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Abstract: Motor imagery (MI) and action observation (AO) techniques are two movement representa-
tion strategies that are widely used in multiple fields of study. MI is defined as the cognitive skill
that involves the representation of an action, internally, without actual motor execution. AO training
evokes internally, and in real time, a simulation of the actual motor gestures that the observer is
visually perceiving. Both cognitive processes cause an activation of the brain areas related to the
planning, adjustment, and automation of voluntary movement in a similar way as when the action is
carried out in a real way. Movement representation strategies have shown that they can be a very
useful complement to physical practice to improve some particularly relevant aspects in neurological
and musculoskeletal patients. In this narrative review, we discuss the effect that the implementation
of these motion representation strategies might have on patients with cardiovascular disease. At
the cardiovascular level, MI and AO training should be considered as interventional tools for the
management of these patients. With these clinical tools, we could try to improve the generation of
cardiopulmonary adaptations, improve exercise tolerability, and also increase functionality. However,
more research is needed in this field where these clinical tools are combined with cardiac rehabilitation
programs to see if the clinical effect is greater than cardiac rehabilitation programs in isolation.
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1. Introduction

Movement representation strategies are a set of cognitive and dynamic processes
widely studied in sport psychology, clinical physical therapy, and also in the field of
cognitive neurosciences. It is practically impossible to analyze movement representation
strategies without first considering two key brain processes that occur during these strate-
gies: representation and brain processing [1]. A representation is a physical state that
provides information symbolizing an entity (an object, an action, an event, etc.), a category,
or a characteristic. The representation process has, in the first place, a format or codification,
as it could be a real image, a drawing, or an action. Secondly, the representation always
has an argument, referred to in terms of the meaning that a given representation communi-
cates [1,2]. The same argument or content is capable of being conveyed in different formats
(e.g., by verbal description, metaphorically, or also by images or codes, etc.). On the other
hand, processing is the transformation of incoming information to produce a given response.
It is, therefore, that the representations of movement require an information-processing
system to be carried out. This process is complex and requires multiple interactions in
order to be carried out [1].

There are two movement representation strategies that are widely used in multiple
fields of study, such as the clinical-health-care field [3–5] or the sports field, on perfor-
mance [6,7], among others. The first of these strategies is called motor imagery (MI) and the
second corresponds to action observation (AO) training. MI is defined as the cognitive skill
that involves the representation of an action, internally, without actual motor execution [8].
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On the other hand, AO training evokes internally, and in real time, a simulation of the actual
motor gestures that the observer is visually perceiving [9]. Both cognitive processes cause
an activation of the brain areas related to the planning, adjustment, and automation of
voluntary movement in a similar way as when the action is carried out in a real way [10,11].
Movement representation strategies have shown that they can be a very useful complement
to physical practice to improve some particularly relevant aspects, such as the learning
of specific motor skills, sports performance, or even to improve key psychosocial aspects
inherent to those occurring during any competitive event [12,13].

Every time an individual prepares to perform a real movement voluntarily, it is
previously subjected to a precise planning system through the action of the premotor and
supplementary motor brain areas. These provide information to the motor cortex, which,
based on this information, triggers information through the corticospinal pathways to the
spinal cord, which, in turn, manages to reach the muscle effectors in order to perform the
desired action, previously planned in the cerebral cortex [14]. Through neuroimaging, it has
been found that when training is carried out using movement representation strategies, this
brain activity, which occurs neurophysiologically before the generation of real voluntary
movement, also occurs, although at a lower intensity [15,16]. Lebon et al. [17] even argued
that the coincidence between the cortical activation of the areas related to the planning and
execution of voluntary movement given during actual motor execution and that which
occurs during brain training could provide, through neuroimaging, a reliable means of
assessing the quality of movement representation.

The set of motor schemes and programs stored in the procedural memory systems
allows for the generation of motor images without the need for an external stimulus,
although it has been shown that providing visual information prior to an imagination task
facilitates it and provokes greater neurophysiological activity than if it is performed in
isolation [18]. Finally, both observation and imagination allow for the practice of voluntary
and eligible movements without the need to perform them, which is why it has been widely
used in the training of skills in different environments.

