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Abstract: Learning methods in survival analysis have the ability to handle censored observations.
The Cox model is a predictive prevalent statistical technique for survival analysis, but its use rests
on the strong assumption of hazard proportionality, which can be challenging to verify, particularly
when working with non-linearity and high-dimensional data. Therefore, it may be necessary to
consider a more flexible and generalizable approach, such as support vector machines. This paper
aims to propose a new method, namely wavelet support vector censored regression, and compare the
Cox model with traditional support vector regression and traditional support vector regression for
censored data models, survival models based on support vector machines. In addition, to evaluate
the effectiveness of different kernel functions in the support vector censored regression approach to
survival data, we conducted a series of simulations with varying number of observations and ratios
of censored data. Based on the simulation results, we found that the wavelet support vector censored
regression outperformed the other methods in terms of the C-index. The evaluation was performed
on simulations, survival benchmarking datasets and in a biomedical real application.

Keywords: survival analysis; support vector censored regression; support vector regression; Cox

1. Introduction

Survival analysis is a branch of statistics widely used by the scientific community of
leading areas of knowledge to study the time until the occurrence of an event of interest.
The time of failure, also referred to as the event time or survival time, denotes the time at
which an event of interest occurs. In medical contexts, for instance, it may indicate the time
until a patient’s death, cure, or disease relapse. In engineering, this failure time can be the
time until a piece of equipment or component becomes defective. In the criminal justice
field, the time of failure may denote the time elapsed between a prisoner’s release and the
occurrence of a subsequent crime, among other possibilities.

The principal distinction between survival analysis techniques and classical statistical
methods, such as regression analysis and the design of experiments, lies in the former’s
ability to incorporate information from censored data into statistical analysis. The incor-
poration of censored data information, which is partial observation of the response, is the
main feature of survival data.

The non-parametric Kaplan–Meier estimator proposed by Kaplan [1] is undoubt-
edly the most widely used in the literature to estimate survival function. However, non-
parametric techniques are limited in their ability to include explanatory variables in the
analysis. To address this, appropriate regression models are used for censored data, such as
parametric and semi-parametric models. The Cox regression model [2], a semi-parametric
approach, offers the flexibility to incorporate time-dependent explanatory variables with
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ease and is more flexible compared to parametric models, as it does not assume a specific
statistical distribution in survival time. However, the Cox model assumes that hazards are
proportional, with the supposition that the risk of failure is proportional over time.

Although the proportional hazard assumption can be easily verified in one dimension,
verification of this assumption becomes challenging when working with higher dimen-
sions. Moreover, adjusting a Cox model can be difficult when the number of explanatory
variables exceeds the number of individuals since it uses partial probability to estimate the
parameters [3]. Given the challenges of verifying the proportional hazard assumption in
higher dimensions and the strong assumption inherent in the Cox model, it is necessary
to employ a more flexible and high predictive performance approach, such as support
vector machines (SVMs). SVMs are based on the theory of statistical learning developed by
Vapnik [4]. They are known for their good and theoretical properties and high classification
accuracy in classification problems when working with large dimensions [5].

Emerging from the use of the wavelet kernel, the wavelet kernel with the support
vector machines [6] has been shown to be quite effective in the approximation process of
non-linear functions in order to obtain, in some cases, a predictive capability superior to
that of the radial basis function (RBF) kernel [7] in a wide range of applications, such as
economics [8], wind speed prediction [9], and carbon price prediction [10]. Examples of its
use are commonly seen in conjunction with neural networks for classification problems as
a way to improve the predictive capacity of the model [11–14].

This paper aims to propose a new method, namely wavelet support vector censored
regression (WSVCR), and compare the Cox model with traditional support vector regression
(SVR) and traditional support vector regression for censored data (SVCR) models. Section 2
provides an overview of the survival analysis, the Cox proportional hazards model, and the
C-index metric used for evaluation. Section 3 presents a brief overview of support vector
models and the proposition of WSVCR. The simulation study is presented in Section 4.
Benchmarking analysis and real biomedical data application are given in Section 5. Finally,
Section 6 concludes the paper with the final considerations.

