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Abstract: Background: Readmission within 30 days of discharge for heart failure (HF) has become
a challenging public health issue. Predicting the risk of 30-day readmission may assist clinicians
in making individualized treatment plans for HF patients. Methods: A total of 2254 patients were
enrolled in this study. The risk predictors associated with 30-day readmission were selected using
the least absolute shrinkage and the selection operator regression model. The performance of
the nomogram was evaluated using the receiver operating characteristic (ROC) curve, Hosmer–
Lemeshow (HL) test, and decision curve analysis (DCA). Results: The 30-day all-cause readmission
rate was 7.1%. Thirteen clinical parameters were identified as the risk predictors, including age,
cystatin C, albumin, red cell distribution width coefficient variation, neutrophils, N-terminal pro-
B-type natriuretic peptide, high-sensitivity cardiac troponin T, myoglobin, sex, dyslipidaemia, left
ventricular ejection fraction, left ventricular end-diastolic dimension, and atrial fibrillation. The
nomogram showed good discrimination, with an area under the ROC curve of 0.653 (95% confidence
interval: 0.608–0.698) and good calibration results (HL test p = 0.328). The DCA showed that the
nomogram would have good clinical utility. Conclusions: This predictive model based on clinical
data makes it simple for clinicians to assess the 30-day HF readmission risk.

Keywords: predictive model; nomogram; heart failure; 30-day readmission

1. Introduction

Heart failure (HF) is a complex clinical syndrome that causes multiple related symp-
toms, such as dyspnea, fatigue, and peripheral or pulmonary edema, affecting the life
quality of the patients [1]. While the medical equipment and techniques for treating HF
have improved greatly in recent decades, hospitalization due to HF remains an increas-
ingly serious problem worldwide [2]. The length of hospitalization of HF patients is often
prolonged, and in many cases the patients will be readmitted to the hospital within a
short time. Importantly, HF and its 30-day readmission rate have been a primary focus
for reducing medical care costs [3]. Several prediction systems have been developed to
identify high-risk patients for short-term readmission among the general medical popu-
lation. However, they cannot be widely implemented for HF patients due to their poor
consistency and practical performance [4–6]. While many indicators that are significantly
associated with HF prognosis have been identified, few studies have used them to establish
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a prognosis-prediction model. Indeed, in the Chinese population, the prediction of 30-day
HF readmission only applies to elderly patients aged ≥65 years [7]. The emerging evidence
suggests that the 30-day readmission rates for HF differ greatly in different hospitals and
periods, potentially related to disease management [3,8]. Therefore, prediction models
based on data from different countries and hospitals of different grades are not necessarily
universally applicable. Consequently, there is an urgent need for novel predictive models
for 30-day HF readmission in the Chinese hospitalized population.

Cardiovascular risk factors affect the HF all-cause death and readmission. Most HF
patients suffer from one or more comorbidities, including metabolic syndromes, which
are critical for disease progression and may exacerbate the HF treatment outcome. Non-
cardiovascular comorbidities such as diabetes and chronic kidney disease are considered
independent prognostic factors in HF patients, and their numbers can predict all-cause
hospitalization and even short-term mortality [9,10]. Neurohumoral activation is also very
important for HF diagnosis and prognosis, especially brain natriuretic peptide (BNP) and its
precursor (NT-proBNP) [11]. In addition, blood cells, inflammatory and immune indicators,
electrolytes, metabolites, and myocardial injury also contribute to HF prognosis [12–15].
In this study, we develop a predictive model of early readmission for HF patients based
on clinical baseline data. To facilitate the operation of clinicians to predict the disease
outcomes in advance, we screened out independent risk factors and developed a multi-
factor predictive model that can effectively judge the early HF readmission.

2. Materials and Methods
2.1. Patients

We selected patients hospitalized for HF between January 2019 and December 2020
at the Affiliated Hospital of Guangdong Medical University (Zhanjiang, China). All the
patients had to meet the following criteria: (1) HF diagnosed according to the 2018 guideline
for HF diagnosis and treatment in China [16]; (2) aged ≥18 years; (3) received HF treatment
during admission. Cases that died during the index admission or lost during follow-up
were excluded. This study was approved by the ethics committee of the Affiliated Hospital
of Guangdong Medical University, and consent was obtained from all participants. After
excluding drug-related contraindications, all the selected patients received therapy for
underlying diseases and triggers. In addition, the HF patients with preserved and mid-
range left ventricular ejection fraction (LVEF) were given β-blockers to maintain heart
rhythm at 50–70 beats/min, and those comorbided with sodium and water retention were
given diuretics and aldosterone receptor antagonists (spironolactone). According to the
individual patient situation, we used ivabradine, AECI/ARB, or ARNI to control blood
pressure at 90–140 mmHg and used SGLT-2i to treat patients with type 2 diabetes. In
addition to the above treatments, patients with reduced LVEF were treated with cardiotonic
drugs such as digoxin and Qili Qiangxin capsules. The clinical baseline data and treatment
methods were listed in Table 1.

