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Abstract: Numerous nuclear receptors including farnesoid X receptor, liver X receptor, peroxisome
proliferator-activated receptors, pregnane X receptor, hepatic nuclear factors have been extensively
studied within the context of non-alcoholic fatty liver disease (NAFLD). Following the first description
of the Aryl hydrocarbon Receptor (AhR) in the 1970s and decades of research which unveiled its role
in toxicity and pathophysiological processes, the functional significance of AhR in NAFLD has not
been completely decoded. Recently, multiple research groups have utilized a plethora of in vitro and
in vivo models that mimic NAFLD pathology to investigate the functional significance of AhR in fatty
liver disease. This review provides a comprehensive account of studies describing both the beneficial
and possible detrimental role of AhR in NAFLD. A plausible reconciliation for the paradox indicating
AhR as a ‘double-edged sword’ in NAFLD is discussed. Finally, understanding AhR ligands and their
signaling in NAFLD will facilitate us to probe AhR as a potential drug target to design innovative
therapeutics against NAFLD in the near future.

Keywords: AhR; aryl hydrocarbon receptor; CD36; cluster of differentiation 36; Cyp1a1; cytochrome
p450 1a1; NAFLD; non-alcoholic fatty liver disease; NASH; non-alcoholic steatohepatitis; XRE;
xenobiotic response element; TCDD; 2,3,7,8-tetrachlorodibenzo-p-dioxin

1. Introduction

The Aryl hydrocarbon Receptor (AhR) is a ubiquitously expressed, ligand activated
transcription factor known to play a diverse role in physiological and plethora of toxico-
pathological conditions. This includes cell proliferation and death [1,2], developmental
biology [3], immunology [4], nuclear hormone signaling [5], dioxin toxicity [6], carcino-
genesis [7], cardiotoxicity [8] and hepatotoxicity [9]. Recently, a significant number of
studies investigating the role of AhR in metabolic diseases, including non-alcoholic fatty
liver disease (NAFLD) have been conducted. NAFLD affects more than 25% of the US
and global population, and is associated with significant morbidity and mortality due to
complications of liver cirrhosis, hepatic decompensation and hepatocellular carcinoma [10].
NAFLD, a chronic liver disease, is characterized by excessive hepatic fat accumulation and
insulin resistance without uptake of alcohol [11,12]. Despite multiple previous reviews
interrogating the role of nuclear receptors in NAFLD, a comprehensive report illustrating
involvement and effect of AhR signaling in NAFLD pathophysiology is absent [13,14].
Moreover, the role of AhR in fatty liver disease has been controversial due to both beneficial
and adverse effects on liver pathology [15,16]. Therefore, the focus of this review is to
depict our current understanding of AhR signaling in NAFLD.

2. Aryl Hydrocarbon Receptor

Initial work in AhR biology began in 1976, when Alan Poland and colleagues identified
induction of an Aryl hydrocarbon hydroxylase enzyme activity (now known as cytochrome
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P450 enzyme 1a1, Cyp1a1) by polycyclic and halogenated aromatic hydrocarbons (PAHs
and HAHs) [17–21]. It was also hypothesized that the Cyp1a1 induction was mediated
by an inducible proteinic receptor [21–23]. This receptor identified and later named as
AhR was successfully cloned in both mice and humans in early 1990s [23–29]. Historical
studies on the AhR focused their efforts towards understanding the molecular basis for
the adaptive and toxic responses to variety of chemical pollutants including prototypical
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and benzo[a]pyrene, which manifests as a
broad spectrum of biological processes including immune-, cardio- and hepatotoxicity,
wasting syndrome, liver and soft tissue tumor, and endocrine disorders [2,5,6,30–39]. For
the detailed historical perspective regarding discovery of AhR and early toxicological
studies, we refer readers to the reviews by Nebert DW [40] and Jackson DP, Joshi AD and
Elferink CJ [34].

