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Abstract: Researchers are starting to design AI-powered systems to automatically select and sum-
marize the reports most relevant to each analyst, which raises the issue of bias in the information
presented. This article focuses on the selection of relevant reports without an explicit query, a
task known as recommendation. Drawing on previous work documenting the existence of human-
machine feedback loops in recommender systems, this article reviews potential biases and mitigations
in the context of intelligence analysis. Such loops can arise when behavioral “engagement” signals
such as clicks or user ratings are used to infer the value of displayed information. Even worse,
there can be feedback loops in the collection of intelligence information because users may also
be responsible for tasking collection. Avoiding misalignment feedback loops requires an alternate,
ongoing, non-engagement signal of information quality. Existing evaluation scales for intelligence
product quality and rigor, such as the IC Rating Scale, could provide ground-truth feedback. This
sparse data can be used in two ways: for human supervision of average performance and to build
models that predict human survey ratings for use at recommendation time. Both techniques are
widely used today by social media platforms. Open problems include the design of an ideal human
evaluation method, the cost of skilled human labor, and the sparsity of the resulting data.
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1. Introduction

There is increasing interest in using AI systems for various intelligence analysis tasks,
including information fusion, hypothesis testing, monitoring, and summarization [1]. For
example, the Laboratory for Analytic Sciences recently inaugurated the “tailored daily report”
(TLDR) grand challenge, which was to automate the creation of a summary of new intelligence
similar in format and quality to the President’s Daily Brief but tailored to the needs of individual
workers across the intelligence community [2]. This multi-year research challenge requires
retrieval of relevant source reports from a potentially large and diverse pool of available material,
followed by summarization which correctly extracts the most essential information.

The production of such a daily report must begin with the automated selection of the
new items of information most relevant to the analyst’s task—whether or not the analyst has
previously entered a query that would include them. This problem of query-free selection
is known as “recommendation” in the computer science literature and has applications
across many domains, including e-commerce, entertainment, and social media.

Unfortunately, there is no straightforward algorithmic translation of words like “rel-
evant” and “essential.” Current recommendation systems operationalize these concepts
largely through proxy behavioral metrics, such as click-through rate, dwell time, likes
or favorites, and other types of engagement [3]. This approach is known to produce
human-machine feedback loops that result in biases of various kinds [4].

This paper studies the possibility of bias-producing human-machine feedback in AI
systems designed for intelligence analysis using the example of recommender systems. Rec-
ommender systems are an appropriate place to begin this analysis because (a) they are likely
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to be a core component of any practical AI-assisted intelligence analysis system, and (b) there
is extensive previous work on recommender-induced bias. The contributions of this paper are:

(1) An analysis of how previously studied engagement-driven recommender biases will
apply in the domain of intelligence analysis;

(2) An argument that human-machine feedback loops will bias not just intelligence
analysis, but also intelligence collection;

(3) Proposed mitigation strategies based on collecting human evaluations of the analytic
quality of recommender output.

2. Recommender System Biases

A recommender is a personalized information filter that selects, for each individual, a
small set of items out of a much larger pool [5]. Recommenders differ from search engines
in that they typically produce personalized results, and they are often invoked without a
specific user query, such as a news recommender presenting significant new events without
requiring the user to search for them explicitly.

In the intelligence context, a recommender could be designed to select the most
relevant reports for each analyst. The difficulty here is defining the word “relevant”. It
has long been understood that there is no universal measure of “relevance”, as it depends
on both user goals and current context [6,7], which the computer cannot directly observe.
Instead, existing recommendation systems largely select content based on previously
observed short-term behavioral responses, such as clicks, likes, and favorites, which are
collectively known as engagement [3].

This reliance on engagement can produce several types of bias, which we classify below.

2.1. Technical Biases

User interface designers have long understood that users are more likely to click items
that appear earlier in a list, even if later items are just as relevant. This is known as “position
bias”. Recommenders usually rank clicked items higher for other users, which can result
in runaway amplification of initially random ranking choices, as now-classic experiments
with music recommendation have shown [8].

