
Citation: Htet, E.E.; Wai, K.H.; Aung,

S.T.; Funabiki, N.; Lu, X.; Kyaw,

H.H.S.; Kao, W.-C. Code Plagiarism

Checking Function and Its

Application for Code Writing Problem

in Java Programming Learning

Assistant System. Analytics 2024, 3,

46–62. https://doi.org/10.3390/

analytics3010004

Academic Editors: Ping-Feng Pai

and Qingshan Jiang

Received: 5 November 2023

Revised: 16 December 2023

Accepted: 15 January 2024

Published: 17 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Code Plagiarism Checking Function and Its Application for Code
Writing Problem in Java Programming Learning
Assistant System †

Ei Ei Htet 1, Khaing Hsu Wai 1, Soe Thandar Aung 1, Nobuo Funabiki 1,*, Xiqin Lu 1, Htoo Htoo Sandi Kyaw 2

and Wen-Chung Kao 3

1 Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan;
pukr6nfs@s.okayama-u.ac.jp (E.E.H.); pjsu9uam@s.okayama-u.ac.jp (K.H.W.);
soethandar@s.okayama-u.ac.jp (S.T.A.); pch55zhl@s.okayama-u.ac.jp (X.L.)

2 Department of Computer and Information Science, Tokyo University of Agriculture and Technology,
Tokyo 184-8588, Japan; htoohtoosk@go.tuat.ac.jp

3 Department of Electrical Engineering, National Taiwan Normal University, Taipei 106, Taiwan;
jungkao@ntnu.edu.tw

* Correspondence: funabiki@okayama-u.ac.jp
† This paper is an extended version of our paper published in 2023 11th International Conference on

Information and Education Technology (ICIET), 18–20 March 2023, Fujisawa, Japan.

Abstract: A web-based Java programming learning assistant system (JPLAS) has been developed for
novice students to study Java programming by themselves while enhancing code reading and code
writing skills. One type of the implemented exercise problem is code writing problem (CWP), which
asks students to create a source code that can pass the given test code. The correctness of this answer
code is validated by running them on JUnit. In previous works, a Python-based answer code validation
program was implemented to assist teachers. It automatically verifies the source codes from all the
students for one test code, and reports the number of passed test cases by each code in the CSV file.
While this program plays a crucial role in checking the correctness of code behaviors, it cannot detect
code plagiarism that can often happen in programming courses. In this paper, we implement a code
plagiarism checking function in the answer code validation program, and present its application results to a
Java programming course at Okayama University, Japan. This function first removes the whitespace
characters and the comments using the regular expressions. Next, it calculates the Levenshtein distance
and similarity score for each pair of source codes from different students in the class. If the score is
larger than a given threshold, they are regarded as plagiarism. Finally, it outputs the scores as a CSV
file with the student IDs. For evaluations, we applied the proposed function to a total of 877 source
codes for 45 CWP assignments submitted from 9 to 39 students and analyzed the results. It was
found that (1) CWP assignments asking for shorter source codes generate higher scores than those
for longer codes due to the use of test codes, (2) proper thresholds are different by assignments, and
(3) some students often copied source codes from certain students.

Keywords: Java programming learning; JPLAS; JUnit; code writing problem; plagiarism; Levenshtein
distance; Python

1. Introduction

For decades, Java has been widely used in a variety of practical application systems,
including large enterprise systems in large companies as well as compact systems such
as embedded ones. Therefore, there has been a strong need for engineers who have high
Java programming skills in IT companies. To meet this demand, a lot of universities and
professional schools have provided Java programming courses.

To help Java programming education, we have developed a web-based Java programming
learning assistant system (JPLAS) for novice students to study Java programming by themselves
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while enhancing code reading and code writing skills. JPLAS provides various exercise
problems at different difficulty levels to support the learning of students at different
learning stages.

For JPLAS, the answer platform has been implemented to help self-studies of students
at home [1]. It is implemented on Node.js [2], and will be distributed to students using
Docker [3]. The correctness of an answer to any exercise problem is verified automatically
and instantly by running the automatic marking functions.

In programming education, novice students should start by solving easy problems to
develop code reading skills. These problems may have short and simple codes that can help
students learn the language rules and basic programming ideas. After gaining solid code
reading skills, they can move to code writing study. If students are not able to understand
source codes written by others, they will have difficulty in writing their own programs
correctly. The learning goals should be gradually progressed as the understanding levels of
students are improved.