2. Survival Analysis

A characteristic of survival data is the presence of censorship. In the context of
censored data, the time of occurrence of the event of interest may be to the right of the
recorded time (“right-censoring”), or the recorded time may be greater than the failure
time (“left-censoring”). The following notations are used throughout the text. The censored
observation is defined as (xi, ui, li) ∀ = 1, . . . , n where xi is a p-dimensional explanatory
variable vector, li is the lower bound and ui is the upper bound. The tuple representing ob-
servation with left- and right-censoring is given by (xi,−∞, ui) and (xi, li,+∞), respectively,
∀ i = 1, . . . , n. If the data are uncensored, the observation is given by (xi, yi) ∀ i = 1, . . . , n
where yi is the corresponding survival time. In some situations, the indicator δi is used to
denote whether an event is observed (δi = 1) or if the observation is censored (δi = 0).

2.1. Cox Proportional Hazards Model

The Cox model is the most popular statistical approach to survival analysis. The basic
assumption with using this model is that hazards are proportional. This assumption is
reflected in the formula [15],

hi(t) = exp

(
p

∑
j=1

Xijβ j

)
h0(t),

where hi(t) is the hazard function for the ith individual, Xij is the explanatory variable j
for individual i, β j is the slope term for the jth explanatory variable, and h0(t) refers to a
hazard function for an individual with zeros for all features. The coefficients of the Cox
regression model (β’s) are obtained via maximum likelihood estimation. Violation of the
assumption of proportional hazards may lead to bias in estimating the model coefficients.
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2.2. C-Index

The concordance index (C-index) is a performance evaluation metric widely used in sur-
vival analysis, which can be viewed as a generalization of area under the curve for continuous
response variables. It assesses a model’s performance by comparing the predicted survival
time and the true survival time for pairs of observations and determining the proportion
where they share the same ordering (i.e., they are concordant). Chen et al. [16], Shivaswamy
et al. [17], Van Belle et al. [18] and Fouodo et al. [3] employed the C-index to evaluate the
performance of the proposed survival models. In general, this measure estimates the model’s
performance in the classification of the survival times and evaluates the degree of agreement
between the model’s predictions or risk estimates and the observed survival outcomes.

The C-index can be defined as the probability of agreement between two randomly
chosen observations, that is, the observation that has the shortest lifetime must also have
the highest risk score and vice versa [19,20]. The C-index may be expressed as

C-index(v) =
∑n

i=1 ∑j 6=i I
[(

v(xi)− v(xj)
)
×
(
(yi − yj

)
) ≥ 0

]
∑n

i=1 ∑j 6=i comp(i, j)
,

where v(xi) is an estimate function of xi, for example, the risk score estimated by the Cox
model, I is the indicator function, and comp(i, j) is a comparability indicator for a pair of
observations {(xi, yi, δi), (xj, yj, δj)} defined as

comp(i, j) =


1 if δi = 1 and δj = 1,

δi = 1 and δj = 0 and yi ≤ yj,
0 otherwise.

A C-index with value 1 indicates perfect agreement. On the other hand, 0.5 means a
random prediction. Survival data usually yield values between 0.6 and 0.7. The perfor-
mance of some analysts in the stock market has a C-index between 0.3 and 0.4.

According to Brentnall and Cuzick [21], the C-index was used for the first time to
estimate the degree to which an observation chosen at random from one distribution was
superior to that chosen independently from another distribution so that it can also be
understood as a generalization of the Wilcoxon–Mann–Whitney statistics [22,23]. In this
case, the concordance index can be written as [24]

c(D, G, f ) =
1
|ε|∑εij

I f (xi)< f (xj)
,

where in the context of the order graph, which represents the ordering of survival times for
two subjects in a graphical form (refer to Steck et al. [24] for further details), the function
Ia<b is defined as 1 if a < b, and 0 otherwise. Here, |ε| denotes the number of edges in the
graph, and f (xi) represents the model-predicted survival time for subject i.

