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Abstract: Matrix variate longitudinal discrete data can arise in transcriptomics studies when the
data are collected for N genes at r conditions over t time points, and thus, each observation Yn

for n = 1, . . . , N can be written as an r × t matrix. When dealing with such data, the number
of parameters in the model can be greatly reduced by considering the matrix variate structure.
The components of the covariance matrix then also provide a meaningful interpretation. In this
work, a mixture of matrix variate Poisson-log normal distributions is introduced for clustering
longitudinal read counts from RNA-seq studies. To account for the longitudinal nature of the
data, a modified Cholesky-decomposition is utilized for a component of the covariance structure.
Furthermore, a parsimonious family of models is developed by imposing constraints on elements of
these decompositions. The models are applied to both real and simulated data, and it is demonstrated
that the proposed approach can recover the underlying cluster structure.

Keywords: cluster analysis; RNA-seq data; matrix variate discrete data; longitudinal data; mixture models

1. Introduction

Biological studies are a major source of longitudinal data. While modelling such
longitudinal datasets, it is important to take into account the correlations among the mea-
surements at different time points. Gene expression time course studies present important
clustering and classification problems. Understanding how different genes are modulated
over a period of time during an event of interest can provide key insight in understanding
their involvement in various biological pathways [1–4]. Cluster analysis allows us to group
genes into clusters with similar patterns, or ‘expression profiles’, over time.

Model-based clustering approaches have been shown to be an effective approach for
clustering a wide variety of biological datasets, such as microarray datasets [5–7], RNA-seq
data [8–10], microbiome data [11,12], flow cytometry data [13,14], etc. Several studies have
utilized cluster analysis to gain novel insights into various biological phenomenon, such as
identification of novel tumour subtypes [15,16], understanding diseases progression [17,18],
understanding crops’ response to abiotic stresses [19,20], and others.

Model-based clustering utilizes finite mixture models [21] for cluster analysis, which
assumes that a population is a mixture of G subpopulations or components and each
component can be modelled using a probability distribution. A random vector Y is said to
arise from a parametric finite mixture distribution; we can write its density in the form

f (y | Θ) =
G

∑
g=1

πg f (y | θg) (1)

where πg ∈ [0, 1] such that ∑G
g=1 πg = 1 is the mixing proportion of the gth component,

f(y | θg) is the density of the gth component, and Θ = (π1, . . . , πG, θ1, . . . , θG) are the
model parameters. The choice of an appropriate probability density/mass function depends
on the data type.

Various approaches have been developed for the clustering of time course gene ex-
pression data (e.g., [6,7,22–25]). However, most statistical approaches for clustering gene
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expression data are tailored for microarray studies. While some of this could be attributed
to RNA-seq technology being more recent compared to microarrays, the computational
cost that comes with fitting multivariate discrete models needed for RNA-seq data has
also led to challenges. The transcriptomics data arising from RNA-seq studies are discrete,
high-dimensional, and over-dispersed count data. Efficiently analyzing these data remains
a challenge. Because of the restrictive mean-variance relationship that comes with the Pois-
son distribution, the negative binomial distribution emerged as the univariate distribution
of choice [26,27]. However, the multivariate negative binomial distribution [28] is seldom
used in practice due to the computational cost that comes with fitting such a model [29].

Recently, [10] proposed mixtures of multivariate Poisson lognormal (MPLN) mod-
els for clustering over-dispersed, multivariate count data. In the MPLN model, the
counts of the nth gene (with n = 1, 2, . . . , N) are modelled using a hierarchical Poisson
log-normal distribution such that Ynj ∼ Poisson(eXnj+log cj) and Xn ∼ Np(µ, Σ), where
Xn = (Xn1, Xn2, . . . , Xnp), Np(µ, Σ) denotes a p-dimensional Gaussian distribution with
mean µ and covariance Σ, and cj is a known constant representing the normalized library
size of the jth sample. This hierarchical structure allows for over-dispersion similar to
the negative binomial distribution, but it also allows for correlation between the variables.
An efficient framework for parameter estimation for mixtures of MPLN distributions was
developed by [30] that utilizes a variational Gaussian approximation.

