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Abstract: In this article, the Lagrange expansion of the second kind is used to generate a novel
zero-truncated Katz distribution; we refer to it as the Lagrangian zero-truncated Katz distribution
(LZTKD). Notably, the zero-truncated Katz distribution is a special case of this distribution. Along
with the closed form expression of all its statistical characteristics, the LZTKD is proven to pro-
vide an adequate model for both underdispersed and overdispersed zero-truncated count datasets.
Specifically, we show that the associated hazard rate function has increasing, decreasing, bathtub, or
upside-down bathtub shapes. Moreover, we demonstrate that the LZTKD belongs to the Lagrangian
distribution of the first kind. Then, applications of the LZTKD in statistical scenarios are explored.
The unknown parameters are estimated using the well-reputed method of the maximum likelihood.
In addition, the generalized likelihood ratio test procedure is applied to test the significance of the
additional parameter. In order to evaluate the performance of the maximum likelihood estimates,
simulation studies are also conducted. The use of real-life datasets further highlights the relevance
and applicability of the proposed model.

Keywords: Lagrange expansion of the first kind; Lagrange expansion of the second kind;
zero-truncated Katz distribution; dispersion; maximum likelihood estimation; simulation

1. Introduction

In probability theory, positive discrete distributions called “zero-truncated distribu-
tions” are used to model data that exclude zero counts. For instance, the number of
times a voter casts a ballot during the general election, the number of journal articles
published in various disciplines, the number of stressful events reported by patients,
and the length of hospital stay, which must be at least one day. Various zero-truncated
discrete distributions, such as the zero-truncated Poisson distribution (ZTPD) (see [1]),
zero-truncated negative-binomial distribution (see [2]), zero-truncated Katz distribution
(ZTKD) (see [3]), zero-truncated generalized negative-binomial distribution (ZTGNBD)
(see [4]), zero-truncated generalized Poisson distribution (see [5]), intervened Poisson
distribution (IPD) (see [6]), intervened generalized Poisson distribution (IGPD) (see [7]),
a generalization of the Poisson–Sujatha distribution (AGPSD) (see [8]), and zero-truncated
discrete Lindley distribution (ZTDLD) (see [9]), have been proposed in the literature to
model such count data. In spite of the abundance of practical situations with count-
ing data without zero categories, there is a notable sparseness of zero-truncated dis-
crete distributions in the scientific literature, in contrast to the vast number of classical
discrete distributions.

Since the early 1970s, researchers studying discrete distributions seem to have fo-
cused more on “Lagrangian distributions”, so named because they are connected to the
Lagrange expansions (see [10,11]). The authors in [12] considered the possibility of using
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Lagrangian distributions to address inferential problems in a random mapping theory.
A study in [13] showed that, in certain circumstances, all the discrete Lagrangian distri-
butions converged to the Gaussian distribution and the inverse Gaussian distribution.
The authors in [14] proposed certain mixture distributions based on Lagrangian distribu-
tions. Recently, Lagrangian distributions were used for turbulent collisional fluid–particle
flows (see [15]). A unified method for creating the class of “quasi” distributions, which
includes the quasi-binomial, quasi-Polya, quasi-hypergeometric, and several new quasi-
distributions, was presented in [16] using the Lagrange expansions. As a result, the distribu-
tions arose from Lagrange expansions and have gained traction from both theoretical and
applied perspectives.

The Lagrangian distributions of the first kind (LD1) and the Lagrangian distributions
of the second kind (LD2) were the first divisions of the class of Lagrangian distributions. The
authors in [13] were the first to present and study the LD1. Several Lagrangian distributions
have been constructed using the LD1, but four fundamental distributions, which are the
generalized negative binomial distribution, the generalized geometric series distribution,
the generalized Poisson distribution, and the generalized logarithmic series distribution,
are of particular note and have proven to be very useful in practical applications (see [4]).
The authors in [17] defined a Lagrangian Katz distribution (LKD) using the LD1. The
author in [18] showed that the LKD was a subclass of the generalized Polya–Eggenberger
family of distributions. The authors in [19] obtained the LKD as a limiting distribution of
the Markov–Polya distribution. The authors in [20] discussed the application of the LKD to
time series data.

On the other hand, the authors in [21,22] conducted extensive research on the LD2.
The Geeta distribution and its characteristics were derived in [23] based on the LD2. The
authors in [24] proposed the Dev distribution and some of its applications in queuing
theory by using the LD2. Ref. [25] proposed the Harish distribution and inferred some of
its characteristics, with applications in the branching process and queuing theory based
on the LD2. Furthermore, the authors in [18] also used the LD2 to create the generalized
LKD of type two. The competence of the distributions proposed based on the LD2 pro-
foundly attracted our team, and as a result, we suggested the Lagrangian version of the
ZTPD, the zero-truncated binomial distribution, and the IPD (see [26–28]). Moreover, the
authors in [24] demonstrated that every member of the LD2 was also a member of the
LD1. Thus, the authors observed from the literature that several members of both LD1 and
LD2 were based on various variants of classical discrete distributions that have thoroughly
been explored in the literature. Analogously, we were motivated to fill the sparseness
of zero-truncated discrete distributions by considering the probability-generating func-
tion (PGF) of the ZTKD and generalizing it through the LD2 and so we named the new
distribution LZTKD.

An overview of the remaining study sections is provided below: Section 2 provides
a brief summary of the Lagrange expansions. The construction of the LZTKD and its
statistical features are explored in Section 3 and Section 4, respectively. In Section 5, it is
established that the LZTKD belongs to the LD1 class. In Section 6, the maximum likelihood
(ML) estimation approach is employed to explore the parameter estimation of the LZTKD.
The significance of the additional parameter in the LZTKD is evaluated using the likelihood
ratio test in Section 7. The simulation results based on the maximum likelihood estimates
(MLEs) are included in Section 8. Section 9 provides an empirical illustration of the LZTKD,
and Section 10 concludes the article.

2. Some Basic Preliminary Results

In this section, we go over some fundamental concepts, such as the Lagrange expan-
sions at the basis of the LD1 and LD2, as well as some distributions that belong to the LD1
and LD2 that have already been published in the literature.
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2.1. Lagrange Expansions

Let us first present the Lagrange expansions described in [10,11]. These expansions
are described as

k2(z) =
∞

∑
y=0

uy

y!

[
Dy−1

{
(k1(z))yk

′
2(z)

}]∣∣∣∣
z=0

(1)

and
k2(z)

1− zk′1(z)
k1(z)

=
∞

∑
y=0

uy

y!