Multiple studies have portrayed AhR’s canonical signaling pathway [5,31]. In the
absence of a ligand, AhR resides in the cytoplasm in association with chaperonins—p23,
AhR interacting protein, and heat shock protein 90 [33,34,36]. Upon binding with an
archetypical agonist such as TCDD, AhR translocate to nucleus, dissociates from the
chaperonins, and heterodimerizes with Aryl hydrocarbon Receptor nuclear translocator
(Arnt) [41]. The agonist-bound AhR-Arnt dimerized complex interacts with the promoter
region of AhR responsive genes. Classic AhR targets encompass genes involved in phase I
metabolism, including Cyp1a1 and phase II enzymes (quinone oxidoreductase, aldehyde
dehydrogenase, glutathione-s-transferase, etc.) [36,42,43].

AhR belongs to the class I basic helix-loop-helix Per-Arnt-Sim (bHLH/PAS) family
of transcription factors and contains a basic, helix-loop-helix, PAS A and PAS B domains
critical for molecular functions [5,31,44–46]. The basic region is essential for DNA binding,
whereas the HLH and PAS A domains are vital for protein–protein interactions. Confor-
mational changes in the PAS A domain facilitate nuclear translocation of AhR. Various
biochemical and biophysical studies have confirmed that the PAS B is the de facto ligand-
binding domain [34,44,46]. Although structural determination of AhR has made significant
progress including availability of a partial crystal structures containing bHLH and PAS A
domains of AhR-Arnt heterodimer in complex with XRE, Drosophila AhR PAS B domain,
and recently published Cryo-EM structure of the indirubin bound AhR-Hsp90-XAP2 com-
plex in cytoplasm – a complete three-dimensional crystal structure of AhR has not yet been
solved [47–49].

Apart from exogenous ligands of anthropic origin including members of halogenated
and polycyclic aromatic hydrocarbons including TCDD and Benzo[a]pyrene, exogenous
AhR ligands of natural origins from plants and vegetables such as flavonoids, resver-
atrol, luteolin, genistein have also been recognized [50]. Moreover, endogenous AhR
agonists generated from the host metabolism (kynurenine, cinnabarinic acid, tryptamine,
6-formylindolo(3,2-b)carbazole, bilirubin) and detected in their commensal microflora
(indole-3-carbinole, indole-3-acetic acid, indole[3,2-b]carbazole 7-ketocholesterol) have
been identified and extensively studied to understand pathophysiological role of AhR
signaling in various metabolic disorders [50–52]. This includes how the AhR acts as a
sensor for endogenous tryptophan metabolites generated from the microbiome [51]. For an
encyclopedic review of the structurally and functionally diverse AhR ligands, we refer the
readers to prior reviews by Denison and Nagy [31] as well as by Nguyen and Bradfield [50].

3. Generation of Pioneering AhR Knockout Models

Upon cloning and characterization of the mouse AhR sequence, AhR knockout mouse
lines (referred as: AhR KO, AhR null, AhR-/-) were independently constructed by various
research groups [53–55]. As expected, AhR KO mice showed resistance to TCDD and
Benzo[a]pyrene toxicity [55,56]. Interestingly, AhR null mice generated by the deletion
of exon 1 exhibited biliary inflammation and fibrosis around portal triad when fed with
a normal diet [53]. However, deletion of exon 2 resulted in the milder liver pathology
exhibiting cholangitis and mild fibrosis around ducts [54,57]. Although the molecular basis
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for the phenotypical differences observed between the AhR null strains are not clearly
understood, the differences are attributed to the genetic background and/or the gene
targeting strategies affecting other genes [57]. Nevertheless, this was the first in vivo
observation that the deficiency of AhR results in hepatic fibrosis and a host of other patho-
logical conditions including failure of developmental closure of the ductus venosis [58],
cardiac hypertrophy and fibrosis [59–62], impaired fertility, stunted postnatal growth,
multi-organ dysregulation of organogenesis during in utero development, higher risk of
embryonic death [63–66], altered mammary gland development [67,68], decreased barrier
function [69], immune dysfunction [70–72], oculomotor deficiencies and neuronal function
disorders [73,74]. Overall, results suggested a critical role of AhR in developmental as well
as pathophysiological processes.

