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Abstract: Given a set of high-dimensional feature vectors S ⊂ Rn, the skyline or Pareto problem is
to report the subset of vectors in S that are not dominated by any vector of S. Vectors closer to the
origin are preferred: we say a vector x is dominated by another distinct vector y if x is equally or
further away from the origin than y with respect to all its dimensions. The dynamic skyline problem
allows us to shift the origin, which changes the answer set. This problem is crucial for dynamic
recommender systems where users can shift the parameters and thus shift the origin. For each origin
shift, a recomputation of the answer set from scratch is time intensive. To tackle this problem, we
propose a parallel algorithm for dynamic skyline computation that uses multiple local split decision
(LSD) trees concurrently. The geometric nature of the LSD trees allows us to reuse previous results.
Experiments show that our proposed algorithm works well if the dimension is small in relation to the
number of tuples to process.

Keywords: skyline computation; parallel algorithms; preference evaluation; application of geometric
data structures

1. Introduction

Dynamic skyline queries appear as common query types of recommender systems:
walking tourists querying for restaurants with respect to price and distance, route plan-
ning systems on dynamic routing networks involving temporal congestions or road clo-
sures (e.g., [1]), online shopping portals with dynamically responsive input masks such as
sliders for prices, sizes, and so on. All these use cases have in common that often a user
does not issue a single query, but a sequence of queries, where successive queries only
have slightly different parameters (movement of the tourists, the time passed in temporal
routing networks, and the sliders of a webpage input mask). A naïve approach is to start the
computation of the skyline set each time from scratch. Dynamic skyline algorithms provide
fast results for recurring queries of the same kind by caching [2]. The key to dynamic
skyline is a generalized mapping of the input data to the feature vector space. Instead of
reconstructing this mapping for each query, it stays the same during recurring queries.
Effectively, the vector space is parameterized by a query vector, i.e., it is shifted by an offset.

Let us examine a concrete example with the feature vectors p1 = (55, 90), p2 =
(10, 30), p3 = (70, 70), p4 = (40, 70), p5 = (5, 80), p6 = (55, 45), p7 = (90, 50), p8 =
(52, 10), p9 = (25, 20). The answer to the classic skyline problem (the query vector is
q = (0, 0)) is the skyline set {p5, p2, p9, p8}, because all points in this set are incomparable
(i.e., none of them dominates each other), while the remaining elements such as p1 are
dominated by one of the elements of the skyline set (e.g., p2 dominates p1). In the classic
skyline problem, we regard vectors closer to the origin as better than others that are farther
away in all dimensions. A geometric interpretation is to connect the skyline set with line
segments such that all points to the upper right of these line segments are dominated. See
Figure 1 for a geometric interpretation, which we keep as a running example in this article.
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Figure 1. Geometric interpretation of the skyline problem and the dynamic skyline problem.
(Left): All feature vectors to the upper right of the dashed line segments are dominated by one
of the elements of the skyline set. The dashed line segment is also called the Pareto front of the dataset.
(Right): For computing the dynamic skyline set with respect to the query point q, we can see that p4

not only dominates p5, but also p9 and p2 if we mirror p4 along the x-plane crossing q to obtain p′4.

The skyline set changes if we shift the origin as we are allowed to do in the dynamic
skyline problem. Let us select q = (45, 55) as an example. Then the skyline set is {p4, p6, p7},
and the answer remains unchanged when shifting q to (40, 55) or (45, 50). For instance,
p1 is dominated by p4 because p4 − q = (−5, 10) and p1 − q = (10, 30), and the absolute
value of the difference in both dimensions is smaller for p4 than for p1. With Table 1, it is
easy to verify the calculation.

Table 1. Feature vectors of our running example with skyline set (with respect to q0) and dynamic
skyline set for three different query points q1, q2, and q3. The columns qi − pj show the absolute
difference between a query vector qi and a feature vector pj in each dimension. We show in the
column dom by which vector the vector in the respective row got dominated; here a dash (−) says
that this vector is not dominated by any vectors of the input set. Dominated vectors are not part of
the skyline set.