[
Dy{(k1(z))yk2(z)}

]∣∣∣∣
z=0

, (2)

where Dr =
(

∂
∂z

)r
and z = u k1(z), under the conditions that k1(z) and k2(z) are two

analytic functions of z in [−1,1], which are differentiable with respect to z and such that
k1(0) 6= 0.

These expansions are at the basis of our findings.

2.2. Lagrangian Distribution of the First Kind

Along with the Lagrange expansion given in Equation (1), under the following addi-
tional conditions:
k1(1) = k2(1) = 1, k2(0) ≥ 0, and

Dy−1[(k1(z))yk′2(z)
]∣∣

z=0 ≥ 0,

for y = 0, 1, 2, . . . in Equation (1), we can define the probability mass function (PMF) of the
LD1 as

P(Y = y) =


k2(0) y = 0,

Dy−1[(k1(z))yk′2(z)]
∣∣
z=0

y!
y = 1, 2, . . . .

(3)

The class of Lagrangian distributions given in Equation (3) is sometimes denoted as
LD1(k1(z), k2(z)). The corresponding PGF of the PMF given in Equation (3) is indicated as

G(u) = k2(z),

where u = z
k1(z)

.
The functions k1(z) and k2(z) are called the transformed function and transformer

function, respectively. Some important members belonging to the LD1 available in the
literature are discussed below.

Generalized Katz Distribution

A special case of the LD1 includes the generalized Katz distribution (GKD) given
in [4]. It is generated through the PGF of the Katz distribution (KD). That is, the PMF of

the GKD is obtained by applying k1(z) =
( 1−αz

1−α

)− β
α and k2(z) =

( 1−αz
1−α

)− γ
α in Equation (3).

Hence, it is given by

f1(y) =
γ
α

γ+βy
α + y

αy(1− α)
γ+βy

α

( γ+βy
α + y

y

)
, y = 0, 1, 2, . . . ,

where (x
y) is the generalized binomial coefficient, that is, (x

y) = x(x−1)...(x−y+1)
y! , γ > 0,

0 < α < 1, and β > 0.

Generalized Poisson distribution

A special case of the LD1 includes the generalized Poisson distribution (GPD) given
in [4], which is generated through the PGF of the Poisson distribution. That is, the PMF of
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the GPD is obtained by applying k1(z) = eα(z−1) and k2(z) = eγ(z−1) in Equation (3). It is
thus given by

f2(y) =
γ(γ + αy)y−1e−γ−αy

y!
, y = 0, 1, 2, 3, . . . ,

where γ > 0 and 0 < α < 1.

Generalized Binomial Distribution

A special case of the LD1 includes the generalized binomial distribution (GBD) given
in [4], which is generated through the PGF of the binomial distribution. That is, the PMF
of the GBD is obtained by applying k1(z) = (1− α + αz)β and k2(z) = (1− α + αz)γ in
Equation (3). It is thus indicated as

f3(y) =
γ

γ + βy

(
γ + αy

y

)
αy(1− α)γ+βy−y, y = 0, 1, 2 . . . ,

where 0 < α < 1, γ > 0 and β < α−1.

2.3. Lagrangian Distribution of the Second Kind

Along with the Lagrange expansion given in Equation (2), under the conditions
k1(1) = k2(1) = 1, k2(0) ≥ 0, 0 < k

′
1(1) < 1, and

(1− k′1(1))[D
y{(k1(z))yk2(z)}]

∣∣
z=0 ≥ 0,

for y = 0, 1, . . . in Equation (2), we can define the PMF of the LD2 (see [21,29]). Explicitly,
it is given by

P(Y = y) =


(1− k′1(1))k2(0) y = 0,

(1− k′1(1))Dy[(k1(z))yk2(z)]
∣∣
z=0

y!
y = 1, 2, 3 . . .

(4)

The class of Lagrangian distributions given in Equation (4) is sometimes denoted as
LD2(k1(z), k2(z)).

The corresponding PGF is given by

G(u) =
(1− k′1(1))k2(z)

1− zk′1(z)
k1(z)

, (5)

where u = z
k1(z)

.

In this case, the functions k1(z) and k2(z) are also called the transformed function and
transformer function, respectively. Numerous members of the LD2 are available in the
literature, some of them are described below.

Weighted Consul Distribution

A special case of the LD2 includes the weighted Consul distribution (WCD) given in [4],
which is generated through the PGF of the binomial distribution and an analytic function.
That is, the PMF of the WCD is obtained by applying k1(z) = z and k2(z) = (1− α + αz)β

in Equation (4). It is given as

f4(y) =
(

βy
y− 1

)
(1− βα)αy−1(1− α)βy−y+1, y = 1, 2, 3 . . . ,

where 0 < α < 1 and β < α−1.
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Rectangular–Poisson Distribution

A special case of the LD2 includes the rectangular–Poisson distribution (RPD) given
in [4], which is generated through the PGF of the rectangular distribution and the PGF of the
Poisson distribution. That is, the PMF of the RPD is obtained by applying k1(z) = eα(z−1)

and k2(z) = 1−zn

n(1−z) in Equation (4). Hence, it is expressed as

f5(y) =
(1− α)e−yα

n

a

∑
i=0

(yα)i

i!
, y = 0, 1, 2, . . . ,

where n > 0 is an integer, a = min(y, n− 1), 0 < α < 1 .

Rectangular–Binomial Distribution

The rectangular–binomial distribution (RBD) given in [4] is a special case of the LD2,
which is generated by the PGF of the binomial and rectangular distributions, respec-
tively. That is, the PMF of the RBD is obtained by applying k1(z) = (1− α + αz)β and
k2(z) = 1−zn

n(1−z) in Equation (4). It is thus obtained as

f6(y) =
1− βα

n
(1− α)βy

a

∑
i=0

(
βy
i

)(
α

1− α

)i
, y = 0, 1, 2, . . . ,

where n > 0 is an integer, a = min(y, n− 1), 0 < α < 1, and β < α−1.
Given the applications of the Lagrangian distributions generated with various PGFs,

it is worthwhile to investigate other horizon Lagrangian distributions that make use of new
PGFs. This serves as the amended study distribution, which is displayed below.

3. Lagrangian Zero-Truncated Katz Distribution (LZTKD)

In this section, we adopt the PMF of the LD2 given in Equation (4) to derive the PMF
of the LZTKD. Here, we consider k1(z) as the PGF of the KD with parameters 0 < α < 1
and β < 1− α, and k2(z) as the PGF of the ZTKD with parameters 0 < α < 1 and γ > 0 to
generate the LZTKD.

That is, we take

k1(z) =
(

1− αz
1− α

)− β
α

, k2(z) =

( 1−αz
1−α

)− γ
α −

(
1− α

) γ
α

1−
(
1− α

) γ
α

. (6)

The analytic functions given in Equation (6) satisfy the conditions presented in
Section 2.3. That is, we have

k1(0) = (1− α)
β
α 6= 0, k1(1) = k2(1) = 1, and k2(0) = 0.