2. Movement Representation Strategies and Autonomic System

Both AO training and the MI process are capable of provoking an activation of the
autonomic nervous system [19]. Recent studies, such as the one conducted by Cuenca-
Martinez et al. [20], have found that training using movement representation strategies
causes an increase in heart rate, respiratory rate, and skin electrodermal activity, even
in brain training on simple, functional, low-complexity movements. This information
supports, in a robust way, the findings previously found through the studies of very
relevant authors in the field of cognitive neurosciences, authors such as Jeannerod, Decety,
or Guillot, and their collaborative groups where they found similar results [19,21].

At the neurophysiological level, motor responses dependent on autonomic function
are mediated, to a large extent, by the central nervous system, as shown by Vissing et al. [22]
in the 1990s. Sympathetic pathways are modulated by the activity of the anterior cingulate
cortex, and cardiovagal activity is under the control of the ventral medial prefrontal cor-
tex [22]. The electrodermal activity of the skin is exclusively innervated by the sympathetic
nervous system, thus missing the established precept of dual autonomic innervation (sym-
pathetic/parasympathetic) that follows heart rate or respiratory rate parameters, and its
neural networks involve the parietal cortex, insular cortex, and limbic system structures,
including the medial temporal lobe, amygdala, and hippocampus [23]. Thus, when the
sympathetic–excitatory nervous system is activated, there is a response in skin sweating,
and when this sympathetic activation ceases, the physiological response stops. It is, there-
fore, that electrodermal activity is a good indicator that the sympathetic system is activated
or, on the contrary, not. At the functional level, Collet et al. [19] conducted a thorough
review of the state of the art in order to offer solutions regarding the functional relation-
ships between movement representation strategies and the autonomic nervous system. The
functional relationships between both neurocognitive processes and the autonomic nervous
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system could be based on a preparation phase, where the activation of the autonomic
nervous system occurs at a forthcoming effort and, therefore, at a forthcoming energy
expenditure where physiological processes, such as cardio-respiratory, temperature, and
sweating adaptations, will take place in anticipation of the metabolic change produced by
the voluntary movement itself. But, in addition, hypotheses have been described in relation
to the fact that not only the autonomic nervous system has the qualitative aim of providing
energy to the muscular effectors, but also, quantitatively, it designs and adapts the parame-
ters on demand, in a specific way, in an attempt to economize the energy provided for each
precise motor execution. However, the neurophysiological basis is for the moment based
on hypotheses and requires further research to provide more solid and reliable data [19].

3. Movement Representation Strategies on Cardiovascular Disease

Both MI and AO training have been extensively studied at the clinical level in different
populations of interest. For example, in patients with chronic musculoskeletal pain, Cuenca-
Martínez et al. [24] found that adding movement representation strategies to usual physical
therapy treatment showed beneficial effects in the management of chronic musculoskeletal
pain. Similar results were found by Ferrer-Peña et al. [25]. Regarding functional and motor
variables, such as gait, upper limb function, range of motion, activities of daily living, etc.,
movement representation strategies in combination with usual treatment have shown a
positive effect on improving function, with a very low to moderate quality of evidence
in neurological patients [26] and also in patients with musculoskeletal disorders due to
immobilization or after surgery [27]. Table 1 shows a summary of some relevant papers
where the effect of MI and AO has been tested in different clinical populations of interest.

Table 1. Summary of some previous research in the field of motor imagery and action observation training.

Authors Population (Condition) Interventions Study Design Results

Suso-Martí et al. [28]
Patients with

musculoskeletal pain
(musculoskeletal)

AO or MI + UC vs. UC Systematic review and
Meta-analysis

AO or MI + UC are capable of
producing a decrease in pain

intensity compared with UC, in
both post-surgical and chronic pain.

Cuenca-Martínez et al. [24]

Patients with
musculoskeletal pain
(musculoskeletal) and
patients with phantom

limb pain and poststroke
pain (neurological)

AO, MI, or MT + UC vs.
UC

Umbrella review with
Meta-meta-analysis

Results show that mental practice
could be effective for chronic

musculoskeletal pain. However, the
results did not show a reduction in

pain intensity in patients with
phantom limb pain or

poststroke pain.