In RNA-seq studies, it is common to obtain expression levels of n genes at r condi-
tions over t occasions in one study. A natural framework for modelling such data is a
matrix variate approach such that each observation Yn is a r × t matrix. Alternately, a
multivariate framework can also be utilized, where each observation Yn can be written
as a vector vec(Y′n) of dimensionality rt = r × t. In [31], the authors developed mix-
tures of matrix variate Poisson lognormal distributions (MVPLN). In the MVPLN model,
Yn,ij ∼ Poisson(eXn,ij+log Cij) and Xn ∼ Nr×t(M, Φ, Ω), where Xn is an r × t matrix, and
Nr×t(M, Φ, Ω) denotes a matrix normal distribution with location matrix M and scale ma-
trices Φ and Ω, and C is a r× t matrix where Cij denotes the normalized library size of the
ith condition from the jth time point. Mathematically, the MVPLN model is equivalent to
Yn,ij ∼ Poisson(eXn,ij+log Cij) and vec(X′n) ∼ Nrt(vec(M′), Σ = Φ ⊗Ω), where Nrt is an
rt-dimensional multivariate normal distribution and ⊗ is a Kronecker product. By adopt-
ing a matrix variate form, the large rt × rt covariance matrix of the latent variable X can
be written as the Kronecker product of two smaller r× r and t× t scale matrices Φ and Ω,
i.e., Σrt×rt = Φr×r ⊗Ωt×t. This can greatly reduce the number of parameters in Σ.

In Section 2, we extend the mixtures of the matrix variate Poisson log-normal model
for clustering matrix variate longitudinal RNA-seq data by incorporating a modified
Cholesky decomposition of the scale matrix Ω that captures the covariances of the t
occasions of the latent variable X. Furthermore, by imposing constraints on the components
of scale matrices to be equal or different across the group, a family of eight models is
obtained. Parameter estimation is performed using a variational variant of the expectation-
maximization algorithm. In Section 3, the proposed models are applied to simulated and
real datasets, and Section 4 concludes the paper.

2. Methods

A matrix variate Poisson log-normal distribution was proposed by [31] for modelling
RNA-seq data. This arises from a hierarchical mixture of independent Poisson distributions
with a matrix variate Gaussian distribution. Suppose Y1, . . . , YN are N observations from a
matrix variate Poisson log-normal distribution, where the nth observation Yn is an r× t
dimensional matrix representing r conditions and t time points. A matrix variate Poisson
log-normal distribution for modelling RNA-seq data can be written as

Yn,ij | Xn,ij ∼ Poisson(eXn,ij+log Cij), and Xn ∼ Nr×t(M, Φ, Ω), (2)
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where M is an r × t matrix of means, C is an r × t matrix of fixed, known constants to
account for the differences in library sizes across each sample, and Φ and Ω are r× r and
t× t scale matrices, respectively. Suppose the least-squares predictor of unobserved latent
variable Xn,ij of the nth observation from the ith condition at the jth time point can be
written as

X̂n,ij = Mij +
j−1

∑
k=1

(−ρjk)(Xn,ik −Mik) +
√

djε j, (3)

where Xn,i1, Xn,i2,. . . , Xn,i(j−1) are the unobserved latent variables from the preceding j− 1
time points, ε j ∼ N (0, 1), and ρjk and dj are the autoregressive parameters and innovation
variances, respectively [32]. Thus, when the responses are recorded over a period of time
(i.e., t time points), the parameter Ω that relates to the covariance of the t time points can
be parameterized to account for the relationship between measurements at different time
points. Now, Ω can be decomposed using the modified Cholesky decomposition [7,23,32]
such that TΩT′ = D. This can alternately be written as Ω−1 = T′D−1T, where D is
a unique diagonal matrix with innovation variances d1, . . . , dt, and T is a unique lower
triangular matrix with 1 as the diagonal elements and the autoregressive parameters (ρjk
with j > k) as the off-diagonal elements:

T =


1 0 . . . 0

ρ12 1 . . . 0
. . . . . . . . .

ρj,j−1 ρ2,j−1 . . . 1

.