Vector pj
q0 = (0, 0) q1 = (45, 55) q2 = (40, 55) q3 = (45, 50)

dom. q1 − pj dom. q2 − pj dom. q3 − pj dom.

p1 = (55, 90) p5 (10, 35) p6 (15, 35) p4 (10, 40) p4
p2 = (10, 30) − (35, 25) p6 (30, 25) p4 (35, 20) p4
p3 = (70, 70) p4 (25, 15) p6 (30, 15) p4 (25, 20) p4
p4 = (40, 70) p2 (5, 15) − (0, 15) − (5, 20) −
p5 = (5, 80) − (40, 25) p6 (35, 25) p4 (40, 30) p4
p6 = (55, 45) p2 (10, 10) − (15, 10) − (10, 5) −
p7 = (90, 50) p2 (45, 5) − (50, 5) − (45, 0) −
p8 = (52, 10) − (7, 45) p4 (12, 45) p4 (7, 40) p4
p9 = (25, 20) − (20, 35) p4 (15, 35) p4 (20, 30) p4

It is easy to see that a naïve computation of the skyline set involves comparing each
vector with all other vectors. Assuming that we can compare two vectors in Rn in O(n)
time, we can compute the skyline set in O(nm2) time, where m is the input set size. The
question we pose in this article is whether we need to compare all elements with each other,
and whether a recomputation for a different query point is needed. To this end, we review
an algorithm using a geometrical data structure, called the LSD tree, which leverages
geometric distributions and is in favor of pruning subsets of the input in certain cases. This
tree data structure also gives us means for reasoning about when a recomputation of the
dynamic skyline set is necessary.

1.1. Dynamic Skylines

Consider a data set D and a scoring function f : D → Rn. We call an elements x ∈ D a
tuple, and f (x) its respective (feature) vector. (Instead of directly working on feature vectors,
by mapping the input element to feature vectors, we can support the case that multiple
elements can have the same feature vector, i.e., we allow the geometrical representation of



Analytics 2023, 2 148

tuples by not necessarily distinct feature vectors.) Let us say that we have a query vector
q ∈ Rn and want to compute the dynamic skyline of q [3], i.e., we want to find all vectors
of f (D) that are not dominated by any other vectors with respect to q. We say a vector
dominates another vector if its distance to q has an equal or lower value than the other
vector’s distance to q in all respective coordinates, and a strictly lower value in at least
one coordinate. According to this definition, the query vector q ∈ Rn always dominates
all other vectors, but q is not part of f (D) in general. We call q an offset vector because it
moves the best location 0 ∈ Rn of the classical skyline problem to its own location (e.g.,
we translate the vector space by Rn → Rn, v 7→ v + q). Vectors are often illustrated as
points of the Rn vector space equipped with the l1 norm, given by |x|l1 = ∑n

i=1 |xi| for
x = (x1, . . . , xn) ∈ Rn. The latter is useful, as two distinct vectors are incomparable with
respect to domination when their norm is equal. For instance, (1, 4) and (4, 1) are feature
vectors in R2 with |(1, 4)|l1 = 5 = |(4, 1)|l1 and therefore both are incomparable.

1.2. Structure of the Paper

In what follows, we tackle the problem of answering dynamic skyline queries. Given
a data set D, we precompute a data structure based on LSD trees, such that for a sequence
of query points q1, q2, . . ., we can use this data structure to quickly answer Sq1(D), and
reuse this answer for computing Sq2(D) if possible.

To this end, we study a modification of the Skyline Breaker algorithm [4] using LSD
trees. While the original paper suggests an algorithm for classic skyline computation, we
extend its usage to dynamic skyline queries. Therefore, we review the main ideas before
addressing our new enhancements. The rest of our paper is organized as follows: Section 2
contains an overview of related work with regards to skyline computation on tree data
structures. We introduce basic definitions and helpful lemmata in Section 3 with the sLSD
tree structure in Section 4 before focusing on the algorithm itself in Section 5. There, we
present the problem and highlight different techniques for optimizations. Finally, Section 6
reflects possible performance speedups and slowdowns.