To assist this progressive programming learning by novice students, JPLAS offers the
following types of exercise problems. The grammar-concept understanding problem (GUP)
requests to answer the important words, such as reserved words and common libraries in
the programming language, in the given source code by giving the questions that describe
their concepts. The value trace problem (VTP) requests the current values of the important
variables and the output messages in the given source code. The element fill-in-blank problem
(EFP) requests to fill in the blank elements in the given source code so that the original
source code is gained. The code completion problem (CCP) requests to correct and complete
the given source code that has several blank elements and incorrect ones. The code writing
problem (CWP) requests to write a source code that will pass the tests in the given test code,
where the code testing is applied by running both codes on JUnit. In every exercise problem,
the correctness of any answer from a student is verified automatically in the answer platform.
The string matching with the correct answer is adopted in GUP, VTP, EFP, and CCP. The
unit testing of the answer code is applied in CWP.

Among these problem types, CWP is designed to study writing source codes from
scratch that will satisfy the requested specifications in the assignment. The answer platform
automatically runs JUnit with the given test code and the submitted source code for code
testing when the answer submission button is clicked [1].

Previously, we implemented the answer code validation program in Python to help
a teacher assign and mark a lot of CWP assignments to many students in their Java
programming course in a university or professional school [4]. This program automatically
verifies the source codes from all the students for each CWP assignment and reports the
number of passed test cases by each code in the CSV file. By checking the summary of
the test results of all the students in the CSV file, the teacher can easily grasp the learning
progress of the students and grade them. However, although this program plays a crucial
role in evaluating the correctness of code behaviors, it cannot detect code plagiarism that can
often happen in programming courses.

In this paper, we implement a code plagiarism checking function in the answer code
validation program, and present its application results to a Java programming course at
Okayama University, Japan. First, this function removes the whitespace characters, such
as spaces or tabs, and the comment lines using the regular expressions. Next, it calculates
the Levenshtein distance and the similarity score for each pair of source codes from different
students in the class. If the score is larger than a given threshold, these two source codes are
regarded as plagiarism. Finally, it outputs the scores as a CSV file with the student IDs. The
function will enhance the functionality of the answer code validation program and contribute
to comprehensive and effective Java programming studies of novice students.

Currently, code plagiarism has become serious due to the great progress of generative
AI tools such as ChatGPT. For CWP, students can obtain an answer source code for each
assignment by submitting the test code. It is expected that code plagiarism checking function
will detect the source codes generated by AI tools by collecting the possible ones.
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For evaluations, we applied the proposed function to a total of 877 source codes for
45 CWP assignments submitted from 9 to 39 students and analyzed the results. It was
found that (1) CWP assignments asking for shorter source codes generate higher scores
than those for longer codes due to the use of test codes, (2) proper thresholds are different
by assignments, and (3) some students often copied source codes from certain students.

The rest of this paper is organized as follows: Section 2 discusses related works in
literature. Section 3 reviews our previous works of the code writing problem. Section 4
presents the implementation of the code plagiarism checking function. Section 5 discusses
application results. Finally, Section 6 concludes this paper with future works.

2. Literature Review

In this section, we discuss related works in literature to this study.

2.1. Programming Education Learning Tools

Numerous studies have explored the domain of educational tools and platforms
designed to enrich programming education.

In [5,6], Ala-Mutka et al. and Konecki discussed typical issues faced by beginners
in programming and reviewed the current efforts and methods being used to teach pro-
gramming. Many tools have been suggested to assist students in overcoming challenges in
learning programming. ToolPetcha is an example of such a tool, serving as an automated
helper for programming tasks [7].

In [8], Li et al. introduced a game-based learning environment designed to help
beginners in programming. This environment uses the task of creating games to simplify
the understanding of basic programming. It also incorporates methods for visualizing
ideas, allowing students to interact with game objects to grasp key programming concepts.

In [9], Ünal et al. created a collaborative learning environment with a technology-
focused curriculum for dynamic websites in order to learn what the students thought
about the learning environment. It was a qualitative research. They gathered student
opinions on the dynamic online learning environment, which promoted problem-solving
cooperation through semi-structured interviews. According to their research, dynamic web
page technology may enhance the learning environment in a community college context,
and collaborative learning techniques focused on problem-solving can be successful.

In [10], Zinovieva et al. conducted a comparative analysis of various online platforms
used for programming instruction. The study focused on selecting engaging assignments
from the educational website hackerrank.com. The goal was to identify the key features
of different online platforms suitable for teaching programming to aspiring computer
scientists and programmers through distance learning. The researchers examined user
experiences on online coding platforms (OCP) and suggested incorporating online pro-
gramming simulators into computer science lessons. This recommendation takes into
consideration functionality, students’ readiness levels, and expected learning outcomes.