Table 1. Baseline characteristics and 30-day readmission of the patients with HF.

Overall

Variables n = 2254
Age, years 71.54 ± 12.36
Sex

Female, n (%) 930 (41.26)
Male, n (%) 1324 (58.74)

Smoking, n (%) 269 (11.93)
Glu, µmol/L 6.68 (5.32~8.92)
K, mmol/L 3.98 ± 0.55
Na, mmol/L 138.90 ± 4.73
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Table 1. Cont.

Overall

Scr, µmol/L 89.00 (72.00~114.00)
SUA, µmol/L 403.00 (312.15~493.25)
CysC, mg/L 0.97 (0.81~1.21)
ALB, g/L 37.85 ± 4.51
RDW-CV, % 14.41 ± 2.12
HGB, g/L 123.10 ± 22.14
NE, 109/L 4.84 (3.67~6.63)
LY, 109/L 1.34 (0.96~1.82)
NT-proBNP, pg/mL 1645.00 (686.78~4457.25)
hs-cTnT, ng/mL 0.03 (0.01~0.05)
MYO, ng/mL 41.10 (28.20~65.43)
LVEDD, mm 47.80 ± 8.86
LVEF, % 55.00 (45.00~60.00)
Comorbidities

Diabetes, n (%) 826 (36.65)
Dyslipidaemia, n (%) 582 (25.82)
Hypertension, n (%) 1290 (57.23)
Stable coronary heart disease 1599 (70.94)
Acute coronary syndrome 375 (16.64)
Atrial fibrillation 688 (30.52)
Chronic kidney disease 238 (10.56)

Treatment during hospitalization
β-blockers 1148 (50.93)
Diuretics and aldosterone receptor antagonists 1303 (57.81)
Ivabradine 118 (5.24)
AECI/ARB 654 (29.02)
ARNI 530 (23.51)
SGLT-2i 191 (8.47)
Digoxin 708 (31.41)
Qili Qiangxin capsules 3 (0.13)

Treatment after discharge
β-blockers 1072 (47.56)
Diuretics and aldosterone receptor antagonists 1025 (45.47)
Ivabradine 101 (4.48)
AECI/ARB 516 22.89)
ARNI 495 (21.96)
SGLT-2i 207 (9.18)
Digoxin 400 (17.75)
Qili Qiangxin capsules 5 (0.22)

30-day readmission, n (%) 160 (7.10)
Note: Glu, glucose; K, potassium; Na, sodium; Scr, serum creatinine; SUA, serum uric acid; CysC, cystatin C;
ALB, albumin; RDW-CV, red distribution width coefficient variation; HGB, hemoglobin; NE, neutrophils; LY,
lymphocytes; NT-proBNP, N-terminal pro-B-type natriuretic peptide; hs-cTnT, high-sensitivity cardiac troponin T;
MYO, myoglobin; LVEDD, left ventricular end-diastolic dimension; LVEF, left ventricular ejection fraction.

2.2. Clinical Data Collection

Clinical characteristics (age, sex, and smoking), laboratory findings [including glucose
(Glu), potassium (K), sodium (Na), serum creatinine (Scr), serum uric acid (SUA), cystatin
C (CysC), albumin (ALB), red cell distribution width (RDW) coefficient variation (CV),
hemoglobin (HGB), neutrophils (NE), lymphocytes (LY), N-terminal pro-B-type natriuretic
peptide (NT-proBNP), high-sensitivity cardiac troponin T (hs-cTnT), myoglobin (MYO),
left ventricular end-diastolic dimension (LVEDD), and LVEF], and comorbidities (diabetes,
dyslipidaemia, hypertension, stable coronary heart disease, acute coronary syndrome, atrial
fibrillation, and chronic kidney disease) of their first examinations were obtained from
electronic medical records (Table 1). The primary outcome of this study was all-cause
readmission within the first 30 days after discharge. The patients were followed up for
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30 days after discharge by telephone and their conditions were further confirmed in the
hospital system.