Ferrer-Peña et al. [25]
Patients with total knee

arthroplasty
(musculoskeletal)

MI + UC vs. UC Systematic review and
Meta-analysis

Adding an MI to UC improved
quadriceps strength and pain

intensity, but the effects on range of
motion and physical function

was unclear.

Li et al. [29]
Patients with total knee

arthroplasty
(musculoskeletal)

MI + UC vs. UC Systematic review and
Meta-analysis

MI + UC achieved an effective
treatment for strength

enhancement, pain reduction and
physical activities improvement.

Herranz-Gómez et al. [26] Stroke patients
(neurological) AO or MI + UC vs. UC Umbrella review with

Meta-meta-analysis
MI and AO showed positive results
for improving functional variables.

Benito-Villalvilla et al. [30] Patients with multiple
sclerosis (neurological)

AO, MI, or MT + UC vs.
UC or no intervention Systematic review

MI + exercises showed to be
effective in the treatment of fatigue,

gait, balance, depression, and
quality of life. AO was useful in

upper limb rehabilitation and
improvement in attention,

executive control, and activation of
sensorimotor networks.

Gil-Bermejo-Bernardez-
Zerpa et al. [31]

Patients with multiple
sclerosis (neurological)

MI + UC vs. UC or no
intervention Systematic review

MI showed improvements in
walking speed and distance,
fatigue, and quality of life. In

addition, several benefits were also
found in dynamic balance and

perceived walking ability.

Díaz-López et al. [32] Stroke patients
(neurological)

MI + UC vs. UC or no
intervention Systematic review

MI + UC was an effective method
for the recovery of functionality

after stroke.
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Table 1. Cont.

Authors Population (Condition) Interventions Study Design Results

Fernández-Gómez and
Sánchez-Cabeza [33]

Stroke patients
(neurological)

MI + UC vs. UC or no
intervention Systematic review

MI, combined with conventional
therapy, showed positive effects

on the motor rehabilitation of the
upper limb following a stroke.

Barreto-Monteiro et al. [34] Stroke patients
(neurological) MI + UC vs. UC Systematic review and

Meta-analysis

MI has been shown to be an
efficacious technique in the

treatment of post-stroke patients
when used as a complement

to UC.

Kho et al. [35] Stroke patients
(neurological) MI + UC vs. UC Systematic review and

Meta-analysis

Review of the literature revealed
a trend in support of the use of
MI for upper extremity motor

rehabilitation after stroke.

Opsommer et al. [36] Patients with spinal cord
injury (neurological)

MI + other interventions vs.
control Systematic review

In most, results were an
improvement in motor function

and decreased pain.

Behrendt et al. [37] Children and adolescents
(healthy and neurological)

MI + physical practice vs.
physical practice

Systematic review and
Meta-analysis

MI combined with physical
practice might have a high
potential for healthy and

impaired children
and adolescents.

Paravlic et al. [38] Adults (healthy)

MI alone; MI alone vs.
physical practice and MI +

physical practice vs.
physical practice

Systematic review and
Meta-analysis

Results showed that compared to
a no-exercise control group of

healthy adults, MI practice
increases maximal voluntary

strength, but less than
physical practice.

Liu et al. [38] Young and old adults
(healthy)

MI alone; MI alone vs.
physical practice and MI +

physical practice vs.
physical practice

Systematic review and
Meta-analysis

Results showed that MI has
better estimated effects on

enhancing maximum voluntary
muscle contraction force

compared to no exercise but is
inferior to physical practice. The

combination of MI + physical
practice is equivalent to physical
practice in isolation in enhancing

muscle strength.

Notes: AO: Action Observation; MI: Motor Imagery; vs.: versus; UC: Usual Care; MT: Mirror Therapy.

However, there is limited scientific literature regarding the impact of movement
representation strategies on patients with cardiovascular disease. The research group led by
de Souza et al. [39] published an Editorial in 2019 regarding this topic with the aim of asking
what implication the MI could have regarding the modulation of cardiovascular variables
and whether it could be implemented in patients with cardiorespiratory alterations in
addition to physical exercise, with the aim of increasing effectiveness, as well as facilitating
the performance of physical practice or even carried out in isolation.