“Popularity bias” is a related phenomenon where a recommender shows only those
items most likely to be clicked by a broad group of users. Recommending popular items
is not always bad; after all, these are the items that the largest number of people will
like. However, “popularity” is not “quality,” though the two often correlate. In particular,
popularity can be a valuable signal of item quality when exploration costs are in an
intermediate regime [9]. Although, ranking by popularity can also result in popularity
feedback loops alongside recommendations that serve the majority well while performing
poorly for users who are in the minority along some axis [10].

Similarly, there is a risk of feedback effects within a community of analysts. If each
analyst preferentially clicks on the top-rated reports, and what one user clicks is taken as a
positive ranking signal for other users, then the entire community may end up preferentially
reading a particular report or favoring a particular topic.

Positional and popularity biases are well-studied, and a variety of mitigations have been
developed [11–13]. This is possible because these types of “technical bias” (following the termi-
nology of [14]) can be defined by reference to an objective baseline. For example, to counteract
position bias, one can attempt to counterfactually estimate an item’s click rate independent of
position [12]. While intelligence applications of recommender systems must consider these types
of biases, mitigation techniques developed in other domains should prove adequate.

2.2. Biases Resulting from Incomplete Information

Engagement is a useful proxy for user relevance; certainly, we tend to give more attention
to those items that are most valuable to us. This is why engagement prediction is a key ranking
signal in most recommender systems [3]. However, engagement and value are frequently
misaligned, as in the case of “clickbait”. While an intelligence database is unlikely to be filled
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with clickbait in the “You Won’t Believe This One Weird Trick” sense of the term, there will
still be some difference between what titles cause a user to click and what is actually valuable.

The resulting slippage may be tolerable in relatively simple or low-stakes systems.
However, when more advanced systems are designed to optimize for engagement, they
may find increasingly sophisticated ways to induce humans to click or otherwise rate the
results highly, potentially influencing long-term user interests and behavior [15–17].

Simulation studies investigating this effect typically assume that users shift their
preferences in the direction of whatever they have previously seen [18]. This can be
considered a type of confirmation bias and has empirical psychological grounding in the
“mere exposure effect” [19]. Given this assumption, plus the assumptions that preferences
shape user choices and recommenders respond to those choices, a number of simulations
have shown feedback effects where users consume increasingly narrow subsets of content
and/or polarize into disjoint groups which consume different content [4,16,17,20,21].

One standard mitigation is the use of diversification algorithms to prevent too much
of the same type of content from appearing in recommendations [22]. However, such
diversification methods are based on content similarity metrics, which do not necessarily
correspond to intelligence analysis principles. There are also plausible preference shift
mechanisms that do not stem from a lack of content diversity [23].

At the present time, it is difficult to assess the degree to which recommender-driven
preference shifts are happening in real systems. A recent review of hundreds of studies
shows a positive correlation between “digital media” use and polarization [24]. Causal evi-
dence is much more scarce and methodologically difficult because many non-recommender
factors can influence polarization trends [24,25] and because external researchers have
not been able to perform relevant experimental studies on major platforms. Deprivation
studies (where users are paid not to use social media for several weeks) have shown both
positive and negative polarization effects in different contexts [26,27].

Nonetheless, the overall correlation between digital media use and polarization is con-
cerning, and the fact that narrowing feedback loops appear under a diverse set of recom-
mender simulation specifications suggests a robust result. Further, we should expect that
as advanced AI systems become better at long-term planning, they will influence users to
achieve programmed engagement objectives if they possibly can. This may particularly be an
issue for the newer generation of recommenders based on reinforcement learning [28,29].

Concretely, what would it look like for a recommender to try to influence you? It
might simply show you content that it wants you to engage with. In general, all of us tend
to become more aligned with the content we are exposed to—whether through experience
effects, anchoring, learning new facts, discovering new interests, pressure to conform, or
the illusory truth effect. Alternatively, a recommender might show you content you find
strongly disagreeable in order to more firmly entrench your current preferences. It might
show you articles suggesting that everyone else is interested in a particular topic to generate
FOMO and increase the chance you engage. It might show you a lot of conflicting news
accounts to generate reality apathy, then feed you a false conspiracy theory that makes it all
make sense. This list is not meant to be exhaustive. There will be many more subtle ways
in which a sufficiently capable recommender could influence us, including some that we
would not be able to foresee. The above examples simply demonstrate that recommenders
could plausibly influence us if they are able to learn how to do so.