4. AhR and Liver Fibrosis Models

Apart from hepatocytes, a diversity of cell type plays a significant role in hepatic
diseases, including infiltrating innate and adaptive immune cells, endothelial cells, stellate
cells, and Kupffer cells. In human liver, the mRNA expression of AhR target genes CYP1A1
and CYP1A2 is decreased in patients with hepatic fibrosis [75]. In a recent study, Yan et al.
observed that AhR was expressed at a higher level in quiescent hepatic stellate cells than in
the activated stellate cells [76]. Moreover, activation of AhR with an endogenous agonist—
2-(1′H-indole-3′-carbonyl) thiazole-4-carboxylic acid methyl ester (ITE) was able to provide
protection against CCl4-induced fibrosis [76]. These studies supported the observations
that the downregulation of AhR signaling promotes fibrosis, whereas activation of AhR
by endogenous agonist confer protection. On the contrary, Hoshi et al. showed that CCl4
treatment leads to elevation of endogenous AhR agonist kynurenine, which activates AhR
signaling and promotes fibrosis [77]. Moreover, TCDD treatment for 2 weeks elevated the
hepatic expression of fibrotic markers and a 6-week TCDD regimen induced liver fibrosis in
mice in an AhR-dependent manner [78]. In another study, Il22ra1 knockout mice exhibited
reduced fibrosis in response to thioacetamide and CCl4. Blocking Il22 or Il17 production
using the AhR antagonist, CH223191 resulted in reduced fibrosis [79]. Therefore, a role of
AhR signaling in hepatic fibrogenesis is critical but complex, and additional studies are
required to completely uncover AhR function in liver fibrosis.

5. AhR Signaling Promotes Hepatic Steatosis and NAFLD Pathology

To study the effect of AhR activation in vivo, a tetracycline-inducible constitutively
active AhR (CA-AhR) mouse was constructed in the Xie laboratory [15]. Activation of
AhR showed decreased body mass and resulted in the induction of spontaneous steato-
sis characterized by an accumulation of liver triglycerides but not cholesterol. Further
microarray analysis indicated that the expression of fatty acid translocase protein, Cd36
(cluster of differentiation 36) was elevated in CA-AhR transgenic mice. CD36 is known to
facilitate transport of long-chain fatty acids and is regulated by pregnane X receptor, liver
X receptor and proliferator-activated receptor γ [80]. Using electrophoretic mobility shift
and luciferase activity assays, Lee et al. confirmed Cd36 as a novel transcriptional target of
AhR, and showed inhibition of hypertriglycedemia in response to TCDD treatment due to
attenuation of free fatty acid uptake in Cd36 knock-out mice [15]. Constitutive activation of
AhR (CA-AhR) inhibited mitochondrial β-oxidation, increased adipose triglyceride lipase,
decreased white adipose tissue fat mass, and increased hepatic oxidative stress [15]. In
another study, constitutively activated human AhR transgenic mice subjected to high-fat
diet containing 60 kcal% fat for 12 weeks displayed exacerbated steatosis [81]. Both hepatic
triglyceride and cholesterol content were significantly higher in the transgenic mouse model
containing constitutively active human AhR. Despite increased steatohepatitis, the trans-
genic mice were protected from high-fat diet induced obesity and showed improved insulin
sensitivity. This study identified hepatokine Fgf21 as a direct AhR target and indicated
that in the constitutively active AhR mice, circulating concentration and hepatic expression
of FGF21 was upregulated. Whereas knocking down Fgf21 using adenoviral expression
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of short hairpin RNA targeting FGF21 in high-fat diet fed transgenic mice resulted in the
mitigation of steatosis but exacerbation of hepatic injury and inflammation [81].