2. Related Work

Computing the skyline by means of geometric representation of data already pro-
duces many results. Kossmann et al. [5] proposed nearest neighbor (NN) search operat-
ing on an R*-tree [6] structure. This idea was extended by Papadias et al. [7], featuring
the branch-and-bound skyline (BBS) algorithm. They were also the first to propose the
dynamic skyline problem [3]. Using the M-tree [8] as a geometrical representation for
the data, Chen and Lian [9] reasoned about pruning techniques for fast dynamic skyline
computation. In addition to providing a dynamic skyline algorithm, Sacharidis et al. [2]
proposed caching methods to speed up computation in subsequent queries. Recent re-
search approaches can compute the dynamic skyline for massive datasets [10], work in
parallel [11], or work on distributed systems [12]. Along with new proposals for skyline
computation, the focus of recent research projects tends to parallelization of classic skyline
algorithms. Selke et al. [13] discussed a variant of block-nested loop (BNL) using the Lazy
List [14] data structure. Techniques like optimistic locking are shown as a good trade-off
between redundant synchronization steps and race conditions. By doing so, they manage
to successfully shrink the sequential fraction of BNL. A parallelized variant of BBS has been
proposed by Im et al. [15]. Obviously, dynamic skylines and parallel skyline algorithms are
part of an active research area. The combination of both fields is the topic of this paper.

A related problem, but not studied in this paper, is to allow the underlying dataset to be
dynamic. Considering dynamic datasets, Essiet et al. [16] studied multi-objective optimiza-
tion; Hu et al. [17] proposed routing on dynamical environments; and Gulzar et al. [18]
gave an algorithm for computing the skyline by pruning and selecting superior local
skylines (see also references within the PhD thesis of Alami [19]).



Analytics 2023, 2 149

3. Preliminaries

As in common calculus, πi : Rn → R denotes the projection to the i- th coordinate,
i.e., for all (v1, . . . , vn) ∈ Rn

πi(v1, . . . , vn) = vi with i ∈ {1, . . . , n}.

We call a function f : D → Rn a scoring function. Here D is a subset of an arbitrary
universe. Further, for a scoring function f : D → Rn, we call v := f (x) ∈ Rn the feature
vector of x ∈ D. So that there is no possibility for confusion, we write |S| to express the
cardinality of a set S, i.e., the number of elements of S.

Scoring and Dominance. In what follows, we first consider a fixed offset q ∈ Rn,
which represents our query point. The motivation for the definitions is that f and q
induce a strict weak ordering ≺q on D, called a dynamic scoring of D. For two vectors
v, w ∈ Rn, we call v better than w with respect to q if there exists a j ∈ {1, . . . , n} such
that

∣∣πj(v− q)
∣∣ < ∣∣πj(w− q)

∣∣ and |πi(v− q)| ≤ |πi(w− q)| for every i ∈ {1, . . . , n}. We
write v ≺q w for short. Analogously, we write x ≺q y for two tuples x, y ∈ D if and
only if f (x) ≺q f (y) holds. We can put this statement the other way around: if there is
no j ∈ {1, . . . , n} such that

∣∣πj( f (x)− q)
∣∣ < ∣∣πj( f (y)− q)

∣∣, then either f (x) = f (y) or y
dominates x.

For instance, given two data points d1 and d2 with f (d1) = p1 = (55, 90) and f (d2) =
p2 = (10, 30), then π1(p1) = 55 and π2(p1) = 90. For q0 = (0, 0), we have that p2 ≺q0 p1,
whereas for q′ = (100, 100), p1 ≺q′ p2 because |π1(p1 − q′)| = 45 < 90 = |π1(p2 − q′)| and
|π2(p1 − q′)| = 10 < 70 = |π2(p2 − q′)|.

Formal Problem Definition. The dynamic skyline parameterizes the classic skyline
by feature vector q as an offset [3]. More concretely, the dynamic skyline set Sq(D) ⊂ D
holds the condition

x ∈ Sq(D) :⇔ ∀o ∈ D, there either exists a j ∈ {1, . . . , n}
such that

∣∣πj( f (x)− q)
∣∣ < ∣∣πj( f (o)− q)

∣∣
or f (x) = f (o)

⇔ there exists no o ∈ D with o ≺q x.