Considering the Cox proportional-hazards model, the C-index may be written as

c =
1

comp(i, j) ∑
i:δi=1

∑
j:yi<yj

IXi β̂>Xj β̂
,

where Xi β̂ measures the risk. Furthermore, considering the joint survival or failure time,
the C-index is given by

c =
1

comp(i, j) ∑
i:δi=1

∑
j:yi<yj

IŶi<Ŷj
,

where Ŷi represents the predicted value, that is, a shorter failure time means a lower
predicted value.
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3. Support Vector Regression Approach

The support vector machine, proposed by [25], is used to create an optimal hyperplane
that can separate a set of observations by maximizing the distance between the margins.
Originally devised for the separation of two classes, the model can be used for linear and
non-linear cases through the different kernel functions, and has become a widely used
model, given its power of generalization and theoretical foundation.

3.1. Traditional Support Vector Regression

Support vector regression machines [26] were proposed as generalized versions of
support vector machines for regression tasks. Instead of creating a hyperplane with a
maximum margin in feature space, support vector regression builds an optimal hypertube
which considers the observations inside the hypertube as constraints, as well as minimizing
the distance among the observations and the center of the hypertube.

Let a dataset be {xi, yi}, i = 1, . . . , n, where n is the number of observations, yi ∈ R
is the response variable, xi ∈ Rp are the explanatory variables, w ∈ Rp is the parameter
vector on the hypertube as well as the hyperparameters ε and C ∈ R+. Vapnik [26] showed
that considering slack variables E , E∗ and the optimization of convex objective function is
given by

min
w,E ,E∗i

1
2

w · w + C
n

∑
i=1

(Ei + E∗i ),

subject to


yi − f (xi) ≤ Ei + ε,
f (xi)− yi ≤ E∗i + ε,
Ei ≥ 0, E∗i ≥ 0,

where f (xi) = w · xi. Hyperparameter C represents the regularization constant responsible
for imposing weight to minimize errors. Additionally, the hypertube may be expressed
in the dual form optimization given by the following Equation (1) and its respective
constraints [26]:

max
α,α∗

(
1
2

n

∑
i=1

n

∑
j=1

(αi − α∗i )(αj − α∗j )xi · xj +
n

∑
i=1

(αi − α∗i )yi − ε
n

∑
i=1

(αi − α∗i )

)
,

subject to

{
∑n

i=1(αi − α∗i ) = 0, ∑n
j=1(αi − α∗i ) = 0

0 < αi, α∗i ≤ C.
(1)

This approach of SVR works successfully in linear regression problems. However,
there are cases where non-linearity exists among the explaining and predictor variables. In
these cases, the kernel trick may be used, based on Mercer’s theorem [27] in order to deal
with non-linearity. Using kernel methods, rather than considering the input space, higher
feature spaces are considered, where the observations could be linearly separable through
the function K(xi, xj) = φ(xi) · φ(xj), where φ is a map function and replaces the inner
product in Equation (1). These functions are defined as semi-definite kernel functions [28].

Many types of kernel functions are used in distinct regression examples. The choice
of specific kernel functions creates unique non-linear mappings, and the efficiency of
the resulting SVR usually depends on the correct choice of the kernel [29]. There are
several kernel functions in the general SVR framework, some of the most common of
which are considered in this paper. Table 1 displays these kernels for hyperparameters
γ ∈ R+ and d ∈ N∗.
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Table 1. Kernel functions.

Kernel K(x, y) Parameters

Linear γ(x · y) γ
Polynomial (γ(x · y))d γ, d
Gaussian exp{−γ||x− y||2} γ
Exponential exp{−γ||x− y||} γ
Sigmoidal tanh (γ(x · y)) γ

Cauchy 1
1+exp{2γ||x−y||2} γ

Laplacian exp{−
√

2γ||x− y||} γ

The trick is precisely to find the appropriate kernel to build the model for a given set
of data so that there is no single appropriate kernel function for every type of database. The
decision of the most appropriate kernel function may be determined by grid search [30], as
well the choice of the best hyperparameters.