In [11], Denny et al. introduced and assessed CodeWrite, a web-based application
that provides drills and practices for Java programming. Students have responsibility
for creating activities that can be shared with their classmates. Because the tool does not
employ a testing tool such as JUnit, validations through program testing are limited.

In [12], Shamsi et al. developed a graph-based grading system for beginner Java
programming classes, termed eGrader. Each submitted program is dynamically analyzed
using JUnit, and statically analyzed based on the program’s graph. Experiments were
conducted to validate the correctness.

In [13], Edwards et al. shared their experiences of using test-driven development (TDD)
in conjunction with an automated grader. This paper explored the benefits and challenges of
implementing TDD in a computer science education context and evaluated the effectiveness
of using an automated grading system. The authors discussed how TDD, combined with
automated grading, enhances student learning and provides valuable feedback on their
programming assignments.
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In [14], Tung et al. implemented Programming Learning Web (PLWeb). It offered an
integrated development environment (IDE) for instructors to compose exercises and a user-
friendly editor for students to submit solutions. The system also included features such
as visualized learning status and a plagiarism detection tool to support the teaching and
learning process.

These initiatives span a wide spectrum, encompassing innovative solutions such as
ToolPetcha [7], an automated programming assistant aiming to aid learners in navigating
programming complexities. Additionally, researchers propose game-based learning envi-
ronments [8], leveraging engaging tasks to simplify fundamental programming concepts.
Collaborative learning environments powered by dynamic web technologies [9] offer a
communal approach to problem-solving, enhancing students’ understanding through
collective efforts. Alongside these, platforms like hackerrank.com [10] serve as hubs for
practical assignments, enhancing learning experiences through engaging coding challenges.
Complementing these platforms are web-based tools like CodeWrite [11], novel grading
systems such as eGrader [12], and Programming Learning Web (PLWeb) [14], each tailored
to provide targeted exercises and structured assessments, contributing to a multifaceted
landscape of educational aids and platforms in programming education.

2.2. Plagiarism Detection and Assessment Tools

Another cluster of research concentrates on advancing plagiarism detection and as-
sessment tools within programming education.

In [15], Rani et al. focused on Levenshtein’s edit distance, a method for comparing
text documents and measuring the effort needed to change one document into another.
The paper tries to make Levenshtein’s edit distance algorithm work better by leaving out
common words when calculating the transformation effort. The proposed system improved
the execution time by removing stop words.

In [16], Ihantola et al. examined the latest advancements in automatic assessment tools for
programming exercises. They discussed key features and approaches, encompassing program-
ming languages, learning management systems, testing tools, restrictions on resubmissions,
manual assessments, security measures, distributions, and specialized considerations.

In [17], Duric et al. proposed various source code similarity detection systems, in-
cluding the source code similarity detection system (SCSDS). They were evaluated on their
abilities to detect plagiarism despite complex modifications. SCSDS stands out due to its
customizable algorithm weights, providing users with flexibility. While promising results
were observed, concerns about processing speed were noted. This study emphasizes the
importance of considering code context in plagiarism detection. Future research should
focus on optimizing processing speed and improving user interfaces while exploring the
impact of code contexts on detection accuracy.

In [18], Ahadi et al. investigated the degree of agreement among the three popular
plagiarism detection tools, namely, Jplay, MOSS, and Sim upon the students’ C++ program
source codes in a data structure and algorithms course. SIM has higher precision than the
other two tools. It was found that integrating SIM and MOSS will be more effective for
dealing with code similarity.

In [19], Novak et al. reviewed plagiarism detection tools and analyzed the effective-
ness of each tool using comparison metrics and obfuscation methods with data sets for
quantitative analysis and categorizations. It is described that the results will be helpful for
teachers finding the right tools for similarity detection and also useful for researchers for
improvements and future research.

In [20], Karnalim et al. discussed the way to improve the accuracy of code similarity
detection by excluding the code segments that are unlikely to indicate plagiarism. By
analyzing and identifying the code segments that can be excluded from various program-
ming assignments, this paper aimed to enhance the accuracy of plagiarism detection in
programming assignments.
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In [21], Kustanto et al. proposed Deimos, a tool to detect plagiarism in program-
ming assignments. Its innovative approach combines tokenization and the Running Karp–
Rabin Greedy String Tiling algorithm, providing instructors with an efficient and language-
independent tool. Deimos not only detects plagiarism but also contributes to improving
programming education.