At root, these problems result from the fact that the user’s needs cannot be accurately
inferred from behavior alone [30,31]. Instead, recommenders (and other AI systems) must
optimize for some behavioral proxy for user relevance or value. Of course, one can use
better proxies than clicks. However, it is probably not possible to provide a formal definition
or metric that cannot be gamed in some way. This is a fundamental challenge that has been
extensively explored in the AI alignment literature [15,32–34].
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3. Bias as a Consequence of Feedback Loops

Recommender output might be “biased” in the sense of presenting an inappropriate
selection of items, just as a newspaper might be biased. However, interactive systems can
produce types of bias not possible with traditional media due to the formation of feedback
loops between recommender systems and their users [4]. Recommenders are designed to
respond to human feedback as a signal of relevance or quality. If human users then react
in response to the information they are presented with, feedback loops can form between
human and machine, as depicted in Figure 1. These loops can produce the positional,
popularity, and polarization feedback loops discussed above.
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Figure 1. Feedback loops between an AI system that selects and summarizes information and the
user. AI output shapes belief which in turn shapes the user response. Systems that optimize for
engagement adapt by changing their output to reinforce this response, and the cycle repeats.

This feedback loop includes changes in human beliefs—if it did not, we would not
need to be especially concerned about it. Bias-producing feedback loops can operate for a
single user, where the personalization process induces successive rounds of confirmation
bias as the system drifts towards progressively poorer results. However, recommenders
are inherently multi-user systems, and in most cases, other users’ previous reactions are a
key source of information when inferring what a user wants. Thus, belief-shifting feedback
loops can operate within an entire community of users, biasing a group towards certain
content or topics. Popularity bias is an example of this effect.

4. Biased Feedback Loops in Intelligence Analysis

Recommender feedback loops might bias intelligence analysis in at least two ways:
what is consumed from available information and what intelligence is collected at all. Both
might be considered types of confirmation bias, though they act on different levels.

Considering intelligence on weapons of mass destruction preceding the 2003 US
invasion of Iraq, Pillar notes that the analyst’s job is, in large part, deciding where to look.

On any given subject, the intelligence community faces what is, in effect, a field of rocks,
and it lacks the resources to turn over each one to see what threats to national security
may lurk underneath. In an unpoliticized environment, intelligence officers decide which
rocks to turn over based on past patterns and their own judgments. However, when
policymakers repeatedly urge the intelligence community to turn over only certain rocks,
the process becomes biased. The community responds by concentrating its resources
on those rocks, eventually producing a body of reporting and analysis that, thanks to
quantity and emphasis, leaves the impression that what lies under those same rocks is a
bigger part of the problem than it really is [35].

In this case, Pillar believes that the intelligence process was corrupted by political
influences (which would be in violation of fundamental directives, such as ICD 203 [36]).
However, his analysis holds for any bias which influences “which rocks are turned over”.

If a recommender-human feedback loop results in an analyst preferentially looking at
certain types of information, they may, in turn, represent some problems as being more signifi-
cant than they actually are while paying insufficient attention to other important issues. Worse,
they may fail to find contrary evidence for significant analytical conclusions. Although ana-
lysts are directed to consider contrary information and alternative explanations [36], reliance
on AI systems has been shown to reduce human skepticism in some circumstances [37].

It is perhaps less appreciated that biases in the analysis process can create biases in
the collection process. That is, limited resources require tradeoffs in which information is
collected for analysis, and those tradeoffs are shaped by previous analytical conclusions.
Detecting or mitigating biases in collection requires a theory of how limited collection
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resources should be ideally targeted for a given intelligence question. One such theory is
Heuers’ analysis of competing hypotheses method, which posits that:

You should seek evidence that disproves hypotheses. Early rejection of unproven, but not
disproved, hypotheses will bias the subsequent analysis because one does not then look for
the evidence that might support them [38] (p.98).