In the context of a G-component mixture of matrix variate Poisson log-normal distri-
butions [31], Equation (1) can be written as

f (Y | Θ) =
G

∑
g=1

πg f (Y |Mg, Φg, Ωg),

where πg > 0 is the mixing proportion of the gth component such that ∑G
g=1 πg = 1,

and f (Y | Mg, Φg, Ωg) is the marginal distribution function of the gth component with
parameters Mg, Φg, and Ωg, and Θ denotes all the model parameters.

2.1. Longitudinal Data and Family of Models

Due to the longitudinal nature of t time points, one can utilize the modified Cholesky
decomposition for Ωg such that Ω−1

g = T′gD−1
g Tg. The number of parameters in Ωg

(i.e., t(t + 1)/2) increases quadratically with respect to time points, and this is further
compounded in mixture models as G different Ωs need to be estimated. Thus, similar to [7],
constraints can be imposed on Tg and Dg to be equal or different across groups, and an
isotropic constraint can also be imposed on Dg = δgI, where δg is a scalar. Various combi-
nations of these constraints result in a family of eight models (see Table 1).

Table 1. The family of eight models obtained by imposing various constraints on the components of Ωg.

Model Tg Dg Total Parameters in Ω1, . . . , ΩG.

Group Group Diagonal

“VVA” Variable Variable Anisotropic Gt(t− 1)/2 + Gt
“EVA” Equal Variable Anisotropic t(t− 1)/2 + Gt
“VEA” Variable Equal Anisotropic Gt(t− 1)/2 + t
“EEA” Equal Equal Anisotropic t(t− 1)/2 + t
“VVI” Variable Variable Isotropic Gt(t− 1)/2 + G
“EVI” Equal Variable Isotropic t(t− 1)/2 + G
“VEI” Variable Equal Isotropic Gt(t− 1)/2 + 1
“EEI” Equal Equal Isotropic t(t− 1)/2 + 1
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Parameter estimation is outlined in Section 2.2. In cluster analysis, the best constraint
for a specific dataset is also unknown. Selection of the best fitting model among the eight
models in the family for a given dataset is performed using a model selection criteria,
which is discussed in detail in Section 2.3.

2.2. Parameter Estimation

Parameter estimation for mixture models is typically conducted using the traditional
expectation-maximization (EM; [33]) algorithm. In the case of an MVPLN model, this
requires computing the posterior expectations of E(X | Y) and E(XX′ | Y). However, the
posterior distribution of a latent variable (i.e., X | Y) does not have a known form; thus, a
Markov chain Monte Carlo expectation-maximization (MCMC-EM) algorithm is typically
employed for empirically estimating E(X | Y) and E(XX′ | Y). Such an approach can be
computationally intensive [10,31].

Subedi and Browne [30] developed an efficient parameter estimation algorithm for
a matrix variate Poisson log-normal distribution using variational approximations [34].
This utilized a computationally convenient approximating density to approximate a more
complex but ‘true’ posterior density through minimization of the Kullback– Leibler (KL)
divergence between the true and the approximating densities. Suppose we have an ap-
proximating density q(X); then, the marginal log of the probability mass function can
be written as log fY(Y) = F(q, Y) + DKL(q‖ f ), where DKL(q‖ f ) =

∫
q(X) log q(X)

f (X|Y)dX
is the KL divergence between f (X | Y), and the approximating distribution q(X), and
F(q, Y) =

∫
[log f (Y, X) − log q(X)]q(X)dX is our evidence lower bound (ELBO). A

Gaussian density is utilized as the approximating density for variational Gaussian ap-
proximations. Similar to [31], assuming q(Xng) = Nr×t(ξng, ∆ng, κng), the ELBO for each
observation yn from the gth component can be written as

F(qng, Yn) = −

 r

∑
i=1

t

∑
j=1

exp
{
(ξng)ij +

1
2
(∆ng)ii(Ωng)jj + log Cij

}
+
[
vec
(

ξ′ng

)
+ log vec(C′)

]′
vec(Y′n)−

[
rt

∑
k=1

log(vec(Y′n)k!)