These studies encompass a wide array of endeavors, including comprehensive eval-
uations of automatic assessment tools [16] and the proposal of sophisticated source code
similarity detection systems like SCSDS [17]. Comparative analyses among popular plagia-
rism detection tools [18] highlight their varying precision levels and advocate for synergistic
integrations to enhance code similarity examinations. Moreover, studies explore strate-
gies to bolster the accuracy of code similarity detection, focusing on segment exclusion
methodologies [19,20]. The introduction of innovative tools such as Deimos [21], integrating
tokenization and advanced algorithms, underscores the ongoing efforts to develop robust
and efficient tools addressing the evolving challenges of detecting code plagiarism, pivotal
for upholding academic integrity in programming education.

These related studies underscore the significance of understanding and addressing
the unique challenges faced by programming novices, advocating for versatile and ef-
fective teaching methodologies to cultivate a robust programming education landscape.
This categorization highlights the various facets of education explored in these studies,
encompassing challenges in learning programming, innovative learning environments,
technological platforms for teaching, collaborative learning techniques, and advancements
in assessment tools and plagiarism detection methods within the programming educa-
tion domain.

2.3. Discussion and Implications

This subsection critically examines the study’s findings. It includes a comparative
analysis of experimental results against prior research, discusses theoretical implications
regarding the methodology, and explores practical implications for educators and system
developers in the domain of programming education.

2.3.1. Comparative Analysis

The literature review reveals a variety of approaches to code plagiarism detection
and programming education tools. In [17], the authors emphasize customizable algorithm
weights in plagiarism detection systems, offering flexibility, but highlighting concerns
regarding processing speed. Conversely, in [18], the authors delve into a comparative
study of popular plagiarism detection tools in a C++ programming course, highlighting
the effectiveness of specific tools when integrated. Moreover, in [20], the authors focus on
enhancing plagiarism detection accuracy by excluding unlikely segments, emphasizing the
importance of refining detection methods. These studies collectively underscore the need
for adaptable and accurate detection methods in combating code plagiarism.

2.3.2. Theoretical Implications

Theoretical insights from the reviewed literature suggest multifaceted considerations
in code plagiarism detection systems. In [17], the authors emphasize the pivotal role
of customizable algorithm weights in detecting complex modifications, urging further
exploration of code context’s impact on detection accuracy. Conversely, in [21], the authors
introduce Deimos, employing tokenization and the Running Karp–Rabin Greedy String Tiling
algorithm, demonstrating an innovative, language-independent approach to detections.
These studies underscore the significance of customizable algorithms and innovative
methodologies in enhancing the theoretical underpinnings of plagiarism detection systems.

2.3.3. Practical Implications

Practical insights from the reviewed literature highlight diverse approaches to address
the practical challenges of plagiarism detection and programming education tools. In [19],
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the authors present the integration of different detection tools as a practical solution to
enhance code similarity examinations in programming courses. Additionally, in [20], the
authors emphasize the need to exclude segments unlikely to indicate plagiarism, offering a
pragmatic approach to refining detection accuracy. Moreover, in [21], the authors introduce
Deimos, a tool with practical implications for instructors, providing efficient and language-
independent plagiarism detections, and enhancing programming education. These studies
collectively emphasize the significance of pragmatic strategies and innovative tools in
practical implementations within programming education.

By examining these papers, our proposal introduces a simple and unique method
for detecting code plagiarism by utilizing regular expressions to streamline source codes
and employing the Levenshtein distance for similarity scoring. We applied the proposal
to a Java programming course at Okayama University, demonstrating its practicality and
effectiveness in a real-world educational context. Although the Levenshtein distance is a
useful metric for detecting plagiarism, the current proposal may have some weaknesses,
such as not considering syntax or grammar.

3. Previous Works of Code Writing Problem

In this section, we discussed an overview of the code writing problem (CWP) and the
answer platform using Node.js in JPLAS.

3.1. Code Writing Problem

The code writing problem (CWP) assignment contains a statement accompanied with
test code, both provided by the teacher. Students are tasked with writing a source code that
successfully passes all the test cases described in the test code. The correctness of the source
code from a student is validated through code testing, utilizing JUnit to execute the test code
with the source code. In order to write the correct source code, each student should refer to
the detailed specifications given in the test code.

