth of colonic tumors (Figure 2A) [27].

Interleukin 22 (IL22) plays an important functional role in the gastrointestinal tract
by maintaining gut barrier function, protecting against inflammation, enhancing wound
associated regeneration and responsiveness to DNA damage. IL22 is produced by different
types of immune cells including innate lymphoid cells (ILCs) and there is evidence that
the AhR plays a role in increased cellular levels of IL22 [28,29]. The AhR or its ligands
play a direct role in the induction of IL22 and amelioration of colonic inflammation and
intestinal stem cell distress [30–32]. Loss of the AhR in the AOM/DSS mouse model for
colon carcinogenesis was used to investigate potential interactions between the AhR and
IL22 and mechanisms of this interaction and effects on colon organoids (Figure 2B) [33].
IL22 enhanced STAT3 phosphorylation in organoids and increased colonic cell proliferation
in vivo. Loss of the AhR also decreased IL22-responsiveness and blunts the DNA damage
response after treatment with AOM. Examination of RNAseq data from our initial study [25]
and based on the known IL22 signaling pathways resulted in identification of Suppressor of
cytokine signaling 3 (SOCS3) as a critical differentially enhanced gene after AhR knockout
(Figure 2C) [33]. Subsequent studies showed that AhR deficiency in organoids resulted in
SOCS3 induction and treatment with TCDD decreased SOCS3 levels in AhR+/+ but not
AhR−/− mice and SOCS3 levels were also elevated in colonic crypts in the absence of AhR
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expression (33). The relationship between SOCS3 and the AhR was further investigated in
AhR deficient mice in the AOM/DSS tumor model where SOCS3 levels were increased in
tumors compared to uninvolved mucosa. Thus, AhR-SOCS3 interactions are inhibitory in
intestinal cells and tumors resulting in enhanced pSTAT3 and downstream genes including
the antimicrobial peptide Reg3β/γ peptide and γH2AX (33). Previous studies have also
demonstrated important AhR-SOCS3 interactions associated with plasmodium burghei
infection [34], hepatotoxicity [35] and carcinogen-induced lesions [36] and in all of these
three examples the AhR and AhR ligands induced SOCS3. Moreover, the mechanism of
AhR- dependent SOCS3 induction involved interaction of the AhR complex with cis-acting
AhREs in the SOCS3 promoter [28]. In contrast the AhR represses SOCS3 expression in
intestinal-derived cells and this results in IL22-induced pSTAT3 and downstream signaling
pathways. In the absence of the AhR, IL22 /STAT3 responsiveness is inhibited, and this
compromises the activity of IL22 in maintaining gut health (Figure 2C).
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Figure 2. Experimental protocol and mechanism of action of the AhR in colon cancer (A). Model
for the AOM/DSS experimental protocol [25] (B). The AhR inhibits growth of colon tumors by
suppressing expression of FOXM1 [25] (C). The AhR enhances IL22-mediated activation of STAT3
and downstream pathway by suppressing expression of SOCS3 [33]. The figures represent intestinal
cells and IL22 is generated by ILCs and other immune cells.

4. ApcS580/+; KrasG12D/+ Mice and Colon Cancer: Role of the AhR

The ApcS580/+; KrasG12D/+ mouse contains an inactivating mutation of the tumor
suppressor APC gene and an activating mutation of the Kras oncogene in the intestine
which enhances colon tumorigenesis, and our study investigated the role of the AhR
in this model by comparing results in the mutant mice with or without intestinal AhR
expression [37]. Functional effects of loss of AhR on this genetic mouse model were similar
to that observed in the inflammation induced mouse model of colon carcinogenesis as
described above. Loss of intestinal AhR increased organoid-forming efficiency of stem and
progenitor cells, enhanced organoid size and number, increased tumor size and the number
of tumors in the distal colon per mouse and cecum weight. Moreover, analysis of RNAseq
data showed that AhR loss enhanced Wnt signaling. In mice expressing the AhR, treatment
with TCDD, showed increased AhR-responsiveness and decreased FOXM1 in organoids.
Thus, in this genetic mouse model for colon tumorigenesis, AhR-mediated suppression of
the Wnt signaling pathways are major tumor suppressor-like responses.
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5. Single Cell Analysis of Colon Crypt Cells

Despite recent progress recognizing the importance of AhR-dependent signaling in
colon cancer initiation and progression, its role in regulating colonic crypt homeostasis has
been the subject of much speculation. Recently, it has been demonstrated that single cell
multi-omics enable the characterization of previously unapproachable clinical phenomena,
such as “deep landscapes” of cell heterogeneity that reflect the dynamics of the intestinal
crypt [38]. Thus, to further assess the effects of AhR on intestinal epithelial cell–cell com-
munication, we utilized single-cell RNA sequencing (scRNAseq) to assess transcriptomics
at the single cell level in wild-type and intestinal-specific AhR knockout mice [39]. Con-
sistent with bulk RNA findings [35], AhR deletion increased FOXM1 regulated genes in
crypt-associated epithelial cell types and subtypes of goblet cells and crypt secretory cells.
In addition, AhR deletion elevated single-cell entropy (a measure of differentiation potency
or cell stemness) and RNA velocity length (a measure of the rate of cell differentiation) in
noncycling and cycling Lgr5+ stem cells. In general, intercellular signaling crosstalk via
soluble and membrane-bound factors was perturbed in AhR null colonocytes. For example,
with respect to epidermal growth factor (EGF) pathway, increased EGF receptor (EGFR)
interactions involving enterocytes were detected following AhR deletion. Collectively,
these findings provide new evidence linking AhR with the modulation of putative stem cell
driver genes, colonic crypt potency lineage decisions and cell–cell communication in vivo.

6. Summary

The AhR regulates anti-inflammatory activities in the gut and both the receptor, and
its ligands protect against intestinal inflammation and development of colon cancer. Our
research has demonstrated that in an inflammation model of colon cancer where mice are
treated with the carcinogen AOM and DSS (AOM/DSS), tumor development is enhanced
with loss of the AhR and AhR ligands inhibit tumorigenesis in AhR+/+ mice. The AhR
inhibits growth of colonic stem cells, and this is also consistent with the tumor suppressor
like activity of this receptor. The mechanism of AhR-mediated anti-tumorigenic activity
in the AOM/DSS model involves suppression of the growth-promoting gene FOXM1.
Additionally, in this same model which incorporates IL22 as an anti-inflammatory agent
generated from group three innate lymphoid cells (ILC3s), the AhR suppressed SOCS3
expression and enhanced IL22-dependent activation of pSTAT3 and downstream genes
whereas in AhR deleted mice, SOCS3 expression is enhanced and inhibits pSTAT3. We
also observed that in APCS580/+; KrasGD12/+ mutant mice that loss of AhR activates colon
stem cells and colon cancer and Wnt signaling. Single cell sequencing of intestinal crypts
from AhR wild type and intestinal specific AhR knockout mice demonstrated how the
AhR shaped differentiation potency in the mouse colon. Deletion of the AhR enhanced
expression of FOXM1- and FOXM1-regulated genes in crypt-associated canonical epithelial
cells, deep crypt-secretory cells and subtypes of goblet cells. The overall results clearly
confirm the tumor suppressor-like activity of the AhR in the colon and demonstrate the
possible clinical applications of AhR agonists for treating this disease.
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