]
− p

2
log |Φg| −

r
2

log |T′gD−1
g Tg|

− 1
2

(
vec(ξ′ng)− vec(M′g)

)′
Φ−1

g ⊗ (T′gD−1
g Tg)

(
vec(ξ′ng)− vec(M′g)

)
+ tr

{
Φ−1

g ∆ng

}
tr
{

T′gD−1
g Tgκng

}
+

t
2

log |∆ng|+
r
2

log |κng|+
rt
2

.

Thus, the complete-data log-likelihood for the mixtures of MVPLN distributions can
be written as

lc(Θ) =
G

∑
g=1

N

∑
n=1

zng log πg +
G

∑
g=1

N

∑
n=1

zng log f (Yn |Mg, Φg, Tg, Dg)

=
G

∑
g=1

N

∑
n=1

zng log πg +
G

∑
g=1

N

∑
n=1

zng
[
F(Yn, qng) + DKL(qng‖ fng)

]
,

where DKL(qng‖ fng) =
∫

q(Xng) log q(Xng)

f (Xn |Yn ,Zng=1)dXng is the KL divergence between f (Xn |
Yn, Zng = 1) and approximating distribution q(Xng). As the variational parameters that
maximize the ELBO also minimize the KL divergence, the estimates of the model pa-
rameters are obtained by maximizing the variational approximation of the complete-data
log-likelihood using the ELBO, i.e.,

lc(Θ) ≈
G

∑
g=1

N

∑
n=1

zng log πg +
G

∑
g=1

N

∑
n=1

zngF(Yn, qng).

Similar to [31], an iterative EM-type algorithm is utilized for parameter estimation.
At the (k + 1)th step,
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1. Conditional on the variational parameters ξng, ∆ng, and κng and on Mg, Φg, Tg, and
Dg, the E(Zng) is given by

E(Zng | Yn) =
πg f (Yn |Mg, Φg, Tg, Dg)

∑G
h=1 πh f (Yn |Mh, Φh, Th, Dh)

.

As the marginal distribution of Yn is difficult to compute, we use an approximation of
E(Zng) using the ELBO such that

Ẑ(k+1)
ng

def
=

πg exp
[
F
(
qng, Yn

)]
∑G

h=1 πh exp[F(qnh, Yn)]
. (4)

2. Given Ẑ(k+1)
ng , variational parameters ξng, ∆ng, and κng are updated conditional on

M(k)
g , Φ

(k)
g , T(k)

g , and D(k)
g .

(a) A fixed-point method is used for updating ∆ng:

∆
(k+1)
ng = t

[
Ir×r �

{
diag(κ(k)

ng )
′
[

exp
{

ξ
(k)
ng + log C

+
1
2

diag(∆(k)
ng )diag(κ(k)

ng )
′
}]′}

+ Φ
−1(k)
g tr

{
T(k)′

g D−1(k)
g T(k)

g κ
(k)
ng

}]−1

,

where the vector function exp[a] = (ea1 , . . . , ear )′ is a vector of the exponential
of each element of the r-dimensional vector a, diag(κ) = (κ11 . . . , κtt) puts the
diagonal elements of the t× t matrix κ into a t-dimensional vector, and � is the
Hadamard product.

(b) A fixed-point method is used for updating κng:

κ
(k+1)
ng = r

[
Ip×p �

{
diag(∆(k+1)

ng )′
[

exp
{

ξ
(k)
ng + log C

+
1
2

(
diag(κ(k)

ng )diag(∆(k+1)
ng )′

)′}]}
+ Ω

−1(k)
g tr

{
Φ
−1(k)
g ∆

(k+1)
ng

}]−1
,

where the vector function exp[a] = (ea1 , . . . , eat)′ is a vector of the exponential
of each element of the t-dimensional vector a, diag(∆) = (∆11 . . . , ∆rr) puts the
diagonal elements of the r× r matrix ∆ into an r-dimensional vector, and � is
the Hadamard product.