To generate a new assignment for CWP, the teacher needs to perform the follow-
ing steps:

1. Create the problem statement with specifications for the assignment.
2. Make or collect the model source code for the assignment and prepare the input data.
3. Run the model source code to obtain the expected output data for the prepared

input data.
4. Make the test code that has proper test cases using the input and output data, and add

messages there to help implement the source code.
5. Register the test code and the problem statement as the new assignment.

3.2. JUnit for Unit Testing

In order to facilitate code testing, an open-source Java framework JUnit that has been
designed with a user-friendly style for Java, is utilized, aligning with the test-driven develop-
ment (TDD) approach [22]. JUnit helps the automatic unit test of a source code. Performing
a test on JUnit is simple by using a proper “assert” method in the library. For example, the
“assertEquals” method compares the output by the source code with its expected output for
the given input data, and shows the result in the standard output.

3.3. Example Test Code

A test code is written by using the JUnit library. Here, the BubbleSort class in Listing 1 [23]
is used to explain how to write the corresponding test code. This BubbleSort class contains
the “sort(int[] a)” method for performing the bubble sort algorithm on the integer input
array “a” and returns the sorted array.
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Listing 1. Source Code 1.

1 package CWP;
2 public class BubbleSort {
3 public static int[] sort(int[] a) {
4 int n = a.length;
5 int temp = 0;
6 for(int i=0; i < n; i++){
7 for(int j=1; j < (n-i); j++){
8 if(a[j-1] > arr[j]){
9 temp = a[j-1];

10 a[j-1] = a[j];
11 a[j] = temp;
12 }
13 }
14 }
15 return a;
16 }
17 }

The test code in Listing 2 tests the sort method.

Listing 2. Test Code 1.

1 package CWP;
2 import static org.junit.Assert .*;
3 import org.junit.Test;
4 import java.util.Arrays;
5 public class BubbleSortTest {
6 @Test
7 public void testSort () {
8 BubbleSort bubbleSort = new BubbleSort ();
9 int[] codeInput1 = {7,5,0,4,1,3};

10 int[] codeOutput = bubbleSort.sort(codeInput1);
11 int[] expOutput = {0,1,3,4,5,7};
12 try {
13 assertEquals ("1: One input case:",Arrays.toString(

expOutput),Arrays.toString(codeOutput));
14 } catch (AssertionError ae) {
15 System.out.println(ae.getMessage ());
16 }
17 }
18 }

This test code includes the three import statements for the JUnit packages at Lines
2, 3, and 4. It also declares the BubbleSortTest class at Line 5, which contains one test
method annotated with “@Test” at Line 6. This annotation indicates that the following lines
represent a test case that will be executed on JUnit as the following procedure:

1. Generate the bubbleSort object of the BubbleSort class in the source code.
2. Call the sort method of the bubbleSort object with the arguments for the input data.
3. Compare the output codeOutput of the sort method with the expected one expOutput

using the assertEquals method.

3.4. CWP Answer Platform for Students

To assist students in solving CWP assignments efficiently, we have implemented the
answer platform as a web application system using Node.js. Figure 1 illustrates the software
architecture. It is noted that the OS can be Linux, Windows or Mac.
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This platform follows the MVC model. For the model (M) part, JUnit is used where Java
is used to implement the programs. The file system is used to manage the data where all data
are provided by a file. For the view (V) part of the browser, Embedded JavaScript (EJS) is used
instead of the default template engine of Express.js, to avoid the complex syntax structure.
For the control (C) part, Node.js and Express.js are adopted together, where JavaScript is used
to implement the programs.

Figure 1. CWP software architecture.

Figure 2 illustrates the answer interface to solve a CWP assignment on a web browser.
The right side of the interface shows the test code of the assignment. The left side shows
the input form for a student to write the answer source code. A student needs to write the
code to pass all the tests in the test code while looking at it. After completing the source
code, the student needs to submit it by clicking the “Submit” button. Then, the code testing
is immediately conducted by compiling the source code and running the test code with
it on JUnit. The test results will appear on the lower side of the interface. It is noted that
Figures 1 and 2 are adopted from a previous paper [4].

Figure 2. CWP answer interface.
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3.5. Answer Code Validation Program for Teachers

The implementation of the answer code validation program for CWP in JPLAS has been
implemented to help teachers. This program allows automatic testing of all the source
codes from students stored in one folder for one assignment with the same test code by the
following procedure:

1. Download the zip file containing the source codes for each assignment using one test
code. It is noted that a teacher usually uses an e-learning system such as Moodle in the
programming course.

2. Unzip the zip file and store the source code files in the appropriate folder under the
“student_codes” folder within the project path.