3.2. Support Vector Censored Regression

As mentioned in Section 2, the censored observation is defined as (xi, ui, li)∀ = 1, . . . , n
where li is the lower bound and ui is the upper bound. In the censored data context, there
exist two different censors: the data can be left-censored, with the tuple that represents that
observation being given by (xi,−∞, ui) ∀ i = 1, . . . , n, and the data can be right-censored,
with (xi, li,+∞) ∀ = 1, . . . , n. If the data are not censored, the observation is given by the
tuple (xi, yi) ∀ = 1, . . . , n.

In order to develop a model that can use all available information, even when the
data are censored, Shivaswamy et al. [17] developed the support vector censored regression
(SVCR) approach. The proposal is generalized for both censoring types [17]. However, in
their work, only left-censored data were explored, as well as a few kernel functions, linear
and polynomial.

In the SVCR, the loss function is defined by

L( f (xi), ui) = max(0, li − f (xi), f (xi)− ui)).

Let Iu = {i | li > −∞, ui < +∞}, Ir = {i | ui = +∞} and Il = {i | li = −∞}. Then, Iu
is the index of uncensored samples, while Ir and Il are the index of the samples which are
right- and left-censored, respectively. Letting U = Iu ∪ Il and L = Iu ∪ Ir, the optimization
of the convex objective function for SVCR is given by

min
w,E ,E∗

1
2

w · w + C

(
∑
i∈U
Ei + ∑

i∈L
E∗i

)
,

subject to


f̂ (xi)− ui ≤ E∗i , ∀ i ∈ U,
li − f̂ (xi) ≤ Ei, ∀ i ∈ L,
Ei ≥ 0 ∀ i ∈ U, E∗i ≥ 0 ∀ i ∈ L.

Expanding this formulation through the Lagrangian multipliers, the dual formula-
tion [26] considering the censored data becomes

max
α,α∗

(
1
2

n

∑
i=1

n

∑
j=1

(αi − α∗i )(αj − α∗j )xi · xj −∑
i∈L

yiαi + ∑
i∈U

yiα
∗
i

)
, (2)

subject to

{
∑i∈L αi −∑i∈U α∗ i = 0,
0 < αi, α∗ i ≤ C.
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With the SVCR approach, the dot product also can be replaced for the kernel function
K(xi, xj) = xi · xj to obtain a non-linear function mapping. Some works already demon-
strated the use of the support vector regression approach to censored data only use three
types of kernel functions: linear, polynomial and Gaussian [17,18]. This paper presents a
proposition of a new SVCR, as well as presenting a comparison with other types of kernel
functions in order to evaluate how the SVCR algorithm would behave for these other cases.

3.3. Wavelet Kernel in Support Vector Models

Wavelets are a tool used to decompose functions, operators, or data into various
frequency components, which enables the study of each component individually. In this
context, wavelet support vector machine was introduced by Zhang et al. [6] based on the
aggregation of the wavelet kernel to the support vector machine theory. The wavelet kernel
is a kind of multidimensional wavelet function which approximates arbitrary non-linear
functions [31]. In this sense, the main idea behind the wavelet analysis is to approximate a
function or a signal by a family of functions generated by dilations or contractions (scaling)
and translations of a function called the mother wavelet.

The wavelet transformation of a function g(x) for x ∈ Rmay be written as

WA,B( f ) = g(x) · hA,B(x),

where

hA,B(x) = |A|−1/2
(

x− B
A

)
,

where h(x) is the mother wavelet function, A and B ∈ R, A is a dilation factor, and B is a
translation factor.