We also call x ∈ Sq(D) a tuple that is not dominated by any other tuple of D, or more
briefly, we call x a skyline point (if the context with D and q is clear). In the following, when
the sense is obvious, we identify a tuple x ∈ D with its value f (x), e.g., we do not explicitly
mention any notion of f . So when speaking about coordinates of x, we actually mean the
coordinates of f (x).

Lemma 1. Let U1, . . . , Uk ⊂ D be a cover of D, i.e.,
⋃k

i=1 Ui = D. Then Sq(D) ⊂ ⋃k
i=1 Sq(Ui).

Proof. Let x ∈ Sq(D) ∩Ui, then for all o ∈ Ui ⊂ D, there either exists a j ∈ {1, . . . , n} such
that

∣∣πj( f (x)− q)
∣∣ < ∣∣πj( f (o)− q)

∣∣ or f (x) = f (o). Hence x ∈ Sq(Ui).

4. The sLSD Tree

The LSD tree is a hybrid tree that has bucket nodes as leaves and directory nodes as
internal nodes. Dictionary nodes have always two children, and therefore an LSD tree is a
full binary tree. Bucket nodes are the actual nodes that store the data.

In the beginning, the tree consists of a single bucket node. Whenever a bucket node
contains more than M elements, this bucket node will be split. In our case, the split point
is determined by the median of all elements according to one dimension. After the split,
we have a left and a right bucket node: the left bucket contains those elements that have
smaller values than the split position in the split dimension. The information about the split
is saved in a new directory node that replaces the previous bucket node and adopts both
new bucket nodes as children. We can consider a dictionary node as a separation of its two
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bucket children with a hyperplane. While bucket nodes store the actual data, a directory
node only saves the split position and the two bucket nodes split by this hyperplane.
Figure 2 gives an example.

distance

pr
ic
e

50 85

40

60

dim : 1 
pos : 50

dim : 2 
pos : 40

dim : 2 
pos : 60

dim : 1 
pos : 85

Figure 2. The LSD tree with maximum bucket size M = 2 and dimension n = 2 in our running
example. Each dashed line represents a dictionary node separating a cuboid into two sub-cuboids.
The remaining cuboids represent the bucket nodes. For instance, the root of the LSD tree is a dictionary
node that splits the feature vectors at x-position 50 (given we interpret the x and y dimensions as
Dimensions 1 and 2), into two sets.

Exactly as the kd tree [20], the split dimension can be determined by the tree-depth of
the bucket node that was split. In another perspective, the LSD tree partitions data of Rn

into disjoint cuboids where each cuboid contains all elements of exactly one bucket. Each
bucket can therefore be represented as a cuboid whose coordinates are saved in the ancestor
nodes’ split positions. We call this particular cuboid the bounding cuboid of the bucket.
Computing the nearest neighbor (NN) of an arbitrary point q ∈ Rn is done by the following
steps: First, traverse the tree in a top-down manner in order to locate the bucket in which q
would belong. Next, recursively climb the tree upwards while scanning the sibling node
at each depth for near points. If this sibling is an internal node, we additionally scan its
subtree recursively. Henrich [21] proposes an algorithm that takes the distances to already
found points for a bound to stop the naïve search prematurely. The difference between
the LSD tree and our sLSD tree is the lack of external directory nodes as we restrict the
problem for in-memory use cases.

4.1. Dealing with Skewed Distributions

The sLSD tree splits an overfull bucket by sorting its elements in a certain dimension
and taking the median. For a kd tree, the split dimension of a bucket is usually the split
dimension of its parent node, shifted by one, i.e., if the parent node has a split dimension
d, then the bucket gets split at dimension (d + 1) mod n. In the worst-case scenario, all
elements share the same value in this dimension. A split would therefore create two new
buckets: one assigned with the entire content and the other left empty. Henrich [22] avoids
this bad behavior by simply iterating over the split dimension until he finds different values
of the elements in this dimension. For termination, we just have to check if at least two
elements have different feature vectors. Another method would take those dimensions into
account as a split dimension, for which only a few objects’ values collide with the median
value in this dimension. If there are multiple dimensions with the same number of minimal
collisions, then we take the dimension with the highest variance of feature vector values
out of this remaining set. This additional filter tries to hinder any bucket from becoming
too elongated in specific dimensions.