3. Store the corresponding test code in the “addon/test” folder within the project directory.
4. Read each source code in the “student_codes” folder, run the test code with the source

code on JUnit, and save the test result in the text file within the “output” folder. This
process is repeated until all the source codes in the folder are tested.

5. Generate the summary of the test results for all the source codes by the CSV file
and save it in the “csv” folder. The example of folder structure and related files are
illustrated in Figure 3, which was adapted from [4].

codevalidator

student_codes

student1

student2

addon

test

Java_CWP_algorithm

Java_CWP_basic

output

student1_Java_CWP_basic_output.txt

csv

student1_Java_CWP_basic.csv

Figure 3. Example of file structures with folder hierarchy.

4. Code Plagiarism Checking Function

In this section, we present the implementation of the code plagiarism checking function
in the answer code validation program for the code writing problem in JPLAS. The current
program cannot detect code plagiarism that can often happen in programming courses.
The code plagiarism checking function detects the code duplication or copy by calculating
the similarity score using the Levenshtein distance for every pair of two source codes from
different students.

4.1. Levenshtein Distance

The Levenshtein distance, also known as the edit distance, indicates the measure of
the similarity between two strings or their sequences [24]. It represents the minimum
number of single-character edits by insertions, deletions, or substitutions that are required
to transform one string into another. The smaller the Levenshtein distance, the more similar
these strings are. Then, the similarity score is calculated by the following equation:

similarity score =

(
1 − Levenshtein Distance

max(length of string1, length of string2)

)
× 100 (1)
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where max(length of string1, length of string2) represents the larger length between two
strings string1 and string2.

4.2. Procedure of Code Plagiarism Checking Function

The code plagiarism checking function that will compare the similarity between pairs of
source code files and generate a CSV file containing the results, will be described in the
following procedure.

1. Import the necessary Python libraries to calculate the Levenshtein distance, CSV output,
and regular expressions.

2. Read the two files for source codes, and remove the whitespace characters such as
spaces and tabs and the comment lines using the regular expression to make one string.

3. Calculate the Levenshtein distance using the editops function.
4. Compute the similarity score from the Levenshtein distance.
5. Repeat Steps 2–4 for all the source codes in the folder.
6. Sort the pairs in descending order of similarity scores using the sorted function and

output the results in the CSV file.

4.3. Example Result

An example result by the proposed function is shown here using the source codes for
HelloWorld class submitted by Student 1 and by Student 2. The similarity score for this pair
is 83%.

By Student 1� �
01: package p1;
02: public class HelloWorld{
03: public static void main(String[] args) {
04: System.out.println("Hello World!");
05: }
06: }� �

By Student 2� �
01: package p1;
02: public class HelloWorld{
03: public static void main(String[] args){
04: System.out.print ("Hello World!");
05: }
06: }� �

4.4. Computational Complexity Analysis of Code Plagiarism Checking Function

The code plagiarism checking function implemented in this study employs the Leven-
shtein distance, which represents a measure of the similarity between two sequences, to
detect code duplications or copying among student submissions. Here, we analyze the
computational complexity and the efficiency of the proposed algorithm.

The core of the code plagiarism checking function is the Levenshtein distance algorithm.
This algorithm calculates the minimum number of single-character edits of insertions,
deletions, or substitutions that are required to change one string into another.

Before computing the Levenshtein distance, this function preprocesses the given source
codes. This preprocessing involves removing the whitespace and comments, accomplished
using their regular expressions. While the time complexity of the preprocessing varies, it
generally operates in linear time relative to the length n of the input string.

Then, the code plagiarism checking function computes the Levenshtein distance be-
tween the strings of each pair of the source codes. The computational complexity of the
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Levenshtein distance computation is given by O(nm), where n and m represent the lengths
of the two source codes. Therefore, the complexity of each computation depends on the
length of the files being compared. However, the source codes to be checked were made by
the students for the same assignment. Thus, it is possible to assume that every code has n
characters. As a result, the complexity for each code pair checking would be O(n2).

The number of source code pairs is given by k(k − 1)/2 when k students submit source
codes. Therefore, the final computational complexity of the function is given by O(k2n2).

In addition, in the revised paper, we measure the CPU time for applying the code
plagiarism checking function to all the source codes for each assignment in Section 5.1.
The PC environment consists of an Intel® Core™ i5-7500K CPU @ 3.40 GHz with a 64-bit
Windows 10 Pro operating system. The function was implemented by Python 3.9.6.