Apart from the use of constitutively active AhR mouse models, various groups have
exploited AhR knockout systems to understand the role of AhR signaling in NAFLD. The
Tischkau laboratory showed improved insulin sensitivity and glucose tolerance in AhR
KO mice on a chow diet [82]. Moreover, AhR deficiency protected against a high-fat diet
induced steatosis, obesity and inflammation. The hepatoprotective effects resulted from
the downregulation of Cd36 and inhibition of lipid synthesis in AhR KO mice [83]. A
novel tamoxifen-inducible liver-specific AhR conditional knockout mouse model (AhR-
iCKO) was constructed to analyze specifically the effects of hepatocyte-targeted AhR loss
in adult mice by avoiding complexities involved due to the loss of AhR during embryonic
development [84]. The data from the high-fat diet fed control and inducible AhR knockout
mice suggested that the inducible female knockout mice were resistant to weight gain
and hepatic steatosis, whereas males were not protected from hepatotoxicity – clearly
indicating a sexual dimorphism. The loss of AhR resulted in increased hepatic FGF21,
offering hepatoprotection and increased energy expenditure [84]. Similar to the anti-
steatotic properties exhibited by the whole body and inducible hepatocyte-specific AhR
conditional knockout mice, knockout of the AhR in preadipocytes protected mice from
high-fat diet induced obesity and liver steatosis suggesting a role for AhR in adipose tissue
and possible cross-talk with liver [85].

The aforementioned studies involving genetic manipulation of AhR thus indicated
that the activation of AhR will aggravate the NAFLD pathology, whereas inhibition of AhR
signaling using AhR antagonists will alleviate NAFLD in pre-clinical models. Accordingly,
high-fat diet fed WT mice chronically exposed to TCDD showed a significant increase
in hepatic triglyceride content due to stearoyl coenzyme decarboxylase 1 (Scd1) upreg-
ulation and elevated de novo lipogenesis [86]. AhR activation with polycyclic aromatic
hydrocarbon and a prototypical AhR agonist, benzo[a]pyrene resulted in an induction of
Cyp1a1, which rapidly metabolized estrogen receptor ligand, 17β-estradiol and inhibited
the protective effects of estrogen signaling, leading to the NAFLD pathology including
hepatic steatosis characterized by triglyceride accumulation and hepatotoxicity in a high-fat
diet model [87,88]. Moreover, an endogenous AhR agonist derived from a tryptophan
catabolism pathway – kynurenine induced hepatic Cyp1b1 and Scd1 expression and re-
sulted in hepatosteatosis [89], whereas inhibition of AhR activity with α-naphthoflavone
showed attenuation of steatosis in both high-fat diet fed in vivo and oleic acid-treated
HepG2 models of NAFLD. α-naphthoflavone treatment reduced oxidative stress and in-
sulin resistance as well as mitigated NAFLD by modulation of AhR regulated Cyp1a1
and TNFα pathways [90]. A recent study by the Tomlinson’s group showed prevention of
weight gain in mice that were on a 40-week high-fat diet and α-naphthoflavone regimen.
Inhibition of AhR by α-naphthoflavone downregulated expression of Cyp1b1, Scd1, Spp1
and Pparα target genes which otherwise were significantly upregulated in high-fat diet only
cohort [91]. Similar to α-naphthoflavone, the use of another AhR antagonist, CH223191
significantly reduced obesity and ameliorated hepatic steatosis in Western diet fed WT
mice [92].