Then, under the transformation z = u
(

1−αz
1−α

)− β
α

, the PMF of the LD2 given in

Equation (4) can be derived as follows:

f (y) =
1− k

′
1(1)

y!

{
Dy
[
(k1(z))

yk2(z)
]}∣∣∣∣

z=0

=

(
1− β

1−α

)
(y!)−1

1− (1− α)
γ
α

{
Dy
[(

1− αz
1− α

)− γ+βy
α

− (1− α)
γ
α

(
1− αz
1− α

)− βy
α
]}∣∣∣∣

z=0

=

(
1− β

1−α

)
(y!)−1

1− (1− α)
γ
α

{
Dy
[

1− αz
1− α

]− γ+βy
α

− (1− α)
γ
α Dy

[
1− αz
1− α

]− βy
α
}∣∣∣∣

z=0

=

(
1− β

1−α

)
1− (1− α)

γ
α

αy(1− α)
γ+βy

α

[( γ+βy
α + y− 1

y

)
−
( βy

α + y− 1
y

)]
,
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where (−n
m ) = (−n)(−n−1)...(−n−m+1)

m! = (−1)m(n+m−1
m ).

Hence, the definition of the LZTKD can be formalized as follows:

Definition 1. Assume that a random variable (RV) Y follows the LZTKD, with 0 < α < 1, 0 <
β < 1− α, and γ > 0. Then, the PMF of Y is given by

f (y) =

(
1− β

1−α

)
1− (1− α)

γ
α

αy(1− α)
γ+βy

α

[( γ+βy
α + y− 1

y

)
−
( βy

α + y− 1
y

)]
, (7)

with y = 1, 2, 3 . . .

This distribution is denoted as LZTKD(α, β, γ), and one can write Y ∼ LZTKD(α, β, γ)
to inform that Y follows the LZTKD with the parameters α, β, and γ.

Now, Figure 1 portrays the graphical representation of the PMF of the LZTKD for
different parameter values of α, β, and γ. We see that it is monotonically decreasing for
increasing values of the parameters α and γ, and decreasing the value of the parameter β
as the value of y increases. In addition, this graph takes on a bell-shaped appearance as the
value of y increases if both the α and γ parameters increase but the parameter β remains
constant.

The hazard rate function (HRF) of the LZTKD is obtained by substituting the PMF in
the following equation:

h(y) = P(Y = y|Y ≥ y) =
f (y)

∑∞
j=y f (j)

, y = 1, 2, 3 . . . (8)

From Equation (8), it goes without saying that determining the closed-form expression
of the HRF is more difficult. However, to determine the shape of the HRF, we sketched its
graph. Figure 2 demonstrates that it has increasing, decreasing, bathtub, and upside-down
bathtub shapes for various parameter values.

Proof. For β = 0, the LZTKD defined with the PMF given in Equation (7) reduces to the
ZTKD; the following PMF is obtained:

f (y) =
(

γ
α +y−1

y ) αy (1− α)
γ
α

1− (1− α)
γ
α

, y = 1, 2, 3 . . . ,

In this sense, the LZTKD is a generalization of the ZTKD.

Proof. For β = 0 in Equation (6), the PMF of the LD2 given in Equation (4) can be rederived
as follows:

f (y) =
1− k

′
1(1)

y!

{
Dy
[
(k1(z))

yk2(z)
]}∣∣∣∣

z=0

=
1
y!

Dy
[( 1−αz

1−α

)− γ
α − (1− α)

γ
α

1− (1− α)
γ
α

]∣∣∣∣
z=0

=
(

γ
α +y−1

y ) αy (1− α)
γ
α

1− (1− α)
γ
α

, y = 1, 2, 3, . . . ,

which is the PMF of the ZTKD given in [3]. The proof is completed.
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Figure 1. Various shapes of the PMF of the LZTKD for different parameter values.
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4. Mathematical Properties

In this section, we present some important mathematical properties of the LZTKD,
including the median, mode, factorial moments, mean, variance, coefficient of variation
(CV), index of dispersion (IOD), skewness, and kurtosis.

4.1. Median

Let Y be a RV following the LZTKD. The median of Y is then defined by the smaller
integer k ∈ {1, 2, 3 . . . } such that P(Y ≤ k) ≥ 1

2 , also written as

k

∑
y=1

[( γ+βy
α + y− 1

y

)
−
( βy

α + y− 1
y

)]
αy(1− α)

βy
α ≥ (1− α)−

γ
α − 1

2
(
1− β

1−α

) . (9)

4.2. Mode

Let Y be a RV following the LZTKD. Then, the mode of Y, denoted by ym, exists in
{1, 2, 3 . . . }. It corresponds to the integer y for which the PMF f (y) has the greatest value.
That is, we aim to solve f (y) ≥ f (y− 1) and f (y) ≥ f (y + 1). First, we note that f (y) can
also be written as

f (y) =

(
1− β

1−α

)
1− (1− α)

γ
α

αy(1− α)
γ+βy

α Λ(y),

where Λ(y) = (
γ+βy

α +y−1
y )− (

βy
α +y−1

y ).

Obviously, the inequality f (y) ≥ f (y− 1) implies that

Λ(y)
Λ(y− 1)

≥ 1

α(1− α)
β
α

. (10)

Moreover, the inequality f (y) ≥ f (y + 1) implies that

Λ(y + 1)
Λ(y)

≤ 1

α(1− α)
β
α

. (11)

By combining Equations (10) and (11), we obtain the following condition:

Λ(ym + 1)
Λ(ym)

≤ 1

α(1− α)
β
α

≤ Λ(ym)

Λ(ym − 1)
. (12)

4.3. Probability Generating Function

The Lagrangian transformation z = u
(

1−αz
1−α

)− β
α

, when expanded in powers of u,

provides the PGF of the LD2 given in Equation (5). That is,

G(u) =
(1− k

′
1(1))k2(z)

1− zk′1(z)
k1(z)

=

(1− α− β)(1− αz)
{( 1−αz

1−α

)− γ
α − (1− α)

γ
α

}
(
1− (1− α)

γ
α
){ (1−αz)−zβ(1−α)

(1−αz)

} , (13)

where z = u
( 1−αz

1−α

)− β
α with α < 1.
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Remark 1. The moment-generating function (MGF) of a RV Y following the LZTKD is obtained
by putting z = es and u = ev in Equation (13). This yields

M(v) = E(evY) =

(1− α− β)(1− αes)

{( 1−αes

1−α

)− γ
α − (1− α)

γ
α

}
(
1− (1− α)

γ
α
){ (1−αes)(1−α)−es β(1−α)

(1−αes)

} , (14)

where s = v− β
α log

( 1−αes

1−α

)
with s < − log α.