(c) Newton’s method is used to update ξng:

vec(ξ
′(k+1)
ng ) = vec(ξ

′(k)
ng )−Ψ

−1(k+1)
ng {vec(Y′n)− exp

[
log vec(C′)

+vec(ξ
′(k)
ng )+

1
2

diag
(

Ψ
−1(k+1)
ng

)]
−Ψ

−1(k+1)
ng

(
vec(ξ′(k)ng )− vec(M′(k)g )

)
−vec(Y′n)

}
,

where Ψ
(k+1)
ng = ∆

(k+1)
ng ⊗ κ

(k+1)
ng .

3. Given Ẑ(k+1)
ng and the variational parameters ξ

(k+1)
ng , ∆

(k+1)
ng , and κ

(k+1)
ng , the updates

of model parameters πg, Mg, and Φg are obtained as
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π
(k+1)
g =

∑N
n=1 Ẑ(k+1)

ng

N
,

M(k+1)
g =

∑N
n=1 Ẑ(k+1)

ng ξ
(k+1)
ng

∑N
n=1 Ẑ(k+1)

ng

,

Φ
(t+1)
g =

∑N
n=1 Ẑ(k+1)

ng (ξ
(k+1)
ng −M(k+1)

g )T′gD−1(t)
g Tg(ξ

(t+1)
ng −M(t+1)

g )′

t ∑N
n=1 Ẑ(k+1)

ng

+
∑N

n=1 Ẑ(k+1)
ng ∆

(k+1)
ng tr

{
T′gD−1(t)

g Tgκ
(k+1)
ng

}
t ∑N

n=1 Ẑ(k+1)
ng

.

Estimates of the model parameters Tg and Dg can be obtained by maximizing the
approximation of the log-likelihood with respect to the parameters Tg and Dg. If we

define S(k+1)
g as:

S(k+1)
g =

∑N
n=1 Ẑ(k+1)

ng (ξ
(k+1)
ng −M(k+1)

g )′Φ
−1(k+1)
g (ξ

(k+1)
ng −M(k+1)

g )

r ∑N
n=1 Ẑ(k+1)

ng

+
∑N

n=1 Ẑ(k+1)
ng κ

(k+1)
ng tr

{
Φ
−1(k+1)
g ∆

(k+1)
ng

}
r ∑N

n=1 Ẑ(k+1)
ng

, (5)

the estimates of Tg and Dg are analogous to [7]. The elements of Tg can be estimated as:


ρ̂
(g)
j1

ρ̂
(g)
j2
...

ρ̂
(g)
j,j−1

 =


S(g)

11 S(g)
21 . . . S(g)

j−1,1

S(g)
12 S(g)

22 . . . S(g)
j−1,2

...
...

...
S(g)

j,j−1 S(g)
2,j−1 . . . S(g)

j−1,j−1



−1
S(g)

j1

S(g)
j2
...

S(g)
j,j−1

,

where j = 2, . . . , t, and the updates for Dg can be obtained as

D̂g = T̂gSgT̂′g.

Similarly, with the above defined Sg in Equation (5), the updates of Tg and Dg are
analogous to [7] for all eight models with various constraints, and thus the R package
longclust [35] is utilized for the covariance decomposition.

Convergence of the iterative EM-type approach was determined using the Aitken’s
acceleration-based [36] criteria which computes the asymptotic estimate of the log-likelihood
at each iteration and assumes that the algorithm converges when the successive difference
in the asymptotic estimate of the log-likelihood is less than ε [37] . Here, we used ε = 0.05.

2.3. Model Selection and Performance Assessment

In clustering, the true number of components are typically unknown. Additionally,
the best constraint for the covariance structure here is also unknown. It is common practice
to fit the model for a range of G for all possible models and select the best fitting model a
posteriori using a model selection criteria. The Bayesian information criterion (BIC; [38])
remains the most widely used criterion. In our case, similar to [30], we use an approximation
of BIC defined as:

BIC = 2 log L− p log N,
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where p is the number of parameters, N is the sample size, and log L is the approximation
of the maximized log-likelihood using ELBO. This approximation is computationally
efficient as the marginal of the probability mass function does not have a closed form
to compute the maximized log-likelihood using the marginal probability mass function.
When the true number of clusters is known, assessment of the clustering performance can
be conducted using an adjusted Rand index (ARI; [39]). The ARI provides a measure of the
clustering agreement between the true and predicted labels and adjusts for agreement by
chance. The ARI for perfect agreement is 1, and the expected value of ARI under random
classification is 0.