The article by de Souza et al. [39] comments, firstly, that MI is capable of promoting a
chronotropic effect, an inotropic effect, as well as an increase in arterial pressure (baroreflex
modulation) [39]. These variations are probably caused by the similarities in the cortical
areas responsible for the preparation and scheduling of the same motor task, which control
cardiopulmonary feedforward responses during the performance and imagination of an
activity [39]. Finally, De Souza et al. [39] commented on something very interesting, which
is that, to date, the impact of movement representation strategies on the neurovegetative
system has been studied mainly in healthy subjects or athletes but not in patients with
cardiovascular disease. MI and AO training could probably be applied to cardiac rehabili-
tation, alongside the standardized cardiovascular rehabilitation program. For example, De
Souza et al. [39] commented that patients with heart failure in the most severe functional
classes (III and IV) according to the New York Heart Association (NYHA) usually have a
very low tolerance to therapeutic physical exercise. These patients could benefit from the
use of MI and AO as clinical intervention strategies, both in isolation and in combination
with physical exercise to improve exercise tolerability, elicit greater cardiopulmonary and
metabolic adaptations, and also improve functional variables.
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In fact, recently, de Souza et al. [40] worked on their hypothesis and transferred their
ideas to research by conducting a study with the aim to assess the clinical effects of MI
on cardiopulmonary variables in patients with heart failure. De Souza et al. selected
twenty patients with type II heart failure according to the NYHA, and after performing
a real and imagined exercise of the two-minute walk test, they found that MI elicited
an increase in heart rate and respiratory frequency similar to that occurring in healthy
subjects. De Souza et al. [40] concluded that the anticipatory cardiopulmonary response of
patients with heart failure was immediately modulated by MI activity in a safe manner, but
further studies are needed to investigate the effects of MI associated with cardiovascular
physical therapy.

Within cardiovascular diseases, there is one disease in particular that we believe pa-
tients suffering with could benefit greatly from the application of movement representation
strategies. We are referring to patients undergoing open valve surgery or coronary artery
bypass surgery. People undergoing this type of surgery seem to have a loss of motor
function for days or even weeks, depending on the type of intervention. In addition, these
patients seem to present alterations in autonomic regulation, and we believe that they
could benefit from performing MI and AO during these early phases of rehabilitation, in
isolation, with the aim of minimizing the impact of inactivity and, in addition, later, it could
be complemented with the usual treatments (involving pharmacology, physical therapy,
and other types of intervention) with the aim of improving parameters related to strength,
gait, and cardiorespiratory fitness. In reality, this could be applicable to any intervention
process that results in physical downtime. This could be considered a priority in mental
practice research in this field of study.

Finally, with regard to research priorities in the field of mental practice and cardiovas-
cular disease, we believe that research in this field should begin in depth. Patients with
cardiovascular diseases, and also with cardiorespiratory pathology, could benefit if we
add to the usual rehabilitation programs of movement representation techniques, as it
could have an impact on different clinical variables of interest, such as improvements in
strength, physical fitness, motor control, gait related variables, etc. Future studies should
be conducted to test this and see the potential of these sensorimotor training tools in these
clinical populations before transferring to clinical practice, as has happened in different
neurological as well as musculoskeletal populations.

4. Conclusions

Both MI and AO training are clinical tools of great potential that have been shown to
be effective in combination with physical practice on different variables of interest, as well
as in different clinical populations, such as neurological or musculoskeletal patients. At the
cardiovascular level, MI and AO training should also be considered as interventional tools
for the management of these patients. With these clinical tools, we could try to improve the
generation of cardiopulmonary adaptations, improve exercise tolerability, and also increase
functionality. However, more research is needed in this field where these clinical tools are
combined with cardiac rehabilitation programs to see if the clinical effect is greater than
cardiac rehabilitation programs in isolation. Finally, consideration could also be given to
implementing these techniques in isolation at times when physical practice is not possible.
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