4.4. Distribution of Sample Sum

Let Y1, Y2, . . . , Yn be n independently and identically distributed (iid) RVs following
the LZTKD. Then, the distribution of the sample sum W = ∑n

i=1 Yi has the following PGF:

G1(u) =

 (1− α− β)(1− αz)
{( 1−αz

1−α

)− γ
α − (1− α)

γ
α

}
(
1− (1− α)

γ
α
){ (1−αz)−zβ(1−α)

(1−αz)

}


n

,

where z = u
( 1−αz

1−α

)− β
α with α < 1.

Indeed, based on the PGF of the LZTKD given in Equation (13), the PGF of the RV
W becomes

G1(u) = E(uW) = E(uY1+Y2+...+Yn) =
n

∏
i=1

E(uYi ) =
n

∏
i=1

G(u) = [G(u)]n

=

 (1− α− β)(1− αz)
{( 1−αz

1−α

)− γ
α − (1− α)

γ
α

}
(
1− (1− α)

γ
α
){ (1−αz)−zβ(1−α)

(1−αz)

}


n

.

4.5. Factorial Moment

For any integer r ≥ 1, the rth factorial moments µ[r] of the LZTKD is calculated by
successively differentiating G(u) in Equation (4) r times with respect to u, and by setting
u = z = 1. Thus, we consider

G(u) =
(1− k′1(1))k2(z)
(1− uk′1(z))

and

(1− uk′1(z))G(u) = (1− k′1(1))k2(z).

Taking the first derivative with respect to u on both sides, we obtain

G(u)D1(1− uk′1(z)) + G′(u)(1− uk′1(z)) = (1− k′1(1))D1(k2(z)).

Then, taking second derivative with respect to u, we obtain

G(u)D2(1− uk′1(z)) + 2D1(1− uk′1(z))G
′(u) + (1− uk′1(z))G

′′(u) = (1− k′1(1))D2k2(z).

Proceeding like this, we obtain an rth derivative of the following form:

Dr(G(u)) =
(1− k′1(1))Dr(k2(z))−∑r

i=1(r− i + 1)Dr−i(G(u))Di(1− uk′1(z))
(1− uk′1(z))

. (15)



Analytics 2023, 2 472

For u = z = 1, Equation (15) can be written as

µ[r] =
(1− k′1(1))Dr(k2(z))−∑r

i=1(r− i + 1)µ[r−i]Di(1− uk′1(z))
(1− uk′1(z))

|u=z=1

= Dr(k2(z)) +
∑r

i=1(r− i + 1)µ[r−i]Di(uk′1(z))
(1− k′1(1))

.

(16)

We have k1(z) =
( 1−αz

1−α

)− β
α and k2(z) =

(
1−αz
1−α

)− γ
α −
(

1−α
) γ

α

1−
(

1−α
) γ

α
, which are substituted in

Equation (16) to yield

µ[r] =
Dr( 1−αz

1−α

)− γ
α

1− (1− α)
γ
α

+ β
∑r

i=1(r− i + 1)µ[r−i] Di (u (1− αz)−
β
α−1)(

1− β
1−α

) . (17)

4.6. Mean and Variance

The mean (µ
′
1) and variance (σ2) for the LZTKD are now determined.

Using Equation (17), we have

µ
′
1 = E

(
Y
)
=

k′2(1)
1− k′1(1)

+
k′′1 (1) + k′1(1)− (k′1(1))

2

(1− k′1(1))
2

=
γ

(1− α− β)
(

1− (1− α)
γ
α

) +
β

(1− α− β)2

and

σ2 = E
(
Y(Y− 1)

)
+ E

(
Y
)
−
(
E
(
Y
))2

=
k′′2 (1) + k′2(1)− (k′2(1))

2

(1− k′1(1))
2 +

(1 + k′2(1))(k
′′
1 (1) + k′1(1)− (k′1(1))

2)

(1− k′1(1))
3

+
k′′′1 (1) + k′1(1)k

′′
1 (1) + 2k′′1 (1)

(1− k′1(1))
3 +

2(k′′1 (1))
2

(1− k′1(1))
4

=
β(1− α)(α + β + 1)

(1− α− β)4 +
γ2(1− α− β) + γ(1− α)(
1− (1− α)

γ
α

)
(1− α− β)3

− γ2(
1− (1− α)

γ
α

)2
(1− α− β)2

.

4.7. Index of Dispersion and Coefficient of Variation

A normalized measure of dispersion can be obtained by using the variance-to-mean
relationship. This measure, the well-known IOD, is given by

IOD =
σ2

µ
′
1

=

β(1−α)(α+β+1)
(1−α−β)4 + γ2(1−α−β)+γ(1−α)(

1−(1−α)
γ
α
)
(1−α−β)3

− γ2(
1−(1−α)

γ
α
)2

(1−α−β)2

γ

(1−α−β)

(
1−(1−α)

γ
α

) + α+β−β2

(1−α−β)2

.
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Analogously, the CV of the RV Y has the following form:

CV =

√
σ2

µ
′
1

=

√
β(1−α)(α+β+1)

(1−α−β)4 + γ2(1−α−β)+γ(1−α)(
1−(1−α)

γ
α
)
(1−α−β)3

− γ2(
1−(1−α)

γ
α
)2

(1−α−β)2

γ

(1−α−β)

(
1−(1−α)

γ
α

) + α+β−β2

(1−α−β)2

.

The skewness and kurtosis coefficients of a distribution are frequently used to measure
the degree of asymmetry and flatness, respectively. These coefficients are essential to
characterize the shape of any distribution, but for the LZTKD, the expressions obtained for
such measures were extensive and too lengthy. However, they can be calculated numerically.
They are given in Table 1, as well as the mean, variance, CV, and IOD for particular values
of the parameters.

It is clear from this table that for α > 0 and β > 0, the LZTKD exhibits overdispersion
(IOD > 1) and for α → 0 and β → 0, the LZTKD exhibits underdispersion (IOD < 1).
When the parameter value of γ increases, the mean and variance of the LZTKD increases.
Moreover, it is noteworthy that the LZTKD has various kurtosis levels and is mainly
right-skewed.

Table 1. Mean, variance, CV, IOD, skewness, and kurtosis of the LZTKD for different values of
the parameters.