6. However, AhR Signaling Also Attenuates NAFLD

In opposition to the notion that activated AhR exacerbates hallmarks of NAFLD and
genetic or pharmacological inhibition of AhR protects against fatty liver disease, recent
studies have indicated the hepatoprotective role of induced AhR signaling in NAFLD mod-
els. Krishnan et al. showed that gut-microbiota derived tryptophan metabolites, tryptamine
and indole-3-acetate mitigated fatty acid stimulated production of pro-inflammatory cy-
tokines in macrophages [93]. In hepatocytes, indole-3-acetate alleviated lipogenesis by
downregulating expression of fatty acid synthase and sterol regulatory element-binding
protein 1c (Srebp1c) in an AhR dependent manner [93]. Administration of indole-3-acetic
acid, a gut-microbiota derived metabolite from tryptophan and a well-known AhR agonist
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obliterated NAFLD parameters by attenuating hepatic lipogenesis, oxidative and inflam-
matory stress. Indole-3-acetic acid treatment downregulated expression of Srebp1, Scd1,
Pparγ, acetyl-CoA carboxylase 1 (Acaca), and glycerol-3-phosphate acyltransferase, mito-
chondrial (Gpam) as well as mitigated reactive oxygen species (ROS), malondialdehyde
levels (MDA), superoxide dismutase activity (SOD) and glutathione (GSH) content in the
livers of high-fat diet fed WT mice [94]. A noteworthy study by Xu et al. showed that
sulforaphane alleviates hepatic steatosis in mice. Sulforaphane elevated serum and liver
levels of indole-3-acetic acid by modulating gut microbiota [95]. Sulforaphane, thus directly
or indirectly activated AhR and protected against palmitic-acid induced in vitro model of
NAFLD by downregulation of Srebp1c pathway [95]. Indole has shown to alleviate diet
induced hepatic steatosis, and the hepatoprotection was dependent on the activation of
the AhR signaling pathway [96]. Our laboratory has recently published that a tryptophan
catabolite and an endogenous AhR agonist, cinnabarinic acid (CA) protected against both
oleic/palmitic acid treated in vitro and high-fat diet induced in vivo models of NAFLD.
CA treatment significantly lowered body mass gain and decreased hepatic steatosis both
before and after the established NAFLD. CA decreased free fatty acid uptake by downreg-
ulation of Cd36 expression as well as attenuated lipogenesis [97]. CA- induced AhR was
unable to interact with the Cyp1a1 promoter and therefore did not increase its expression
in isolated primary hepatocytes or in vivo [1,98]. However, CA upregulated a novel AhR
target gene, stanniocalcin 2 (Stc2) [1,98–101]. Knocking-down either AhR or Stc2 failed
to exert hepatoprotective effects by CA in vitro, indicating that CA-mediated protection
was dependent on AhR-STC2 signaling pathway [97]. In a methionine-choline-deficient
(MCD) mice model, 3, 3’-diindolylmethane (DIM) treatment protected against hepatic
steatosis and inflammation as well as shifted the Th17/Treg imbalance to Treg dominance.
Protective effects of DIM subsided when AhR was blocked with AhR antagonist CH223191,
indicating the role of AhR in DIM mediated protection against NAFLD [102]. An elegant
study utilized hepatocyte-specific AhR knockout mouse model (AhR-hKO) and showed
that the absence of AhR in hepatocytes accelerated high-fat diet induced hepatic steatosis,
inflammation, and injury. This study further identified suppressor of cytokine signaling 3
(Socs3) as a direct transcriptional target of AhR and confirmed that AhR plays a protective
role against high-fat diet induced-lipotoxicity via regulation of Socs3 [16].