5. Analysis of Application Results

In this section, we applied the code plagiarism checking function to a total of 877 source
codes that were submitted from 9 to 39 students for each of the 45 CWP assignments in a
Java programming course in Okayama University, Japan, and analyzed the results.

5.1. CWP Assignments

The 45 CWP assignments can be categorized into five groups, namely, basic grammar,
data structure, object-oriented programming, fundamental algorithms, and final examination.
Basically, they have different levels. Table 1 shows the group topic, the assignment title, the
number of students who submitted answer source codes, lines of code (LOC), and CPU
time for each assignment.

Table 1. CWP assignments for evaluations.

Group Topic ID Assignment Title Number of
Students LOC CPU Time (s)

basic grammar

1 helloworld 33 6 1.13

2 messagedisplay 33 8 0.27
3 codecorrection1 32 11 0.23
4 codecorrection2 32 12 0.25
5 ifandswitch 32 27 0.25
6 escapeusage 32 6 0.23
7 returnandbreak 32 18 0.25
8 octalnumber 32 8 0.23
9 hexadecimal 32 9 1.38

10 maxitem 32 11 1.02
11 minitem 31 11 1.05

data structure

12 arraylistimport 19 35 0.20
13 linkedlistdemo 18 28 0.19
14 hashmapdemo 17 26 0.22
15 treesetdemo 17 32 0.11
16 que 16 17 0.06
17 stack 16 17 0.06

object-oriented
programming

18 animal 16 18 0.06
19 animal1 16 20 0.08
20 animalinterfaceusage 16 29 0.41
21 author 16 34 0.13
22 book 16 43 0.55
23 book1 16 24 0.08
24 bookdata 16 40 0.11
25 car 16 21 0.09
26 circle 16 22 0.09
27 gameplayer 16 13 0.27
28 methodoverloading 16 13 0.31
29 physicsteacher 16 25 0.08
30 student 16 17 0.27
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Table 1. Cont.

Group Topic ID Assignment Title Number of
Students LOC CPU Time (s)

fundamental
algorithms

31 binarysearch 12 12 0.16
32 binsort 11 20 0.19
33 bubblesort 11 21 0.22
34 bubblesort1 11 16 0.17
35 divide 11 8 0.09
36 GCD 11 19 0.13
37 LCM 11 18 0.16
38 heapsort 10 38 0.14
39 insertionsort 10 23 0.16
40 shellsort 10 28 0.19
41 quicksort1 9 38 0.28
42 quicksort2 9 25 0.11
43 quicksort3 9 30 0.13

final
examination

44 makearray 39 25 0.34
45 primenumber 39 20 0.27

5.2. Analysis Results of Individual Assignments

First, we analyze the solution results of the individual assignments by the students.

5.2.1. Results for Basic Grammar

Figure 4 shows the average similarity score and the percentage of pairs whose similarity
score is 100% as the identical code pair among all the source code pairs for basic grammar.
Assignment at ID = 1 has a high average similarity score of 84.45%. It indicates that the
source codes of most students are similar. Assignments at ID = 2 and ID = 6 also have
relatively high similarity scores, which are higher than 70%. The reason is that the source
codes for the assignments are short and simple and their class and method names are fixed
in the test codes. Thus, variations of source codes are very limited.

Figure 4. Results for basic grammar.

Table 2 shows the number of student pairs that had a 100% similarity score for each
number of assignments for basic grammar. It suggests that one pair submitted the identical
source codes for all of the 11 assignments, and another pair did the same for 10 assignments.
With the high probability, these pairs submitted copied source codes. Some students often
copied the source codes from certain students.
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Table 2. Number of student pairs with identical codes.
Number of Assignments with Identical

Codes Number of Student Pairs

11 1

10 1

6 3

5 8

4 31

3 71

2 132

1 182

5.2.2. Results for Data Structure

Figure 5 shows the average similarity score and the percentage of pairs whose similarity
score is 100% as the identical code pair among all the source code pairs for data structure.
Assignment at ID = 15 has a high average similarity score of 51.18%. It indicates that the
source codes of most students are similar. Assignments at ID = 17 also have relatively
high similarity scores in identical code pairs. The reason is that as this data structure topic
is more advanced than basic grammar, the assignments were challenging or the students
struggled to find unique solutions.

Figure 5. Results for data structure.

Table 3 shows the number of student pairs that had a 100% similarity score for each
number of assignments for data structure. It suggests that one pair submitted the identical
source codes for five assignments, and another pair did the same for four assignments.
With the high probability, these pairs submitted copied source codes. Some students often
copied the source codes from certain students.