γ 1 3 5 7 9

α = 0.03 β = 0.7 Mean 11.9640 20.1849 28.0051 35.5068 42.9319
Variance 314.2453 393.8855 475.4094 567.9374 664.9710

IOD 26.2657 19.5138 16.9758 15.9951 15.4889
CV 1.4816 0.9832 0.7785 0.6711 0.6006

Skewness 1.3713 1.6726 1.6602 1.2199 1.5408
Kurtosis 0.8252 2.1227 1.7874 0.2604 0.5978

α = 0.03 β = 0.17 Mean 1.0627 3.5373 6.4766 9.0084 11.5144
Variance 5.2686 8.4581 10.7466 13.9438 17.5765

IOD 4.9575 2.2041 1.6593 1.5478 1.5264
CV 2.1598 0.7579 0.5061 0.4145 0.3641

Skewness 3.1290 2.0842 2.2449 2.1332 1.8914
Kurtosis 3.1408 3.2123 3.1876 2.7445 2.4618

α = e−15 β = 0.0001 Mean 1.5722 3.0576 5.0032 6.8921 8.8920
Variance 2.5651 4.3821 5.3214 7.0245 8.9589

IOD 1.6315 1.4331 1.0635 1.0192 0.9925
CV 1.0186 0.6847 0.4610 0.3845 0.3366

Skewness 1.6415 1.1627 1.4234 1.1610 1.0852
Kurtosis 2.7316 0.6023 0.4276 0.1721 0.1217

5. Relationship Between LD1(k1(z), k2(z)) and LD2(k1(z), k2(z))

In this section, we first examine the relationship between the LD1 and the LD2. Sec-
ondly, we show that the LZTKD belongs to the LD1.

Theorem 1. Let k1(z) = k2(z) and let X and Y be RVs with distributions into the LD1(k1(z), k2(z))
and LD2(k1(z), k2(z)), respectively. Then, P(Y = t) = (t+ 1)(1− k′1(1))P(X = t) for all values
of t.
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Proof. For the PMF of the LD1 given in Equation (3) with k1(z) =

(
1−αz
1−α

)− β
α

= k2(z),

we have

P(X = t) =
1
t!

{
Dt−1(kt

1(z)k
′
1(z)

)}∣∣
z=0

=
1

(t + 1)!
Dt
{(

kt+1
1 (z)

)}∣∣
z=0

=
1

(t + 1)!
Dt


(

1− αz
1− α

)− β(t+1)
α


∣∣∣∣
z=0

=
αt(1− α)

β(t+1)
α

(t + 1)

( β(t+1)
α + t− 1

t

)
,

which belongs to the LD1.
For the PMF of the LD2 given in Equation (4), we have

P(Y = t) =
(1− k′1(1))

t!
{

Dt(kt
1(z)k

′
1(z)

)}∣∣
z=0

=
(1− k′1(1))

t!

{
Dt
(

kt+1
1 (z)

)}∣∣
z=0

=

(
1− β

1−α

)
t!

Dt


(

1− αz
1− α

)− β(t+1)
α


∣∣∣∣
z=0

=
(
1− β

1− α

)
αt(1− α)

β(t+1)
α

( β(t+1)
α + t− 1

t

)
= (1− k′1(1))(t + 1)P(X = t).

This completes the proof.

To show the LZTKD belongs to the LD1, we adopt the following equivalence theorem
given in [24], also discussed in [4].

Theorem 2. Let k1(z), k2(z), and k3(z) be three analytical functions, which are successively
differentiable for |z|≤1 and such that k1(0) 6= 0 and k1(1) = k2(1) = k3(1) = 1. Then, under the
transformation z = uk1(z), every member of the LD2 is a member of the LD1 by choosing

k3(z) =
(

1− k
′
1(1)

)−1
(

1−
z k
′
1(z)

k1(z)

)
k2(z). (18)

Proof. The proof is not new; it is given in [4] and hence omitted.

Proof. The LZTKD belongs to the LD1 by choosing

k3(z) =
(

1− β

1− α

)−1(
1− zβ

1− zα

)(( 1−αz
1−α

)− γ
α −

(
1− α

) γ
α

1−
(
1− α

) γ
α

)
.
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Proof. For the LD2(k1(z), k3(z)), the PMF can be rewritten as

P(Y = y) = (y!)−1(1− k
′
1(1)) Dy{(k1(z))y k3(z)

}∣∣∣∣
z=0

= (y!)−1
(

1− β

1− α

)
×

Dy


(

1− αz
1− α

)− βy
α
(

1− β

1− α

)−1(
1− zβ

1− zα

)(( 1−αz
1−α

)− γ
α −

(
1− α

) γ
α

1−
(
1− α

) γ
α

)
∣∣∣∣
z=0

= (y!)−1Dy


(

1− αz
1− α

)− βy
α
(

1− zβ

1− zα

)(( 1−αz
1−α

)− γ
α −

(
1− α

) γ
α

1−
(
1− α

) γ
α

)
∣∣∣∣
z=0

=

( γ
β

γ+βy
β + y

)( γ+βy
α + y

y

)
αy(1− α)

γ+βy
α

1− (1− α)
γ
α

, y = 1, 2, 3, . . . .

It is the same PMF as the one of the zero-truncated generalized Katz distribution
(ZTGKD). It is given in [4] and belongs to the LD1.

6. Estimation of the Parameters

In this section, we estimate the unknown parameters of the LZTKD by the method
of the ML.

As a first remark, the model related to the LZTKD is a three-parameter model with
parameters α, β, and γ. Let a random sample of size n be from the LZTKD and let the
observed frequency be ny, y = 1, 2, 3 . . . , k, so that ∑k

y=1 ny = n, where k is the largest of the
observed value having nonzero frequencies. Then, the corresponding likelihood function is
given by

L =
k

∏
y=1

{ (
1− β

1−α

)
1− (1− α)

γ
α

αy(1− α)
γ+βy

α

[( γ+βy
α + y− 1

y

)
−
( βy

α + y− 1
y

)]}ny

.

Thus, the log-likelihood function is obtained as

Ln = log L = n log
(

1− β

1− α

)
− n log

(
1− (1− α)

γ
α
)
+ ny log α +

nγ + βny
α

log(1− α)

+
k

∑
y=1

ny

{
log

[
y−1

∏
i=0

(
γ + βy

α
+ y− i

)
−

y−1

∏
i=0

(
βy
α

+ y− i
)]}

−
k

∑
y=1

ny log(y!),

where y = 1
n ∑k

y=1 y ny.
The maximization of Ln with respect to the parameters gives their respective MLEs.