7. The Yin–Yang of AhR Protection against NAFLD—A Conundrum!

Thus far, studies suggest that AhR is a ‘double-edged sword’ within the context of
the fatty liver disease (Table 1). Alterations in AhR expression by genetic or pharmacolog-
ical approaches in various in vitro and in vivo NAFLD models have indicated that AhR
activation is both beneficial or detrimental to the NAFLD pathology (Figure 1) based on
various cellular, molecular, biochemical, and epigenetic factors including: (1) Structure
and specificity of AhR ligands – which play a critical role in AhR binding to specific gene
promoters and subsequent activation of signaling pathways [103]. These ligands are se-
lective AhR modulators that exhibit tissue and cell specific AhR agonist and antagonist
activities leading to favorable or unfavorable outcome in NAFLD [104,105]. (2) Upon
binding to diverse ligands, AhR undergoes conformational change and interacts with
various tissue/cell specific cofactors [34,106]. Apart from canonical AhR-Arnt interaction at
XRE, Arnt-independent interaction of AhR with several cofactors including KLF6, CPS1 at
non-canonical XRE (NC-XRE) motifs present in the promoter region of p21, Pai1, and Padi2
genes have been identified [34,107–110]. Similarly, direct interaction of AhR and RelA at the
novel AhR/RelA response elements present on the promoter regions of NF-kB target genes
results in the activation of c-myc and Il6 [111,112]. AhR is also known to form a co-repressor
complex with pRb and E2F and suppress expression of S phase genes [113–115]. Therefore,
complex interactions of AhR with coactivators and corepressors which regulate multiple
signaling pathways, likely have a major influence on protective versus detrimental role
of AhR in NAFLD pathology. (3) The ligand and cofactor binding also impact specific
post-translational modifications at AhR-bound chromatin [116–118]. We have identified
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endogenous AhR agonist, CA specific binding of chromatin modification ‘writers’ acti-
vating transcription factor 2 (Atf2), disruptor of telomeric silencing 1-like histone lysine
methyltransferase (Dot1l) and ‘reader’ metastasis associated protein 2 (MTA2) to AhR
at Stc2 promoter [101,119]. Cross-linking chromatin immunoprecipitation coupled mass
spectrometry analysis detected CA-specific Atf2 driven histone H4 K5acetylation and Dot1l
mediated H3 K79methylation exclusively at the Stc2 promoter [101]. These epigenetic
modifications, which were observed in response to CA but not upon TCDD treatment, have
been known to decrease DNA-histone interactions, open the chromatin structure and lead
to the AhR-mediated transcription activation of Stc2 without Cyp1a1 induction [101]. The
CA-induced AhR-mediated Stc2 induction is thus protective against steatosis, inflamma-
tion and liver injury observed in NAFLD [97]. (4) AhR signaling is also known to cross
react with other signaling pathways involved in lipogenesis and oxidative metabolism.
AhR modulates estrogen receptor signaling directly by AhR-Arnt dimer suppressing estro-
gen receptor-mediated gene expression or indirectly by steric hindrance due to binding
of AhR-Arnt complex close to the estrogen receptor elements [120–122]. Similarly, XRE
binding by AhR-Arnt complex is in close proximity to the antioxidant response elements
(ARE) present in the promoter region of phase II metabolites including NAD(P)H quinone
dehydrogenase 1, glutathione-s-transferase, UDP-glucuronosyltransferases—regulated by
Nrf2/Maf heterodimer [123–127]. Both estrogen and Nrf2 pathways have been implicated
to play a critical role in NAFLD, interact with AhR signaling, and thus affect AhR’s function
in NAFLD pathogenesis [128,129].
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Table 1. Summary of studies describing the role of aryl hydrocarbon receptor in promoting and/or attenuating non-alcoholic fatty liver disease.

Model Agonist/Antagonist Genes Effect References

Constitutive AhR
Activation

Constitutively active
mouse-AhR mice

↑Cd36, Fatp1, Fatp2
↓Pparα, Acox1

Disease promoting
↑Hepatic steatosis, liver triglycerides
↓Mitochondrial β-oxidation
↓Body mass, white adipose tissue fat

[15]

Constitutively active
human-AhR mice

↓Srebp1c, Acc1, Scd1, Fasn
↓Pparα, Cpt1α, Lcad, Mcad

Disease promoting
↑Hepatic steatosis, liver triglycerides &
cholesterol
↓Body mass, white adipose tissue fat,
mitochondrial β-oxidation

[81]

AhR Knockout AhR KO mice
Disease promoting
↑Hepatic steatosis & fibrosis
↓Liver size

[53–55]

AhR KO mice ↓Cd36, Srebp1c, Acc, Fasn
↓Tnfα, Il1β, Cd68

Disease attenuating
↓Hepatic steatosis & fibrosis, body mass,
white adipose tissue fat
↓Inflammation

[82,83]