3. Results
3.1. Simulation Studies

Simulation studies were conducted to demonstrate clustering performance of the
proposed family of models and show parameter recovery.

3.1.1. Scenario 1

In the first scenario, 25 datasets, each of size n = 1000 were generated from a two-
component fully unconstrained model “VVA”. Here, each observation in the dataset is
a 3× 4 (i.e., r = 3 and p = 4) matrix. The parameters used to generate the dataset are
summarized in Table 2.

Table 2. True parameters along with the estimated means and standard deviations of the model
parameters for Scenario 1 from all 25 datasets.

ϑg True Value Means Standard Deviations

M1

 6.20 6.20 6.20 6.20
6.20 6.20 6.20 6.20
6.20 6.20 6.20 6.20

  6.19 6.21 6.20 6.19
6.21 6.20 6.19 6.20
6.19 6.21 6.20 6.21

  0.05 0.05 0.07 0.07
0.06 0.07 0.05 0.08
0.05 0.07 0.06 0.05



M2

 1.50 1.50 1.50 1.50
1.50 1.50 1.50 1.50
1.50 1.50 1.50 1.50

  1.82 1.68 1.63 1.63
1.62 1.78 1.66 1.64
1.65 1.62 1.78 1.67

  0.13 0.08 0.08 0.07
0.08 0.13 0.07 0.08
0.09 0.05 0.12 0.09



Φ1

 1.00 0.00 0.00
0.00 1.46 0.00
0.00 0.00 1.44

  1.00 −0.01 0.01
−0.01 1.46 −0.00
0.01 −0.00 1.46

  0.00 0.03 0.02
0.03 0.05 0.03
0.02 0.03 0.05



Φ2

 1.00 0.00 0.00
0.00 0.82 0.00
0.00 0.00 0.90

  1.00 −0.00 −0.00
−0.00 0.82 −0.01
−0.00 −0.01 0.89

  0.00 0.03 0.04
0.03 0.06 0.03
0.04 0.03 0.06



T1


1.00 − − −
0.75 1.00 − −
0.25 0.75 1.00 −
0.05 0.25 0.75 1.00




1.00 − − −
0.75 1.00 − −
0.25 0.75 1.00 −
0.05 0.25 0.76 1.00




0.00 − − −
0.03 0.00 − −
0.02 0.03 0.00 −
0.02 0.02 0.02 0.00



T2


1.00 − − −
0.20 1.00 − −
0.05 0.30 1.00 −
0.01 0.02 0.35 1.00




1.00 − − −
0.24 1.00 − −
0.08 0.39 1.00 −
0.03 0.08 0.44 1.00




0.00 − − −
0.02 0.00 − −
0.02 0.05 0.00 −
0.02 0.04 0.06 0.00


D1

[
0.53 0.74 1.15 1.82

] [
0.53 0.75 1.15 1.85

] [
0.02 0.04 0.06 0.08

]
D2

[
0.10 0.45 0.47 0.33

] [
0.14 0.62 0.67 0.48

] [
0.01 0.06 0.06 0.03

]
All eight models with G = 1 to G = 5 were fitted, and BIC was used for model

selection. In all 25 datasets, the approach selected a two-component “VVA” model with an
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ARI of 1.00± 0.00. The mean of the estimated parameters along with their standard errors
are also summarized in Table 2. The estimated parameters are close to the true parameters.

3.1.2. Scenario 2

In the second scenario, 25 datasets, each of size n = 1000, were generated from a two-
component model with the same set of parameters as Scenario 1 but with a constraint on D
such that D1 = . . . = Dg = δI (i.e., “VEI” model). Again, each observation in the dataset is a
3× 4 (i.e., r = 3 and p = 4) matrix. All eight models with G = 1 to G = 5 were fitted, and the
BIC was used for model selection. In all 25 datasets, the approach selected a two-component
model with an average ARI of 1.00± 0.00. In 11 out of the 25 datasets, a “VEI” model was
selected, and in 14 out of the 25 datasets, a “VVI” model was selected. Note that a “VVI”
model also assumes an isotropic constraint on Dg such that Dg = δgI, but in a “VVI” model,
the δg varies across groups. The mean of the estimated parameters along with their standard
errors from the datasets where a two-component “VEI” model was selected are summarized
in Table 3. The estimated parameters are close to the true parameters.