They can also be obtained by considering the following differentiation approach. The score
function associated with this log-likelihood function is

S(v) =
(

∂Ln
∂α

∂Ln
∂β

∂Ln
∂γ

)T
.
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Now, by solving ∂Ln
∂α = 0, ∂Ln

∂β =0, and ∂Ln
∂γ = 0 simultaneously, we obtain the associated

nonlinear log-likelihood equations. Consequently, these equations are given by

∂Ln

∂α
= − nβ

(1− α− β)(1− α)
− n

∂

{
log
(

1− (1− α)
γ
α

)}
∂α

− (nγ + βny)
{

1
α(1− α)

+
log(1− α)

α2

}

+
ny
α

+
k

∑
y=1

ny

∂
∂α

[
∏

y−1
i=0 (

γ+βy
α + y− i)−∏

y−1
i=0 (

βy
α + y− i)

]
[
∏

y−1
i=0 (

γ+βy
α + y− i)−∏

y−1
i=0 (

βy
α + y− i)

] = 0,

∂Ln

∂β
=

ny
α

log(1− α)− n
(1− α− β)

+
k

∑
y=1

ny

∂
∂β

[
∏

y−1
i=0 (

γ+βy
α + y− i)−∏

y−1
i=0 (

βy
α + y− i)

]
[
∏

y−1
i=0 (

γ+βy
α + y− i)−∏

y−1
i=0 (

βy
α + y− i)

] = 0

and

∂Ln

∂γ
=

n
α

log(1− α)− n
∂

{
log
(

1− (1− α)
γ
α

)}
∂γ

+
k

∑
y=1

ny

∂
∂γ

[
∏

y−1
i=0 (

γ+βy
α + y− i)−∏

y−1
i=0 (

βy
α + y− i)

]
[
∏

y−1
i=0 (

γ+βy
α + y− i)−∏

y−1
i=0 (

βy
α + y− i)

] = 0.

Thus, the solutions of these three equations give the MLEs.
In this research, we maximized the log-likelihood function to find the MLEs in the

numerical optimization. The fitdistrplus package of RStudio software was used to fix a
lower and upper bound for each parameter using the numerical optimization technique “L-
BFGS-B”, see [30]. When there are uncertainties about the initial guesses and convergence
of the algorithm, fitdistrplus is a highly useful tool that provides original solutions for the
MLEs. In order to provide the algorithm with good starting values, we employed the prefit
function of that package. Convergence is indicated using certain integer codes as one of the
mledist function’s returning components, with “0” denoting a successful convergence and
“1” denoting that the maximum number of iterations is used. As a result, a value of “10”
indicates that the algorithm is degenerate, and a value of “100” shows that the algorithm
made a mistake inside. One can click on the following link for further information about
this package https://CRAN.R-project.org/package=fitdistrplus accessed on 3 January 2023.
The corresponding R code is given in Appendix A.

7. Likelihood Ratio Test

In this section, we test the significance of an additional parameter included in the
LZTKD using the generalized likelihood ratio test (GLRT) (see [31]).

More precisely, to test the significance of the parameter β of the LZTKD(α, β, γ), we
consider the GLRT procedure. The null hypothesis is that H0 : Y follows the ZTKD against
the alternative hypothesis that H1 : Y follows the LZTKD. In this setting, the test statistic is
given by

− 2 log λ∗ = 2
(
Ln(Θ̂)−Ln(Θ̂∗)

)
, (19)

where Θ̂ is the vector of MLEs of Θ = (α, β, γ) with no constraints, and Θ̂∗ is the vector
of MLEs of Θ under H0. The test statistic presented in Equation (19) is asymptotically
distributed as the χ2 distribution with one degree of freedom.

8. Simulation Study

To evaluate the performance of the estimates obtained using the ML estimation ap-
proach, we ran a quick simulation exercise in this section. We simulated an LZTKD random
sample using the inverse transformation method (see [32]). The following is the inverse
transform algorithm for generating a value from the LZTKD:

https://CRAN.R-project.org/package=fitdistrplus
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Step1: Generate a random number from the uniform U(0, 1) distribution.

Step2 : i = 1, P =

(
1− β

α

)
(1−α)

γ+β
α γ

α

1−(1−α)
γ
α

, F = P.

Step3: If U < F, set X = i and stop.

Step4: P = P× α(1− α)
β
α

[
(

γ+βi+1
α +i
i+1 )−(

βi+1
α +i
i+1 )

]
[
(

γ+βi
α +i−1

i )−(
βi
α +i−1

i )

] , F = F + P, i = i + 1.

Step5: Go to Step 3.

In the above description, P is the probability that X = i, and F is the probability that X is less
than or equal to i.

The iteration process was repeated N = 1, 000 times and three parameter sets were
considered. The specification of these sets was as follows:

(i) α = 0.80, β = 0.03 and γ = 0.80.
(ii) α = 0.35, β = 0.09, and γ = 3.12.
(iii) α = 0.65, β = 0.03, and γ = 0.51.

Thus, we computed the average of the mean square error (MSE), and average absolute
bias using the MLEs.

The average absolute bias of the simulated estimates was calculated as 1
1000 ∑1000

i=1 |ω̂i −
ω| and the average MSE of the simulated estimates was calculated as 1

1000 ∑1000
i=1 (ω̂i −ω)2,

in which i is the number of iterations, ω ∈ {α, β, γ } and ω̂ is the MLE of ω.
Table 2 provides a summary of the study for samples of sizes 50, 250, 500, and 1000.

As the sample size increases and for the three parameter sets, it can be seen that the MSEs
are in decreasing order, and the MLEs of the parameters become closer to their original
parameter values, indicating their consistency property.
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Table 2. The simulation for different parameter values α, β, and γ.

Parameter Set Sample Size Parameters Estimates Absolute Bias MSE

α = 0.80, β = 0.03, γ = 0.80 n = 50 α 1.1444 0.3444 0.2182
β 0.0609 0.0309 0.0009
γ 0.5498 0.2001 0.1453

n = 250 α 1.2254 0.4254 0.1809
β 0.0372 0.0072 0.0001
γ 0.9256 0.1756 0.0308

n = 500 α 0.7158 0.0841 0.0505
β 0.0360 0.0060 0.00009
γ 0.8855 0.1355 0.0227

n = 1, 000 α 0.8120 0.0120 0.0204
β 0.0348 0.0048 0.00001
γ 0.8121 0.0121 0.0207

α = 0.35, β = 0.09, γ = 3.12 n = 50 α 1.3066 0.9566 0.9459
β 0.0647 0.0252 0.0007
γ 0.8823 2.2376 5.0122

n = 250 α 0.9969 0.6469 0.6504
β 0.0729 0.0170 0.0007
γ 1.7267 1.3932 2.9157

n = 500 α 1.3129 0.0529 0.0802
β 0.0421 0.0078 0.0003
γ 1.7452 1.3747 2.8479

n = 1, 000 α 0.3274 0.02025 0.0799
β 0.0872 0.0027 0.0005
γ 3.4190 0.2990 2.0683

α = 0.65, β = 0.03, γ = 0.51 n = 50 α 1.5121 0.7941 0.7952
β 0.0259 0.0089 0.00006
γ 0.7954 0.1852 2.2143

n = 250 α 1.5084 0.7584 0.7369
β 0.0227 0.0072 0.00005
γ 0.7021 0.1721 0.0369

n = 500 α 0.9549 0.3049 0.1118
β 0.0290 0.0009 0.00003
γ 0.5236 0.0136 0.0002

n = 1, 000 α 0.6517 0.0717 0.0072
β 0.0301 0.0001 0.00002
γ 0.5127 0.0027 0.00001