Inducible AhR conditional
KO (AhR-iCKO) mice ↑Fgf21 Disease attenuating

↓Hepatic steatosis, body mass [84]

Liver-specific AhR KO
(AhR-LKO) mice

↑Srebp1c, Scd1, Acc1,
Fasn, Gpam

Disease promoting
↑Hepatic steatosis, liver triglycerides,
serum AST & ALT

[16]

Ligand-mediated AhR
activation
(Agonist)

C57BL/6 mice
2,3,7,8-tetrachlorodibenzo-p-
dioxin
(TCDD)

↑Acta2, Col1a1, Col1a2, α-Sma
↑Tgfβ, Fsp1, Tnfα, Il1β

Disease promoting
↑Liver fibrosis, serum ALT
↑Inflammation

[86]

C57BL/6 mice, HepG2
cell lines benzo[a]pyrene ↑Cyp1a1, Srebp1c

↓Pparα

Disease promoting
↑Hepatic steatosis, liver triglycerides &
cholesterol
↑Serum AST, ALT, triglycerides,
cholesterol

[88]
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Table 1. Cont.

Model Agonist/Antagonist Genes Effect References

C57BL/6 mice Kynurenine ↑Scd1, Tnfα, Il1β Disease promoting
↑Liver fibrosis, serum ALT & AST [89]

C57BL/6 mice
2-(1’H-indole-3’-carbonyl)-
thiazole-4-carboxylic acid
methyl ester (ITE)

↓Acta2, Col1a1, Col1a2 Disease attenuating
↓Liver fibrosis, serum ALT & AST [76]

AML12, HepG2 cell lines Tryptamine
Indole-3-acetate ↓Fasn, Srebp1c Disease attenuating

↓Lipogenesis [93]

C57BL/6 mice Indole-3-acetic acid ↓Srebp1c, Scd1, Pparγ, Acaca,
Gpam

Disease attenuating
↓Hepatic steatosis, liver triglycerides &
cholesterol
↓ROS, SOD, MDA, GSH

[94]

C57BL/6 mice, HepG2
cell line Sulforaphane ↓Srebp1c, Scd1, Acc1, Fasn

↓Tnfα, Mcp-1

Disease attenuating
↓Hepatic steatosis, body mass, liver wt.
↓Serum AST, ALT, triglycerides,
cholesterol

[95]

C57BL/6 mice Indole ↓Acc, Fasn, Cpt1a
↓Tnfα, Il1β, Il-6

Disease attenuating
↓Hepatic steatosis, plasma ALT [96]

AML12, HepG2 cell lines,
C57BL/6 mice Cinnabarinic acid

↓CD36, Fasn, Srebp1, Scd1,
Pparγ
↓Gpam, Gpat2, Dgat1, Dgat2,
Mogat1,Tnfα, Tgfβ

Disease attenuating
↓Hepatic steatosis, liver triglycerides &
cholesterol, serum ALT
↓Body mass ↓Inflammation

[97]

C57BL/6 mice 3,3’- diindolylmethane (DIM) ↑Foxp3

Disease attenuating
↓Hepatic steatosis, liver triglycerides &
cholesterol, serum ALT
↓Body mass & Inflammation

[102]

Ligand-mediated AhR
inactivation
(Antagonist)

C57BL/6 mice, HepG2
cell line Alpha-naphthoflavone ↓Cyp1a1, Tnfα

↓Cyp1b1, Scd1, Spp1

Disease attenuating
↓Hepatic steatosis
↓Serum AST, ALT, triglycerides &
cholesterol
↓ROS, MDA
↑SOD, CAT, GSH

[90,91]
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Table 1. Cont.