4.2. Complexity Analysis

As a member of the kd tree family, the sLSD tree shares complexity traits with its
ancestor. In fact, the kd tree is a specialization of the sLSD tree with a maximum bucket
size of M = 1. On the one hand, for negligibly small M, the sLSD tree provides operations
like inserting or locating an element in O(log2|D|) average and O(|D|) worst time. On
the other hand, an M ≥ |D| lets the sLSD tree store the entire data in a single bucket.
Hence, the time complexity is based on the data structure used for the buckets. For the
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other cases with 1 � M < |D|, we have to take care with the more complex insertion
step. If we assume contrarily to Section 4.1 that the median value is always unique under
all considered objects during a split, then any split of an overfull bucket at the median
creates two buckets, each containing at least bM/2c elements. Moreover, our algorithm
will not remove any element of the sLSD tree. After inserting M + 1 elements, there is
at no time any bucket with less than bM/2c elements. Let us use the random variables
bi ∈ [bM/2c, M) with i = 1, . . . , k for counting the elements of each bucket of an sLSD tree
with k leaves. These variables satisfy the constraint that ∑k

i=1 bi = |D|. In the average case,
the occupancy rate is distributed uniformly over all intervals, hence we get 3

4 kM = |D|,
i.e., k = 4|D|

3M = O( |D|M ). Therefore, the sLSD tree has an average depth of O(log2
|D|
M ). The

costs for inserting an element are a combination of

1. finding the bucket in which the element shall be inserted; the time is logarithmic in
the depth of the tree; and

2. splitting this bucket if it is overfull. The split is done by

(a) sorting the elements in one dimension that takes O(M log2 M) time, and
(b) creating a new bucket that takes O(M) time for moving half of the elements to

the new bucket.

Overall, a newly created bucket can take M/2 new elements on average before it has
to be split. Hence, this step takes O(log2 M) amortized time.

To sum up, insertion takes O(log2 |D|) amortized time on average. In the worst
case, all buckets have minimal occupancy, i.e., bi = bM/2c. Thus, we have k = 2|D|

M .
Let us take an empty sLSD tree. If we insert a sequence of elements D that are strictly
ordered, we obtain, as for kd trees, a caterpillar tree with the worst-case depth of O(D)
if we drop the constraint of unique values for determining the split dimension (i.e., all
feature vectors must not have the same value in the split dimension). It is easy to see
that the distribution of elements will affect not only the number of buckets, but also the
time complexity. Fortunately, Henrich [23] provides a heuristic online strategy that tries to
redistribute the occupancy. His strategy tries to shift the split position of the parent node
of an overflowing bucket in order to prevent the split of the bucket. However, we have to
take into account what kind of node the sibling of the brimful bucket is:

1. If the sibling is a bucket that has space left, we just shift the parent node’s split position
such that the number of elements gets rebalanced.

2. If the sibling is a subtree that can adopt a new element without splitting one of its
children, we shift again the split position of the bucket’s parent node. This time,
however, we also have to recompute the split information of the internal nodes of this
subtree.

If none of these conditions can be applied, we declare the bucket’s parent node
as overfull and try to shift the split position of its respective parent. Hence, if a local
redistribution is not possible, we recursively go up the tree and reconstruct the split
information. Regarding aggressive shifting strategies, there is a certain trade-off between
overall bucket utilization and the number of directory nodes [23].

4.3. Geometrical Characteristics

In the context of the Skyline Breaker algorithm, we are particularly interested in
catching skyline points out of the sLSD tree quickly. Therefore, we need to compute the
bounding cuboids for nodes with arbitrary depth. For that, we denote with depth(e) the
depth of any node e of an sLSD tree. The following lemmas will help us to solve this task.

Lemma 2 ([4]). Let b be an arbitrary leaf node. To determine the bounding cuboid of b, we need to
examine n ancestors of b.

Let us recall that q = (q1, . . . , qn) is our query vector.
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Lemma 3. Let o = (o1, . . . , on) ∈ f (D) be a feature vector. The pairwise disjoint, non-bounded
cuboids D1 := (q1 + d1, ∞)× (q2 + d2, ∞) · · · × (qn + dn, ∞), D2 := (−∞, q1 − d1)× (q2 +
d2, ∞) · · · × (qn + dn, ∞), . . . , D2n := (−∞, q1 − d1)× · · · × (−∞, qn − dn)) do not contain
any skyline point, where d := (|q1 − o1|, . . . , |qn − on|). Furthermore, Rn \⋃2n

j=1 Dj is connected.