Table 3. True parameters along with the estimated means and standard deviations of the model
parameters for Scenario 2 from all 25 datasets.

ϑg True Value Means Standard Deviations

M1

 6.20 6.20 6.20 6.20
6.20 6.20 6.20 6.20
6.20 6.20 6.20 6.20

  6.20 6.22 6.23 6.17
6.19 6.23 6.15 6.18
6.22 6.20 6.21 6.23

  0.05 0.07 0.11 0.09
0.05 0.07 0.11 0.14
0.04 0.08 0.07 0.11



M2

 1.50 1.50 1.50 1.50
1.50 1.50 1.50 1.50
1.50 1.50 1.50 1.50

  1.60 1.63 1.62 1.59
1.62 1.59 1.60 1.61
1.61 1.61 1.60 1.62

  0.08 0.07 0.08 0.07
0.09 0.07 0.06 0.08
0.09 0.05 0.04 0.10



Φ1

 1.00 0.00 0.00
0.00 1.46 0.00
0.00 0.00 1.44

  1.00 −0.01 0.00
−0.01 1.47 0.01
0.00 0.01 1.49

  0.00 0.02 0.02
0.02 0.06 0.03
0.02 0.03 0.07



Φ2

 1.00 0.00 0.00
0.00 0.82 0.00
0.00 0.00 0.90

  1.00 0.00 −0.00
0.00 0.77 0.00
−0.00 0.00 0.84

  0.00 0.02 0.05
0.02 0.03 0.02
0.05 0.02 0.03



T1


1.00 − − −
0.75 1.00 − −
0.25 0.75 1.00 −
0.05 0.25 0.75 1.00




1.00 − − −
0.76 1.00 − −
0.25 0.74 1.00 −
0.05 0.25 0.76 1.00




0.00 − − −
0.02 0.00 − −
0.03 0.03 0.00 −
0.04 0.03 0.03 0.00



T2


1.00 − − −
0.20 1.00 − −
0.05 0.30 1.00 −
0.01 0.02 0.35 1.00




1.00 − − −
0.24 1.00 − −
0.07 0.37 1.00 −
0.04 0.07 0.41 1.00




0.00 − − −
0.04 0.00 − −
0.05 0.04 0.00 −
0.03 0.05 0.05 0.00


D1 = D2

[
0.45 0.45 0.45 0.45

] [
0.50 0.50 0.50 0.50

] [
0.02 0.02 0.02 0.02

]
3.1.3. Comparison with Other Approaches

The performances of the proposed models were compared to other mixtures of dis-
crete distributions. Since other approaches for matrix variate discrete data were not avail-
able, the matrix variate data was first converted to multivariate data before comparison.
Two model-based clustering techniques for RNA-seq data: HTSCluster [9,40,41], which
is a mixture of Poisson distributions, and MBCluster.Seq [8,42], which is a mixture of
negative binomial distributions, were used. The comparison of the performance of the
proposed approach with the two competitive approaches for the simulated datasets from
both scenarios is summarized in Table 4. Both HTSCluster and MBCluster.Seq failed to
recover the underlying cluster structure in both scenarios. This could be partly because
both approaches are mixtures of independent univariate distributions, and in the presence
of covariance, their performance suffers. This is in line with findings of [30]. Through
simulation studies, ref. [30] previously showed that when the dataset is generated from
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mixtures of independent Poisson distribution, HTSCluster can recover the underlying
cluster structure. However, in the presence of over-dispersion (i.e., when the data are
generated from a model such as multivariate Poisson log-normal distribution or negative
binomial distribution), the performance of HTSCluster suffers.