Here, seeking evidence includes more than just searching existing databases; it extends
to which information is collected in the first place. Thus, an inappropriate algorithmic
system might bias not just how available information is interpreted but what kinds of
information are available at all. This creates a secondary feedback loop, indicated by the
bottom path in Figure 2, which is slower but perhaps more consequential.
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5. Mitigating Recommender Feedback Loops

The biases described above can be understood as consequences of the fact that the
optimization objectives of an engagement-driven recommender system do not accurately
represent human goals. The usual behavioral signals are not enough; clickbait provides a
simple example of why, but the problem is quite broad [15] and has close connections to the
problem of inferring “preferences” studied in behavioral economics and psychology [30].
The solution is straightforward in principle but challenging in practice: the machine must
be given other kinds of human feedback. This is the guiding principle of both theoretical
solutions to the general alignment problem (such as “assistance games” [15]) and the
practical mitigations discussed below.

5.1. User Controls

If users are able to detect errors or biases in the recommender output, then they may
be able to correct the system by adjusting settings or parameters. A large number of
different recommender control interfaces have been tested, including enabling the user to
select between different algorithms [39], adjust the weight accorded to different content
features [40], or interact with visualizations [41].

In the context of mitigating bias-producing feedback loops, however, controls suffer
from two major problems. First, few users actually adjust the controls on real recommender
systems [40], which means that user controls are not a plentiful or reliable source of
feedback. This is why commercial recommenders, such as Netflix, migrated from explicit
user feedback (star ratings on movies) to favoring implicit feedback (clicks and watch time).

Second, users must be able to detect the bias in recommender results before they can
mitigate it. The bias-producing feedback loops discussed above operate through changes in
user belief (as in Figures 1 and 2), and by definition, people are usually unaware when they
are suffering from cognitive biases. Confirmation bias, in particular, has been documented
in intelligence analysis tasks [42,43].

Nonetheless, various kinds of recommender controls may prove useful in ensuring that
the analysis process is rigorous and unbiased. For example, there are many techniques for
increasing the diversity of recommendations in various ways [22]. The analyst might find it
useful to ask for additional recommendations from more diverse sources, over a broader time
period or on a wider range of topics. With recent rapid advances in natural language process-
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ing, it should soon be possible for analysts to specifically ask for disconfirming evidence, a
possibility that has been explored in the nascent field of automated fact-checking [44].

5.2. Use of Survey Data

Large recommender-driven platforms have been dealing with the problem of misalign-
ment between engagement objectives and user value for decades [45]. Mitigating such
misalignment requires measuring it, and one of the most straightforward sources of addi-
tional information is user surveys. A wide variety of surveys are used to evaluate and train
commercial recommender systems [5]. Some of these surveys merely ask the user to rate a
previous recommendation, but some attempt to measure more abstract constructs, such as
whether an item is “worth your time” or contributes to “meaningful social interactions” [46].

Survey data is widely used to evaluate user experiences and perceptions. Surveys are
often deployed to evaluate a prospective change versus the status quo in an A/B test and
then used afterward for post-launch monitoring. While this is an essential way to detect
drift between system goals and actual performance, it has limitations. Survey feedback is
relatively slow, after-the-fact, and only gives insight into average responses, or at most, the
responses of a modest number of subgroups.

To address these shortcomings, commercial systems have started to rely on the tech-
nique of predicting survey responses. In this approach, survey data is used to train a
model that predicts how a new user in a new context would answer that survey. When the
recommender then selects items for a user, the predicted response for that user is used as
a factor in content ranking. This approach is used by YouTube [47,48], Facebook [46,49],
and elsewhere [5]. While generating “fake” survey responses may seem a strange ap-
proach, conventional recommenders already depend on predicting engagement—future
user reactions—which is not drastically different from predicting a survey response.

The great advantage of this survey prediction paradigm is that it provides a way to
incorporate arbitrary user feedback at recommendation time. It also allows for modeling
the personalized relationship between recommender output and survey responses, which
provides individual-level customization. The major challenges include the sparsity and cost
of survey data relative to plentiful engagement data, potential human response biases, and
of course, the question of what one should actually ask users and how they will respond.

6. Incorporating Human Evaluations into Intelligence Recommendation

The above discussion of the use of survey data suggests that bias might be controlled
in the context of recommenders for intelligence analysis by collecting human evaluations
of recommender output.