Proof. For every feature vector u ∈ ⋃2n

j=1 Dj, we have
∣∣πj(u− q)

∣∣ > ∣∣πj(o− q)
∣∣ for every

j = 1, . . . , n, and thus u is dominated by o. See Figure 3 for an illustration. Since all cuboids
Dj are pairwise disjoint, and each point v that is not dominated by o is not in

⋃2n

j=1 Dj, we

conclude that Rn \⋃2n

j=1 Dj is connected.
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Figure 3. Geometric interpretation of Lemma 3 on our running example with o = p3. By mirroring
p3 across q along the coordinate axis (dotted lines), we obtain the grayish-colored nodes. From each
grayish-colored node, we spawn a gray-shaded region in which we know that p3 dominates all points
contained in that region. In this example, we obtain that p3 ≺q p2 and p3 ≺q p5.

Lemma 4. Both the siblings of Bq and the descendants of Bq’s ancestors with depth at least
depth

(
Bq
)
− n + 1 can contain skyline points.

Proof. Without loss of generality, we assume depth
(

Bq
)
> n− 1. Let p be the ancestor

of Bq with a depth of depth
(

Bq
)
− n, and let c be the child that is the ancestor of Bq. The

node c has a depth of depth
(

Bq
)
− n + 1. The descendant directory nodes of c and c itself

cannot have any split position farther away from q than p. Otherwise, the bucket Bq would
be at a different location than q. Because of the definition of Bq, no directory node that is
both ancestor of Bq and descendant of p has the split-dimension of p. Hence, there is no
leaf node of c whose bounding cuboid is contained (entirely) in D (due to Lemma 3 with
Bo ← Bq).

5. The Algorithm

While the original algorithm restricts itself to non-negative feature vectors, we had to
relinquish this constraint in order to parameterize the skyline computation with an arbitrary
offset q. Therefore, we reintroduce basic original concepts while providing our alterations.

5.1. The Dynamic Skyline Breaker Algorithm

We generate an sLSD tree for each thread. Each thread starts with the SBDyn
(Algorithm 1) immediately after its tree is filled with the input data. Firstly, we search the
nearest neighbor of q with respect to the l1 norm in terms of bucket nodes by Henrich’s
distance-scan algorithm [22]. While locating this node, at most 2n − 1 buckets have to be
examined. Because we have not yet found any dominator, these buckets might contain sky-
line points in addition to a. Hence, we collect these buckets for local skyline computation
and call them {Bi}i∈I for some I. Let a ∈ f (D) ⊂ Rn be a NN of q, and let Bq denote the
bucket in which q would be added. Now, having Lemma 2 in mind, we start to traverse the
tree reversely, counting our steps upwards. We initialize a vector v ← q that keeps track
of the geometric position. While climbing the tree upwards, we examine the sibling c of
the node we came from. If we have not counted upwards to the dimension n, at least one
of v’s coordinates is zero (see Lemma 4). Therefore, we cannot discard c. In other words,
we need to traverse c and collect all of its buckets. When we have reached the number n
with our counting, one of the descendants of c could be discarded. That is because some
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descendants’ buckets might be contained in the region without skyline points considered
in Lemma 3. Therefore, we start a new task that traverses c, done by the tree clipping
described in Section 5.3 and Algorithm 2. We have traversed the tree when we have reached
the root node while climbing up the tree from Bq. The last step is the allocation of the global
skyline. For overview, we present a flow chart of the algorithm in Figure 4.

Algorithm 1 Dynamic Skyline Breaker: The ternary ? operator has the same semantic as in
C/C++, i.e., a ? b : c means if a then b else c.