This approximation in finite t terms is given by

ĝ(x) =
t

∑
i=1

WihAi ,Bi (x),

with ĝ(x) is the approximation of g(x).
The Mercer theorem gives the conditions that a dot product kernel must satisfy, and

these properties are extended to the support vector regression and support vector censored
regression as cited in Section 3. The choice of the wavelet plays a crucial role in the analysis,
detection, and localization of power quality disturbances. In this context, using properties
of translation-invariant kernels and multidimensional wavelet functions, Zhang et al. [6]
construct a translation-invariant wavelet kernel by the following wavelet mother function:

h(x) = cos(1.75x) exp (−0.5x),

which is the cosine–Gaussian wavelet, which is the real part of the Morlet wavelet [32].
Wavelet support vector censored regression (SVCR) is the importation of the wavelet

kernel in Equation (2), given the optimization of the convex objective function in the dual
formulation for the censored data expressed in Equation (3) on the same constraints:

max
α,α∗

(
1
2

n

∑
i=1

n

∑
j=1

(αi − α∗ i)(αj − α∗ j)
p

∏
k=1

h

(
xk

i − xk
j

A

)
−∑

i∈L
liαi + ∑

i∈U
uiα
∗
i

)
. (3)

where xk
i the denotes the kth component of the explanatory variable of the ith training

observation.
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WSVCR and SVCR were implemented in the R software [33], and the dual Lagrangian
problem was solved using the quadratic programming approach [34]. Additionally, in
order to speed up the SVCR approach, the same algorithm can use the sequential mini-
mal optimization (SMO) [35] to solve faster the dual optimization problem presented in
Equations (1)–(3).

4. Simulation Study

In order to evaluate the performance of different kernel functions used in the support
vector censored regression approach to survival data, we firstly explored simulated data,
for which it is possible to create a controlled environment for the experiment. The data
generation model is defined over three explanatory variables X1, X2 and X3, which follow
the distributions below:

• X1 ∼ N (1, 1);
• X2 ∼ N (2, 2);
• X3 ∼ Exp(1).

To capture the time behavior from observations in survival data analysis, we use
the Weibull distribution to generate the time of each observation since several works
already demonstrated that it is appropriate to generate this kind of data [36–38]. The time
generation is given by Y ∼ Weibull(λ, k), where the scale parameter and shape parameter
are given by

λ = 5× exp
(
−
(

X1 ln |X2|+ sin(X2
3)
))

, (4)

k = 3,

respectively. Equation (4) was proposed in order to represent non-linear behavior among
explanatory variables. In this case, the simulation of this artificial dataset is based on
varying sample sizes and proportions of censored observations, along with a non-linear
relationship between the explanatory variables and the true generation function. This ap-
proach is necessary, as most traditional survival approaches fail to meet these assumptions
as the case Cox model, which assumes hazard proportionality. For this reason, SVR or
SVCR models can handle with this non-linear relationship, and our focus is on studying
these models using the wavelet kernel in comparison with the other common kernels.

The setting of a simulated dataset was generated, varying n ∈ {30; 100; 300} and
the ratio of censored observations r ∈ {0.05; 0.25; 0.5; 0.95}. To evaluate the results
among the different approaches, the C-index was used. The measures were calculated
over a repeated holdout validation with 100 repetitions and a split ratio of 70–30% of
training–test, respectively [39,40]. Additionally, the tuning process on SVR and SVCR
was realized through a grid search, varying the parameters C ∈ {0.25; 0.5; 1; 2; 4}, γ and
A ∈ {0.125; 0.25; 0.5; 1; 2; 4; 8}. The results are summarized by mean in Table 2, where the
bold values identify the best concordance index for each scenario. The results summarize
about 673,200 fitted models over 1200 Monte Carlo samples. In the Appendix A, a more
detailed summary is provided by median, minimum, maximum and standard deviation.
The results corroborate with the outperforming of wavelet SVCR in the centrality and the
dispersion of the best concordance.