Table 4. Comparison of the performance of the proposed approach (longitudinal MVPLN) with
HTSCluster and MBCluster.Seq on simulated datasets from both Scenario 1 and Scenario 2.

Simulation Scenario 1

G Selected Average ARI Time in Minutes
Approach (# of Times) (SD) Average (SD)

Long. MVPLN 2 (25) 1.000 (0.000) 76.590 (20.970)
HTSCluster 5 (25) 0.002 (0.005) 0.057 (0.010)

MBCluster.Seq 4 (1), 5 (24) 0.000 (0.002) 0.237 (0.004)

Simulation Scenario 2

G Selected Average ARI Time in Minutes
Approach (# of Times) (SD) Average (SD)

Long. MVPLN 2 (25) 1.00 (0.000) 78.928 (7.886)
HTSCluster 5 (25) −0.011 (0.012) 0.047 (0.007)

MBCluster.Seq 5 (25) −0.000 (0.004) 0.237(0.003)

3.2. Transcriptomics Data Analysis

The proposed approach was used to cluster a transcriptomics dataset fission from the
R package fission available through bioconductor. The dataset was originally proposed
by [43]. The study consists of a time course RNA-Seq experiment of fission yeast in response
to oxidative stress (1M sorbitol treatment) at 0, 15, 30, 60, 120, and 180 mins from two
types of yeast: wild type and mutant type (aft21∆ strain).Thus, the measurements for each
observation can be written using a matrix notation such that the two types of yeast are
treated as rows (i.e., r = 2), and the time points are treated as columns (i.e., t = 6). We treat
developmental stages as longitudinal.

For cluster analysis, we focused on the subset of the differentially expressed genes
provided in the Supplementary Material by [43]. Genes were considered differentially
expressed if their mean expression level differed in at least one time point relative to
unstressed reference, and multiple testing correction was performed to ensure overall FDR
was kept below 5%. A total of 3169 genes (out of 5957) were differentially expressed in
wild type yeast, and 3044 genes were differentially expressed in the aft21∆ strain. For
our analysis, we included the gene if it was differentially expressed in both wild type and
aft21∆ strain; thus a total of 2476 genes were included.

All eight models were fitted to the dataset for G = 1 to G = 20, and the best fitting
model was selected by BIC. A G = 17 component “EVA” model with a constrained Tg
(i.e., T1 = T2 = . . . = T17) and unconstrained anisotropic Dg was selected. The constrained
Tg suggests that the correlation structure (i.e., autoregressive relationship) among the
developmental stages is the same for all groups. However, the unconstrained anisotropic
Dg suggests that the variances at the developmental stages are different, and it varies from
cluster to cluster. Visualization of the log-transformed expression values of the genes in
each group along with its mean-expression trends is shown in Figure 1. As seen in Figure 1,
the clusters have distinctive mean-expression trends.
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Figure 1. Visualization of the log-transformed expression values along with its mean-expression
values for the two yeast types (solid black line for the mutant and dashed black line for wild type) for
all 17 clusters of the transcriptomics dataset.

4. Conclusions

A novel family of matrix variate Poisson log-normal mixture models was developed
for clustering longitudinal transcriptomics data. This approach utilized a modified Cholesky
decomposition of a component of the covariance matrices of the latent variable, and constraints
were imposed on various components of this decomposition which resulted in a family of
eight models. Performance of the proposed approach was illustrated using both simulated
and real datasets where the proposed approach showed good clustering performance.

One of the limitations with the proposed approach is that it assumes that measure-
ments are taken at the same fixed intervals for all observations, which can be restrictive.
Some future work will focus on extending these models to allow for varying interval lengths
between observations. Furthermore, time is continuous; hence, discretizing it can result in
a loss of information. Some work will also focus on developing a modelling framework
that models time as a continuous variable.
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The following abbreviations are used in this manuscript:

ARI adjusted Rand index
BIC Bayesian information criterion
ELBO evidence lower bound
EM expectation-maximization
KL Kullback-Leibler
MCMC-EM Markov chain Monte Carlo expectation-maximization
MPLN multivariate Poisson lognormal
MVPLN matrix variate Poisson lognormal
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