2.3. Predictor Selection

Potential prognostic factors associated with the outcome were screened out using the
least absolute shrinkage and selection operator (LASSO) method. The minimum criterion
for 10-fold cross-validation in the LASSO model was used to determine the optimal penalty
coefficient (λ), and the variable factor of a non-zero coefficient was defined as a risk
predictor. Subsequently, a regression model was established using the binary logistic
regression model.

2.4. Statistical Analysis

The continuous variables are reported as means ± standard deviations for parameters
with normal distributions or medians and interquartile ranges for non-normal distribu-
tions. The categorical variables are reported as frequencies and percentages. Continuous
variables were divided into categorical variables for analyses according to clinical routine
cut-offs. The glmnet package in R was used to identify factors associated with 30-day read-
mission via LASSO regression. The selected predictors were incorporated into the binary
logistic regression model to construct a predictive model. Then, a 30-day readmission
risk-predictive nomogram model was constructed regarding discrimination and calibration.
Finally, the calibration and discriminative abilities of the model were quantified using the
Hosmer–Lemeshow (HL) test and receiver operating characteristic (ROC) curve, and the
clinical applicability of the model was evaluated using a decision curve analysis (DCA).

All analyses were performed using the Stata v.15.0 (Stata Corporation, College Station,
TX, USA) and R v.4.0.1 (R Foundation for Statistical Computing, Vienna, Austria). All
results with p < 0.05 were considered statistically significant.

3. Results
3.1. Clinical Features of the Patients

The clinical baseline data for all 2254 patients included in this study are listed in
Table 1. Their median age was 71.54 ± 12.36 years, and 1324 (58.74%) were male. Their
30-day all-cause readmission rate was 7.1%.

3.2. Risk Predictors for the Model

We screened the prediction variables from the baseline indicators and excluded vari-
ables with no clinical significance. The results of the LASSO analysis showed that several
non-zero coefficients, including age, CysC, ALB, RDW-CV, NE, NT-proBNP, hs-cTnT, MYO,
sex, dyslipidaemia, LVEDD, LVEF, and atrial fibrillation, were associated with 30-day read-
mission when the optimal λ was 0.037 (Figure 1). Therefore, these factors were subsequently
selected as predictors and included in the prediction model.

3.3. Predictive Nomogram for 30-Day Readmission

A nomogram was developed for prediction of the 30-day readmission risk (Figure 2).
Then, the prediction model was internally validated via a 10-fold cross-validation analysis.
The area under the ROC curve (AUC) was 0.653 (95% confidence interval: 0.608–0.698;
Figure 3), indicating that the nomogram has good identification capability.

3.4. Performance of the Nomogram

The predictive accuracy and discriminative ability of the nomogram were assessed
using a calibration curve. The HL test indicated good calibration (p = 0.328), and the
calibration curves showed good agreement between the readmission risk and actual ob-
servation (Figure 4A). By comparing the net benefit of default strategies for treating all or
no patients across different threshold probabilities, the DCA showed that the nomogram
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could be clinically useful (Figure 4B). Altogether, the predictive nomogram is appropriate
for clinically predicting the 30-day readmission risk of HF patients.
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Figure 4. Discrimination ability and calibration degree of the nomogram: (A) the Hosmer–Lemeshow
(HL) test, showing good calibration; (B) the decision curve analysis (DCA), indicating clinical usefulness.

4. Discussion

The readmission rate within 30 days is an important quality control indicator for HF
patients. According to the survey, most of the 30-day readmission cases of HF occurred
within two weeks after discharge. Therefore, accurately predicting the 30-day readmission
risk of HF patients will help formulate appropriate diagnosis and treatment plans and dis-
ease management guidelines. In this study, we developed an easy-to-use nomogram based
on readily available clinical variables, ensuring the wide applicability of our predictive
model. Our findings showed that the all-cause 30-day readmission rate of the 2254 selected
HF patients was 7.1%. The 30-day readmission prediction model developed based on
independent predictors selected by multivariate analysis showed good internal consistency.
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Overall, this prediction model can help to easily and quickly assessing a patient’s 30-day
readmission risk, and may contribute to reducing the incidence of early readmission by
adjusting the disease management plan.