Table 2 displays that the wavelet SVCR generally outperforms the other methods,
considering the C-index. Additionally, the SVCR with other kernels functions still greater
than the traditional Cox model, which is similar to SVR with the linear kernel.
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Table 2. Summary with the mean of C-index for all simulated databases and methods.

n 30 100 300 Mean

r 0.05 0.25 0.50 0.05 0.25 0.50 0.05 0.25 0.50 0.95

COX 0.635 0.609 0.633 0.664 0.681 0.697 0.648 0.659 0.682 0.606 0.652

SVCR
wavelet 0.795 0.819 0.885 0.717 0.743 0.776 0.718 0.734 0.750 0.820 0.776

Laplacian 0.772 0.793 0.813 0.720 0.734 0.748 0.712 0.724 0.740 0.773 0.753
Cauchy 0.780 0.794 0.810 0.723 0.740 0.760 0.719 0.731 0.751 0.786 0.759

exponential 0.783 0.806 0.833 0.727 0.745 0.768 0.720 0.735 0.755 0.792 0.766
Gaussian 0.794 0.820 0.840 0.726 0.743 0.773 0.723 0.736 0.754 0.809 0.772

sigmoidal 0.705 0.709 0.793 0.658 0.688 0.720 0.628 0.640 0.593 0.518 0.665
polynomial 0.648 0.655 0.691 0.597 0.602 0.624 0.644 0.647 0.683 0.631 0.642

linear 0.646 0.618 0.655 0.656 0.681 0.711 0.644 0.657 0.680 0.658 0.661

SVR
wavelet 0.795 0.826 0.870 0.716 0.738 0.779 0.718 0.732 0.743 0.810 0.773

Laplacian 0.777 0.795 0.819 0.713 0.730 0.739 0.707 0.720 0.722 0.732 0.745
Cauchy 0.781 0.795 0.806 0.720 0.732 0.747 0.715 0.727 0.732 0.724 0.748

exponential 0.782 0.803 0.830 0.720 0.737 0.755 0.716 0.729 0.737 0.763 0.757
Gaussian 0.795 0.821 0.838 0.723 0.736 0.770 0.719 0.732 0.740 0.782 0.766

sigmoidal 0.703 0.702 0.805 0.663 0.685 0.717 0.626 0.641 0.647 0.743 0.693
polynomial 0.643 0.687 0.707 0.584 0.589 0.590 0.646 0.654 0.685 0.680 0.646

linear 0.640 0.586 0.651 0.653 0.673 0.683 0.643 0.651 0.670 0.647 0.650

5. Real Data Applications
5.1. Benchmarking Data

In addition to the evaluation of the SVCR using simulated data, its performance with
various kernel functions was also assessed on real data benchmarks that are featured in
several survival analysis publications [17,41]. There are a total of seven datasets, each with
a distinct number of observations, explanatory variables, and ratio of censored instances.
Table 3 displays the general statistics of the datasets, where n is the sample size, p the
number of input variables and r the censuring rate. This was done to increase diversity
among the datasets on which the models were built. To determine the best model, the
C-index was selected as the primary parameter, where a larger C-index indicates a better
model.The parameters used in the grid search for the tuning process were the same in the
simulation—C = {0.125; 0.25; 0.5; 1; 2; 4; 8} and γ = {0.125; 0.25; 0.5; 1; 2; 4; 8}—based on
the C-index maximization. The validation technique was also the same: repeated holdout
with 30 repetitions and a split ratio of 70–30%.

Table 3. Real benchmarking datasets.

Dataset CGD Lung Ovarian PBC Rats2 Retinopathy Veteran

n 203 167 26 276 253 394 137
p 8 7 4 17 2 6 6
r 0.63 0.28 0.54 0.53 0.16 0.61 0.07

The result is summarized in Table 4, which presents the mean C-index over the
30 holdout samples. The maximum C-index values for each dataset are shown in
bold values.
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Table 4. Summary of C-index mean values over the benchmarking datasets.