9. Applications
9.1. Presentation

The purpose of this section is to demonstrate the LZTKD’s empirical relevance. To this
end, two COVID-19 datasets were considered. In the first COVID-19 dataset, daily newly
reported cases were included, while in the second COVID-19 dataset, daily deaths were
included. Since the outbreak’s detection, almost every country has reported at least one new
positive case and death each day. To the best of our knowledge, zero-truncated distributions
are the most suitable statistical model in this case. In order to show how the LZTKD might
be useful, we compared the fits of the various competing distributions, which are presented
in Table 3. To evaluate these datasets numerically, we used RStudio software version 4.2.1.

Table 3. The considered competitive distributions.

Distributions Reference

ZTPD [1]
IPD [6]
ZTDLD [9]
IGPD [7]
ZTKD [3]
AGPSD [8]
ZTGKD [4]
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The HRF of the datasets was determined using a graphical technique based on the
total time on test (TTT) plot. If a TTT plot is convex, concave, convex then concave, or
concave then convex, the corresponding HRF has a decreasing, increasing, bathtub shape,
or an upside-down bathtub shape, respectively (see [33]).

9.2. Daily New Cases of COVID-19 Dataset

Here, we considered a dataset of daily newly reported COVID-19 instances from
Algeria in East Africa, recorded between 13 June 2022 to 3 October 2022. These data are
accessible at http://covid19.who.int/data, (accessed on 20 October 2022). The dataset is: 2
10 6 9 12 4 3 4 10 8 13 9 10 5 8 11 13 11 14 18 10 13 19 17 17 21 26 18 11 17 29 25 28 36 32 21 42
55 49 63 46 72 67 77 94 86 98 93 87 80 92 111 120 125 131 108 113 102 122 106 134 148 142 133
128 112 92 83 94 81 74 89 77 72 54 48 30 19 41 37 32 55 46 21 17 18 15 13 18 15 10 7 12 10 9 14
15 7 3 3 6 7 6 5 7 4 8 5 8 6 5 3 3.

The descriptive measures of this dataset, which include sample size (n), minimum
(min), first quartile (Q1), median (Md), third quartile (Q3), maximum (max), and interquar-
tile range (IQR), are given in Table 4.

Table 4. Descriptive statistics for the COVID-19 dataset from Algeria.

Statistic n min Q1 Md Q3 max IQR

Values 113 2 10 19 77 148 67

In addition, Figure 3 shows the corresponding empirical TTT plot. It revealed an
upside-down bathtub shape HRF.
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Figure 3. TTT plot for the COVID-19 dataset from Algeria.

We compared the competitive distributions to the LZTKD employing the statistical
techniques provided, namely the negative log-likelihood (−log L), Akaike information

http://covid19.who.int/data


Analytics 2023, 2 480

criterion (AIC), Bayesian information criterion (BIC), and χ2 value. Table 5 displays the
corresponding MLEs, model adequacy measures, and χ2 values. As it can be seen in this
table, the model adequacy measures and χ2 value of the LZTKD are lower than those of
the other studied distributions. The suggested model is therefore the most suitable one to
model the provided dataset.

Table 5. MLEs, model adequacy measures, and χ2 values for the COVID-19 dataset from Algeria.

Model MLEs − log L χ2 d f AIC BIC

ZTPD α = 42.11645 2492.831 6752.655 8 4987.661 4990.389
IPD α = 41.7093 2492.831 6288.288 7 4989.662 4995.117

β = 0.0102
ZTDLD α = 9.7621× 10−1 534.3375 1243.423 7 1072.675 1079.813

β = 5.6811× 10−5

ZTKD α = 0.0212 637.6204 5976.975 7 1279.241 1284.696
γ = 0.9556

AGPSD α = 0.0464 553.7651 1214.439 7 1111.530 1116.985
β = 0.00027

IGPD α = 1.7271 580.3144 5395.918 6 1166.629 1174.811
β = 0.7391
γ = 2.2265

ZTGKD α = 0.8527 532.8011 1325.411 6 1071.602 1079.784
β = 0.0999
γ = 1.9658

LZTKD α = 0.8307 532.3369 1207.696 6 1070.674 1078.856
β = 0.0999
γ = 1.3898

In the case of the GLRT, the calculated value based on the test statistic given in
Equation (19) was 2(−532.3369 + 637.6204) = 210.567 (p-value = 0.03620). As a result, at
any level > 0.03620, the null hypothesis is rejected in favor of the alternative hypothesis.
Hence, we conclude that the additional parameter β in the LZTKD is significant in light of
the test procedure outlined in Section 7.

9.3. Daily Death Cases of COVID-19 Dataset

Here, we considered a dataset of daily death cases of COVID-19 instances from Bosnia
and Herzegovina in Europe, recorded between 2 August 2020 to 28 June 2021. These data
are accessible at http://covid19.who.int/data, (accessed on 20 October 2022). The dataset
is: 11 12 11 11 6 5 10 8 6 17 22 6 5 11 2 9 6 9 12 8 10 6 5 11 13 11 11 9 3 4 11 11 7 9 3 12 4 9 5 6 5
6 4 6 9 20 11 11 5 6 6 6 8 12 12 6 7 2 12 14 13 5 10 6 2 9 15 5 5 13 1 1 8 11 11 14 8 2 4 11 20 14 20
14 6 15 18 21 36 21 30 22 14 32 37 41 44 55 33 20 73 46 72 49 58 49 41 75 69 47 64 56 40 27 66
52 35 51 62 34 44 61 46 46 39 53 57 30 60 69 70 48 51 48 38 55 66 54 38 34 42 28 53 86 46 40 23
22 30 23 48 26 22 14 14 31 48 32 37 16 21 20 25 28 15 26 12 18 20 23 14 23 12 15 19 14 5 19 28
22 16 20 17 9 19 13 8 16 14 16 9 13 21 19 15 13 11 4 20 19 14 13 17 16 12 9 18 17 11 9 17 8 20 29
29 26 28 19 12 38 48 37 28 36 42 33 63 53 35 57 44 44 48 73 67 62 77 76 58 50 99 74 80 76 88 40
84 66 99 80 84 82 60 47 82 79 76 60 86 49 33 68 87 57 82 39 39 39 69 68 46 48 39 28 15 59 60 23
26 28 21 23 28 50 31 15 23 26 19 25 19 16 10 12 9 14 19 18 16 10 17 11 11 20 17 33 29 42 21 4 12
49 7 6 6 9 3 4 39 74 18 4 4 3 6 5 3 2 2 1 2.