Table 3. Number of student pairs with identical codes.
Number of Assignment with Identical Codes Number of Student Pairs

5 1

4 1

1 8
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5.2.3. Results for Object-Oriented Programming

Figure 6 shows the average similarity score and the percentage of pairs whose similarity
score is 100% as the identical code pair among all the source code pairs for object-oriented
programming. Assignment at ID = 23 has a high average similarity score of 64.57%. It indicates
that the source codes of most students are similar. Assignments at ID = 18 and ID = 30
also have relatively high similarity scores, which are higher than 60%. The reason is that a
significant portion of students submitted very similar solutions for these assignments. The
absence of identical submissions in most assignments is a positive sign that students tried
different source codes.

Figure 6. Results for object-oriented programming.

5.2.4. Results for Fundamental Algorithms

Figure 7 shows the average similarity score and the percentage of pairs whose similarity
score is 100% as the identical code pair among all the source code pairs for fundamental
algorithms. Assignment at ID = 35 has a high average similarity score of 49.58%. It indicates
that the source codes of most students are similar. Although fewer students submitted
these assignments, the low similarity rates and absence of identical submissions in most
assignments suggest that students likely tackled these fundamental algorithm problems
independently. These assignments may have been sufficiently challenging, encouraging
diverse solutions.

Figure 7. Results for fundamental algorithms.
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5.2.5. Results for Final Examination

Figure 8 shows the average similarity score and the percentage of pairs whose similarity
score is 100% as the identical code pair among all the source code pairs for final examination.
Assignment at ID = 45 has the average similarity score of 26.89%. It indicates that the source
codes of most students are similar. Assignment at ID = 44 has a high average similarity score
of 21.37%. Both final examination assignments have relatively low average similarity rates.
It indicates that students’ solutions to these assignments were not highly similar. Moreover,
the 0.0% in the identical code pair shows that there were no identical submissions for either
of these assignments, which is a positive sign in a final examination.

Figure 8. Results for final examination.

5.3. Analysis Results of Assignment Group

Next, we analyze the solution results by each group. Table 4 shows the total number
of source code submissions, the total number of assignments, the average similarity score,
and the identical code percentage among all the student pairs in each group. It indicates
that basic grammar has the highest average similarity score of 57.17%, and final examination
has the lowest one. The assignments in basic grammar ask for short and simple source codes.
The assignments in final examination ask for more complex and long source codes.

Fortunately, the rate of identical source codes is very low in the four groups other than
basic grammar. It becomes zero in final examination, which suggests no cheating was done in
this online examination. Basically, most of the students seriously solved the assignments
by themselves.

When the source codes among the assignments are compared, it can be found that
the ones with high similarity scores do not need to use conditions or loops. Since the class
names, the method names, and the data types are basically fixed by the given test codes,
the answer source codes can be identical or highly similar to each other. Therefore, for the
automatic detection of code plagiarism by the proposed function, the threshold needs to be
adjusted properly by considering the features of each assignment. The formula will be in
future works.

The CPU time for each group will be also discussed in Table 4. The CPU time for each
section seems to correlate more with the number of submissions and assignments rather
than the complexity of the tasks themselves. This suggests that the volume of data plays
a significant role in the computational resources required for plagiarism detection and
analysis in this study.
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Table 4. Number of source codes and results in each group.

Group Number of Number of Ave. 100% CPU Time
Topic Source Codes Assignments Similarity Score Pair Rate (s)

basic grammar 353 11 57.17 15.29 6.29

data structure 103 6 42.96 2.15 0.84

object-oriented 208 13 50.46 2.69 2.53programming

fundamental 135 13 25.79 1.08 2.13algorithms

final exam 78 2 24.13 0.00 0.61

6. Conclusions

This paper presented the code plagiarism checking function in the code validation program.
It removes the whitespace characters and the comment lines using regular expressions, and
calculates the similarity score from the Levenshtein distance between every pair of two source
codes from students. If the score is larger than a given threshold, they are regarded as
plagiarism. The results are output in the CSV file. For evaluations, we applied the proposal
to a total of 877 source codes for 45 CWP assignments from 9 to 39 students and analyzed
the results. The results confirm the validity and effectiveness of the proposal.

We also applied this code plagiarism checking function to this year’s Java programming
class. Although we informed the students to avoid copy from each other, we still found
that 4 students submitted copied source codes for some assignments among 55 students. In
future works, we will assign new assignments to students in Java programming courses,
and apply the proposal to them. We will also study the coding rule checking function to
improve the readability and efficiency of the codes.
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