Method CGD Lung Ovarian PBC Rats2 Retinopathy Veteran Mean

COX 0.669 0.616 0.715 0.788 0.627 0.589 0.676 0.669

SVCR
wavelet 0.754 0.646 0.807 0.786 0.648 0.610 0.693 0.706

Laplacian 0.724 0.627 0.736 0.755 0.631 0.598 0.691 0.680
Cauchy 0.718 0.630 0.752 0.786 0.641 0.602 0.695 0.689

exponential 0.733 0.640 0.768 0.817 0.638 0.606 0.701 0.700
Gaussian 0.727 0.628 0.774 0.694 0.645 0.607 0.690 0.681

sigmoidal 0.466 0.612 0.849 0.656 0.632 0.494 0.656 0.623
polynomial 0.659 0.596 0.701 0.540 0.621 0.578 0.617 0.616

linear 0.651 0.614 0.724 0.747 0.626 0.485 0.679 0.646

SVR
wavelet 0.684 0.644 - 0.798 0.637 0.562 0.693 0.670

Laplacian 0.651 0.631 - 0.800 0.614 0.527 0.695 0.653
Cauchy 0.648 0.629 - 0.800 0.628 0.535 0.697 0.656

exponential 0.662 0.640 - 0.806 0.625 0.534 0.707 0.662
Gaussian 0.649 0.631 - 0.786 0.635 0.547 0.696 0.657

sigmoidal 0.604 0.643 - 0.774 0.630 0.534 0.660 0.641
polynomial 0.612 0.577 - 0.757 0.608 0.534 0.612 0.617

linear 0.622 0.622 - 0.752 0.622 0.510 0.679 0.634

The results presented in Table 4 emphasize the great efficiency of the SVCR method. It
is evident that this approach outperforms both the SVR and Cox models. It is important to
notice that the wavelet kernel was the best-performing kernel function, with the largest
value in 4 out of 7 in the benchmark dataset. Additionally, 70% of kernel functions that
achieved the best result were among the most commonly used kernel functions in stud-
ies employing the SVCR method, i.e., linear, polynomial, and Gaussian. Therefore, the
results indicate the importance of carefully selecting the correct kernel function since the
exponential, Cauchy and Laplacian kernels produced the highest C-index in most cases.

The result is also summarized in Figure 1, which schematically plots the C-index for
all datasets to confirm the superiority of the SVCR approach compared with other models.
Figure 2, in turn, shows the rate of times each model was considered the winner over the
30 repetitions performed during the experiments. In this way, it is possible to observe, once
again, the superiority of the wavelet kernel over the other kernels, either for the pure SVR
approach, or mainly for the SVCR approach.

5.2. Biomedical Real Data

The dataset is based on research conducted by the Heart Institute at the “das Clínicas”
Hospital, Faculty of Medicine, Universidade de São Paulo, Brazil (https://www.hc.fm.
usp.br, accessed on 18 Janary 2023), with the purpose of comparing the length of stay for
heart disease patients undergoing cardiac surgery [42]. This study considered 145 patients
and 7 variables, of which 5 are the explanatory variables, as well as the response variable
and the censoring indicator. The data were recently analyzed by [43], using the Weibull
regression model and the random survival forest (RSF) model.

The response variable, T, represents the amount of time (in hours) from the patient’s
admission to their discharge from the surgical ward and is accompanied by an indicator
variable, δ. If δ = 0, there is censoring, meaning the exact length of stay is unknown. If δ
is non-zero, the length of stay is known exactly. Additionally, the following explanatory
variables were taken into account: the age of the patient in years (X1), the type of protocol
(X2), which can be either conventional (0) or fast track (1), race (X3), which is divided in the
Brazilian classification into white (1), black (2), and yellow (3), sex (X4), which is divided

https://www.hc.fm.usp.br
https://www.hc.fm.usp.br
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between female (0) and male (1), and the type of patient (X5), separated into congenital (0)
and coronary (1).

Table 5 presents the descriptions of some of these variables along with their correspond-
ing descriptive statistics. It was observed that for patients with congenital heart disease
who were monitored under the traditional protocol, their age ranged from 0.3 to 49 years,
while for those under the fast-track protocol, their age ranged from 0.8 to 38 years. For
patients with coronary heart disease who were monitored under the traditional protocol,
their age ranged from 18 to 81 years, and for those under the fast-track protocol, their age
ranged from 38 to 79 years. The censuring rate (r) for these data is 0.041.
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Figure 1. Boxplots of the C-index. (a) n = 30 and r = 0.50 , (b) n = 100 and r = 0.50, (c) n = 300 and
r = 0.05 , (d) n = 300 and r = 0.95.
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Figure 2. (a) C-index winning method on CGD dataset. (b) Boxplots of the C-index by CGD dataset.