Existing human evaluations of intelligence processes and products are a promising
direction for this type of feedback. There exists a method for structured human evaluation
of whether a particular report meets the analytic standards set out in ICD 203, known as
the IC rating scale [50]. There are other similar rating scales, such as the “rigor” instrument
of Zelik et al. [51]. A recent review of the concept of rigor in intelligence analysis identified
five major indicators: logical, objective, thorough, stringent, and acute [52]. These or
similar rating instruments could be used to provide the feedback needed to control bias
in an automated system. In this scheme, a sample of machine output would be evaluated
manually according to an established set of criteria, producing a set of numeric scores
indicating quality along various axes.

It requires significant human effort to perform such evaluations, and it is not clear who
would perform the evaluation on an ongoing basis (randomly selected regular users? A special
team of “feedback” analysts?). Despite the effort and cost, no automated intelligence system can
be considered credible if it is not evaluated in this way. Indeed, such evaluation is desirable even
with extremely simple automated systems where feedback loops are not expected to be a problem.

Ideally, such metrics would be used to evaluate system changes, before deployment,
through the usual method of A/B testing. This is a sort of human optimization loop where
system designers continually strive to maximize quality metrics.
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It is also possible to algorithmically optimize against human-provided metrics by
using this feedback to train models that predict human evaluation ratings. Such predictive
models can then be incorporated directly into the ranking function of a recommender. This
approach is potentially much more powerful than simply evaluating a sample of system
output or using such evaluations to decide between design alternatives. Incorporating
predictions of evaluation into ranking, while not infallible, offers a way for individual
analysts to receive the benefit of expensive human feedback even while performance on
their particular needs is never evaluated directly.

The main technical challenges here are cost and data sparsity. Human evaluation data is
costly to produce and will therefore be limited as compared to plentiful engagement signals. It
remains for future work to evaluate the cost/benefit curve for different amounts of feedback data.

The use of surveys or similar rating instruments also raises complicated questions
about survey design and human bias. It is not clear which of the existing intelligence
product rating scales, if any, would be most suitable for evaluating recommender output.
There is also the question of the unit of analysis. Most existing platform surveys ask about
specific items of content—analogous to asking whether a single item was useful to an
analyst—whereas it may be more useful to elicit feedback on a set of items chosen by the
recommender or even the user’s overall impression over a period of time as retrospective
judgments are thought to be more accurate in some cases [45].

Surveys, rating scales, and related evaluation methods can also be biased. It can be
challenging to establish validity (the survey correctly measures what it is intended to measure)
and reliability (survey results are appropriately stable over time and between people) [53].
Further, human analysts are also subject to bias [42,43]. Incorporating human feedback could
make automated systems as unbiased as a careful human analyst, but not better.

Looking to the future, there are several other kinds of human input that could help
to prevent algorithmic biases and feedback loops. Open AI has demonstrated the value
of direct elicitation of pairwise comparisons. In one experiment, humans were asked to
choose which of two text summaries they preferred. This information was used to train a
reward model, which was, in turn, used to train a reinforcement-learning agent to produce
dramatically better summaries [54]. Ultimately, we are probably headed for conversational
recommender systems, which might simulate the experience of directing a smart research
assistant. Although it may be some time before such systems outperform more conventional
tools, research is well underway [55]. Even with such advanced systems, it may remain
challenging to determine whether such a system is meeting intelligence standards and, if it
is not, how to communicate and integrate useful feedback.

7. Conclusions

Feedback loops between humans and recommender systems can create biases, and
there is reason to believe these biases apply to intelligence applications. This may bias the
information presented to analysts, the information is tasked for collection as a result, and
ultimately what analysts believe and their subsequent conclusions.

The root cause is a misalignment between optimization objectives and human goals.
Careful human feedback, rather than the implicit behavioral data that drives most recom-
mender systems, can significantly mitigate this misalignment.

The most promising approach, drawn from existing industry practice, is regular human
evaluations of system output. These evaluations could be modeled on existing instruments for
measuring intelligence rigor and quality, such as the IC rating scale. The resulting data can be
used for monitoring overall system performance and bias. Moreover, it can be used to train
human evaluation prediction models that can be incorporated directly into the recommendation
process so as to pro-actively produce output that humans are expected to rate highly.
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