The descriptive measures of the real dataset, which include n, min, Q1, Md, Q3, max,
and IQR are given in Table 6.

In addition, Figure 4 shows an empirical TTT plot for the COVID-19 dataset from
Bosnia and Herzegovina and it shows an increasing HRF.

We used well-established statistical measures to compare the competitive distribu-
tions to the LZTKD, including the − log L, AIC, BIC, and χ2 value. Table 7 displays the
corresponding MLEs, model adequacy measures, and χ2 values. It is observed that the
LZTKD’s model adequacy measures and χ2 value are lower than those of the other distri-

http://covid19.who.int/data
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butions studied. Because of this, the suggested model is the best choice for modeling the
considered dataset.

Table 6. Descriptive statistics for the COVID-19 dataset from Bosnia and Herzegovina.

Statistic n min Q1 Md Q3 max IQR

Values 331 1 11 20 43 99 32
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Figure 4. TTT plot for the COVID-19 dataset from Bosnia and Herzegovina.

Table 7. MLEs, model adequacy measures and χ2 values for the Bosnia and Herzegovina COVID-19 dataset.

Model MLEs − log L χ2 d f AIC BIC

ZTPD α = 28.132 3750.28 2462.098 14 7502.560 7506.363
IPD α = 2.8134 3750.28 2451.34 13 7504.56 7512.165

β = 3.3826× 10−6

ZTDLD α = 0.9444 1424.361 1692.128 13 2852.721 2863.326
β = 0.0818

ZTKD α = 0.0019 1764.195 8116.362 13 3532.391 3539.995
γ = 0.9626

AGPSD α = 6.8867× 10−2 1431.826 1688.206 13 2867.653 2875.257
β = 7.4190× 10−5

IGPD α = 0.80271 1424.994 1787.308 12 2855.987 2867.393
β = 0.00036
γ = 5.5263

ZTGKD α = 2.0241× 10−7 1423.018 1692.323 12 2852.035 2863.442
β = 9.5162× 10−1

γ = 1.9658
LZTKD α = 0.7915 1422.617 1684.051 12 2851.234 2862.64

β = 0.0999
γ = 2.0960
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In the case of the GLRT, the calculated value based on the test statistic given in
Equation (19) was 2(−1422.617 + 1764.195) = 341.578 (p-value = 0.02620). As a result, at
any level > 0.02620, the null hypothesis is rejected in favor of the alternative hypothesis.
Hence, we conclude that the additional parameter β in the LZTKD is significant in light of
the test procedure outlined in Section 7.

10. Concluding Remarks

In this article, we proposed a novel zero-truncated Lagrangian distribution called the
“LZTKD” using the Lagrange expansion of the second kind. We demonstrated that the
ZTKD was a special case of the LZTKD. We looked at the shape properties of the PMF
and HRF of the LZTKD. The expressions for the factorial moments, generating functions,
mean, and median were derived. Using the equivalence theorem of the class of Lagrangian
distributions, we demonstrated that the LZTKD belonged to the LD1. Subsequently, the ML
method was employed to estimate the model parameters for the LZTKD. Using the GLRT
procedure, we tested the significance of the additional parameter included in the LZTKD.
Simulated studies were conducted to show the effectiveness of MLEs. Two actual datasets
were used to validate the results, which proved that the LZTKD offered a superior fit
compared to competing models. The LZTKD may also act as a baseline distribution for the
hurdle model’s development. If the bivariate version of the LZTKD and the corresponding
regression model are constructed, this research may go in a new direction. This task requires
a lot of improvements and research, which we leave for further study.
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Abbreviations
The following abbreviations are used in this manuscript:

LZTKD Lagrangian zero-truncated Katz distribution
ZTPD Zero-truncated Poisson distribution
ZTKD Zero-truncated Katz distribution
IPD Intervened Poisson distribution
ZTDLD Zero-truncated discrete Lindley Distribution
LD1 Lagrangian distribution of the first kind
LD2 Lagrangian distribution of the second kind
LKD Lagrangian Katz distribution
GKD Generalized Katz distribution
KD Katz distribution
GPD Generalized Poisson distribution
GBD Generalized binomial distribution
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RPD Rectangular Poisson distribution
WCD Weighted Consul distribution
RBD Rectangular binomial distribution
ZTGKD Zero-truncated generalized Katz distribution
AGPSD A generalization of the Poisson–Sujatha distribution
PMF Probability mass function
HRF Hazard rate function
IOD Index of dispersion
PGF Probability-generating function
MGF Moment-generating function
CV Coefficient of variation
iid Independent and identically distributed
RV Random variable
ML Maximum likelihood
MLEs Maximum likelihood estimates
GLRT Generalized likelihood ratio test
MSE Mean squared error
TTT Total time on test
AIC Akaike information criterion
BIC Bayesian information criterion
IQR Interquartile range
Md Median
min Minimum
max Maximum
Q1 First quartile
Q2 Second quartile
SE Standard error

Appendix A

The R code for the MLEs of the LZTKD is given by

library(fitdistrplus)

dfn <- function(y, alpha, beta, gamma){
d <- ((1-(beta/(1-alpha)))/(1-(1-alpha)^(gamma/alpha)))
*(alpha)^y*(1-alpha)^(gamma+(beta*y))/alpha
* (choose(((gamma+(beta*y))/alpha)+y-1,x)-choose((((beta*y))/alpha)+y-1,y))
return(d)
}

pfn <- function(q,alpha,beta,gamma){
cumsum(dfn(q,alpha,beta,gamma))
}
#
pfn(x,0.03,0.4,2)
#
pre <- prefit(x, ‘‘fn’’, ‘‘mle’’, list(alpha=0.01, beta=0.01, gamma=0.02),
lower=c(0, 0, 0), upper=c(1, 1, Inf))

fit.fn <- fitdist(x, ‘‘fn’’,
start=list(alpha=pre$alpha, beta=pre$beta, gamma=pre$gamma),
optim.method=‘‘L-BFGS-B’’, lower=c(0, 0, 0), upper=c(1, 1, Inf),
discrete=TRUE)

summary(fit.fn)
gofstat(fit.fn).
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