Table 5. Variables and statistical descriptive for the ages (in years) of patients with congenital and
coronary heart disease followed up in both protocols.

Age
Congenital Coronary

Conventional
Care

Fast-Track Care Conventional
Care

Fast-Track Care

Total 20 50 37 38
Mean 8.5 12.2 60.5 58.4
Standard deviation 13.4 11.1 12.9 8.8
Minimum 0.3 0.8 18.0 38.0
Median 4.0 10.0 63.0 58.0
Maximum 49.0 38.0 81.0 79.0

The parameters used in the grid-search for the tuning process were similar to previous
applications varying the parameters C ∈ {; 0.25; 0.5; 1; 2; 4}, γ and A∈ {0.125; 0.25; 0.5; 1; 2; 4; 8}.
The concordance was investigated by repeated holdout validation with 100 repetitions and a
split ratio of 70–30% of training–test, respectively. Figure 3 displays the grid search results of
the wavelet SVCR for the 36 different possibilities, where it is observed that the highest values
of C-index are obtained by increasing the values of A. Table 6 presents the average values
obtained from 100 repetitions, revealing the superior performance of the wavelet kernel for
both SVR and SVCR approaches. Notably, the results show less variation in the wavelet kernel
across tests with the SVR approach, which is expected due to the low censuring rate. This trend
is further illustrated in Figure 4, where the wavelet and Gaussian kernel models exhibit the
best performance.
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Figure 3. C-index distribution for the wavelet SVCR tuning process. Dotted line represents the
chosen values by the median, A = 8 and C = 0.5.

Table 6. Mean and standard deviation of C-index for the biomedical real data.

COX

Mean 0.757
SD 0.030

SVR

linear polynomial sigmoidal Gaussian exponential Cauchy Laplacian wavelet
Mean 0.768 0.766 0.770 0.798 0.798 0.796 0.794 0.800

SD 0.031 0.042 0.029 0.029 0.029 0.030 0.030 0.028

SVCR

linear polynomial sigmoidal Gaussian exponential Cauchy Laplacian wavelet
Mean 0.770 0.762 0.771 0.801 0.797 0.797 0.793 0.810

SD 0.031 0.040 0.030 0.029 0.027 0.029 0.028 0.028
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Figure 4. C-index distribution to the biomedial real data.

6. Final Comments

This paper proposes the WSVRC approach and compares different methods and
kernel functions applied to survival data. Three different approaches are discussed: (i) the
standard survival analysis approach, i.e., the Cox proportional hazards model; (ii) the
support vector machine approach for regression models, i.e., the SVR; and (iii) the support
vector approach for censored data, i.e., the SVCR, with the novel WSVCR model. The
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simulation results and applications show that the WSVCR approach is either equivalent
to or outperforms the other methods. Hence, it is not advisable to persist with a model
that requires a strong assumption to be validated. Instead, the WSVCR approach, which is
more flexible and general, may be employed.

Furthermore, this article presents an extensive study on different kernel functions
and demonstrates that kernels such as exponential, cauchy, and Laplacian show good
performance and are not often considered in many papers, as most of them only employ
the most common kernels (i.e., linear, polynomial, and Gaussian).
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Appendix A

This Appendix refers to more general summary of the simulation results displayed in
Section 4. The Figures A1–A4 are related to the median, minimum, maximum and standard
deviation over the 100 holdout repetitions. The values are showed in traffic light scale.

Figure A1. Median of C-index distribution in the simulation study.
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Figure A2. Minimum of C-index distribution in the simulation study.

Figure A3. Maximum of C-index distribution in the simulation study.
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Figure A4. Standard deviation of C-index distribution in the simulation study.
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