A machine learning model was used to predict 30-day readmission in HF patients from
seven major hospitals in the Boston Metro area and eastern Massachusetts [17]. However, it
may be unsuitable for patients in other countries due to differences in disease management
patterns and readmission rates. In addition, machine learning methods may be difficult
for most clinicians as there are no equations used for calculating risk scores. Therefore,
we used the LASSO method to develop a prediction model that will be easy for clinicians
to evaluate the risk of 30-day HF readmission. Compared with an ordinary least squares
estimation, LASSO can efficiently extract important variables and simplify the model when
there are many candidate variables. In this study, the internal validation results showed
that our nomogram based on the thirteen predictors selected by the LASSO method had
good identification ability (Figure 1), although its AUC was slightly less than the machine
learning model (Figure 3).

The clinical data used as the potential prognosticfactors included leading baseline
indicators, laboratory test indexes, and comorbidities, which may affect the HF outcome.
The results of the LASSO regression analysis showed that age, CysC, ALB, RDW-CV, NE,
NT-proBNP, hs-cTnT, MYO, sex, dyslipidaemia, LVEDD, LVEF, and atrial fibrillation were
independent predictors of 30-day readmission (Figure 2). It has been shown that age and
sex affect the prognosis of HF comorbided with diabetes [18,19]. Serum ALB has been asso-
ciated with myocardial fibrosis [20], poor pulsatile aortic hemodynamics, and prognosis of
HF with preserved ejection fraction [21]. Similarly, RDW and its changes during hospital-
ization are associated with 30-day mortality, the hospital stay length, and 30-day all-cause
readmission [22]. Anemia, particularly persistent and new-onset anemia and milder tempo-
rary anemia, are suggested to be harmful to HF patients [23]. Inflammatory markers have
been confirmed to be associated with adverse outcomes in HF patients [24]. NT-ProBNP
secreted by the ventricle with increased wall stress is a prognostic HF biomarker [25].
In addition, hs-cTnT and serum ALB are two independent HF prognostic factors in the
DCTA scoring system [26]. LVEDD ≤ 55 mm is an independent prognostic factor for LVEF
recovery after clinical HF treatment [27]. Therefore, we used these significant risk factors to
develop a predictive model for 30-day HF readmission.

Ibrahim et al. found that both the HOSPITAL Score and LACE index have poor
specificity in predicting 30-day HF readmission [4]. In contrast to a scoring system, a
risk prediction model is not just a simple mathematical combination of dependent and
independent variables [28]. It must also possess a good discrimination ability and a good
calibration degree. Some clinical indexes have been identified as the risk factors associated
with adverse prognosis of HF [29]; however, using these factors to developed mathematical
models may be more beneficial for predicting HF prognosis. Thus, we developed a 30-day
readmission model using routine clinical indexes associated with HF prognosis. The AUC
of the nomogram suggested that the 30-day readmission model had good discrimination
ability (Figure 3). Moreover, the HL test and DCA indicated that this model also had a
good degree of calibration and clinical usefulness (Figure 4).

This study is not unique in using this method to predict HF readmission. Both tradi-
tional and machine learning methods have been used in developing readmission models
for HF patients from different grades of hospitals in different countries [8,17,28,30–33].
Nevertheless, machine learning methods may be difficult for most clinicians as there are
no equations used for calculating risk scores. While the AUCs of the machine learning
models are slightly higher than this prediction model, it may be unsuitable for patients in
other countries due to differences in disease management patterns and readmission rates.
Indeed, there are large differences in HF readmission rates among different hospitals. Our
data were collected from a large-scale teaching hospital, where the 30-day readmission
rate of HF patients appeared lower than the average reported by most studies. Therefore,
we must establish a suitable predictive model to evaluate the 30-day HF readmission risk.
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While the prediction model developed is relatively simple and useful, there remains room
for improvement. In future studies, we will further develop novel biomarkers to predict
HF prognosis.

5. Conclusions

In this study, we developed a novel nomogram for accurately predicting the risk of
30-day readmission for HF patients. The nomogram is easy to use and can assist clinicians in
assessing the risk of 30-day HF readmission and making personalized treatment programs
for HF patients. However, this study had several limitations. First, it was a retrospective
observational study without external validation. In addition, we only focused on 30-day
readmission without other endpoints such as 180-day readmission and death. Therefore,
we plan to conduct a multicenterprospective cohort study on HF prognosis predictions.
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