Model Agonist/Antagonist Genes Effect References

C57BL/6 mice CH223191
Disease attenuating
↓Hepatic steatosis, body mass, white
adipose tissue fat, serum triglycerides

[92]

Upregulation and downregulation of genes and an increase and decrease in effect is indicated by an upward arrow (↑) and a downward arrow (↓), respectively. Genes: Acetyl-CoA
carboxylase 1 (Acaca), acetyl-CoA carboxylase 1 (acc1), actin Alpha 2, smooth muscle (Acta2), acyl-CoA oxidase1 (Acox1), alpha-smooth muscle actin (α-Sma), carnitine palmitoyl
transferase 1a (Cpt1a), carnitine palmitoyl transferase 2 (Cpt2), cluster of differentiation 36 (CD36), cluster of differentiation 68 (CD68), collagen type I alpha 1 chain (Col1a1), collagen
type I alpha 2 chain (Col1a2), cytochrome p450 1a1 (Cyp1a1), cytochrome p450 1b1 (Cyp1b1), diacyl glycerol acyl transferase 1 (Dgat1), diacyl glycerol acyl transferase 2 (Dgat2),
fatty acid transport protein 1 (Fatp1), fatty acid transport protein 2 (Fatp2), fatty acid synthase (Fasn), fibroblast growth factor 21 (Fgf21), fibroblast-specific protein 1 (Fsp1),forkhead
box protein 3 (Foxp3), glycerol-3-phosphate acyltransferase, mitochondrial (Gpam), glycerol-3-phosphate acyltransferase 2 (Gpat2), interleukin 1 beta (Il1β), interleukin-6 (Il-6), long
chain acyl-CoA dehydrogenase (Lcad), medium-chain acyl-CoA dehydrogenase (Mcad), monoacylglycerol o-acyltransferase 1 (Mogat1), monocyte chemoattractant protein-1 (Mcp-1),
peroxisome proliferator-activated receptor alpha (Ppar-α), peroxisome proliferator- activated receptor gamma (Ppar-γ), secreted phosphoprotein (Spp1), stearoyl-CoA desaturase 1
(Scd1), sterol regulatory element-binding protein 1c (Srebp1c), transforming growth factor beta (Tgfβ), tumor necrosis factor alpha (Tnfα). Alanine aminotransferase (ALT), aspartate
aminotransferase (AST), catalase (CAT), glutathione (GSH), malondialdehyde (MDA), reactive oxygen species (ROS), superoxide dismutase (SOD).
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Therefore, beginning with the selection of the ligand, conformational changes in AhR,
binding of cofactors, post-translational modifications that alter the chromatin architecture,
and cross-talk of AhR signaling with other pathways leads to the simultaneous regulation of
multiple signaling pathways—which ultimately can contribute to the potential attenuation
or progression of NAFLD.

8. Summary and Conclusions

AhR, originally discovered as a receptor involved in xenobiotic metabolism, has
recently been studied for its involvement in hepato-toxicity and -protection. Initial observa-
tions using AhR KO mice propelled our understanding of AhR’s function in physiology and
its pathological implications. Use of constitutively activated AhR models and exogenous
agonists provided evidence towards exacerbated steatosis, fibrosis and other hallmarks of
NAFLD. Corroborating the aforementioned observations, the tamoxifen-inducible knock-
down of AhR and use of AhR antagonists alleviated NAFLD. However, recent studies
showed that the activation of AhR signaling with selective endogenous AhR ligands, par-
ticularly indole derivatives from gut microbiome, and novel endogenous ligands such as
cinnabarinic acid, can protect against fatty liver disease and possibly obesity. The role of
AhR in NAFLD is therefore intricate and targeting AhR or its signaling pathway compo-
nents for future drug development must take into consideration the characteristics of the
ligand including binding affinity and duration of interaction with AhR, tissue/cell-specific
activity of ligand, coactivators and corepressors interacting with AhR in response to ligand
binding, epigenetic modifications, modulation of chromatin structure and cross-talk of
AhR with other signaling pathways. It is also plausible that hitherto unknown factors and
biochemical interactions may also regulate AhR’s function in NAFLD. Finally, it is evident
that AhR’s involvement in fatty liver disease is complex as well as multifactorial, and a
comprehensive biochemical and pathophysiological characterization is warranted
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