1: function SBDYN(q ∈ Rn)
2: Q← Set(∅) ⊂ D
3: (a, Bq, {Bi}i)← NEARESTNEIGHBOR(q)
4: ASSERT(a = minarga∈ f (D)‖a− q‖l1)

5: Q.insert
(
Sq(Bq ∪ {Bi}i

))
6: N ← Bq
7: for i← 0 to n do
8: c← N, N ← N.parent
9: c← N.left = c ?N.right : N.left

10: Q.insert(Sq(c))
11: while N 6= root do
12: c← N, N ← N.parent
13: c← N.left = c ?N.right : N.left
14: if c is a BucketNode then
15: Q.insert(Sq(c))
16: else
17: v← q ∈ Rn

18: w← split position of N
19: v.(split dimension of N)← w
20: CLIP(q, c, v, Q)

21: return Sq(Q)

Database

SB SB SB

Synchronize nearest neighbor of q

Skyline in a Bucket Clip

Q
ue

ue Merge local Skylines

Skyline

Figure 4. Flow diagram of the parallel Skyline Breaker algorithm ([4], Figure 1). Each thread maintains
one LSD tree, which gets populated by the data from a single database source. After reading the data,
each thread computes the nearest neighbor of q with respect to the l1-norm. These neighbors are
synchronized across the threads. After that, the Skyline Breaker (SB) algorithm uses these neighbors
for clipping the tree. Potential skyline points are put into a queue that is finally merged into the
answer set Sq(D).
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Algorithm 2 Clipping the Tree

1: function CLIP(q ∈ Rn, N : node, v ∈ Rn, Q ⊂ D)
2: w← split position of N
3: d← split dimension of N
4: c← q.d < w ?N.left : N.right
5: if c is a BucketNode then
6: Q.insert(Sq(c))
7: else
8: clip(q, c, v, Q)

9: v′ ← v
10: v′.d← w
11: if a 6≺q v′ then
12: c← c = N.left ?N.right : N.left
13: if c is a BucketNode then
14: Q.insert(Sq(c))
15: else
16: clip(q, c, v′, Q)

5.2. Skyline in a Bucket

For local skyline calculations, we can modify any skyline algorithm to work with an
offset of q. We did this with a simple BNL-based algorithm that works directly on the
bucket, while subtracting the offset ahead of comparison.

5.3. The Tree Clip Algorithm

Algorithm 2 works with a divide-and-conquer (DC) strategy. We start with a directory
node and the split information of its parent node. It is advisable to hold these data in
a variable v ∈ Rn by setting the coordinate entry of p at the split dimension to the split
position, while all other coordinates are kept identical to q’s position for a start. The
other child c of our current directory node can be illustrated as a cuboid with the corner
point ec = v that is closest to q. Therefore, while we traverse the children of our current
directory node, we note down the split information in v until we have gained coordinates
for all dimensions. With this information represented by the split point v ∈ Rn, using the
condition a ≺q v, we now check whether discarding the child node c is feasible. If the
condition holds, we know that all elements contained in the cuboid of c are dominated
by a. Thus, we discard the node c, even if it is a directory node. Otherwise, we have
to traverse the right node recursively, again denoting its split data. Figure 5 gives a
geometric interpretation of an LSD tree, where we have located the bucket of q and a bucket
containing a.

Remark 1. According to Lemma 4, if the depth of the sLSD tree is less than n− 1, we cannot make
use of the clipping technique.
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a1
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Figure 5. Clipping technique. The rectangles show the buckets of our LSD tree. Given we have a
query point q and found a neighbor a of q, we mirror a to all remaining 3 orthants across q, which
gives us a1, a2, and a3. We have to scan or have already scanned the light dotted buckets but can
omit, thanks to these four points, the cross-hatched buckets. The buckets with stars may still store
skyline points, so we have to scan them.

6. Analysis and Optimization

Let us retrace the versatile steps involved in the algorithm while analyzing the time
complexity. At the start, locating Bq takes O(log2

|D|
M ) time on average and O(|D|) time

in the worst case, according to Section 4.2. Subsequently, a is found while examining
at most 2n − 1 that takes O((2n − 1)M) time in the worst case. If we take a balanced
sLSD tree for granted, the preparation step of Section 5.3, which moves upwards until
reaching at least n different dimensions, will also take O(2n) buckets into consideration.
For local skyline computation of any bucket of size Θ(M), an algorithm like BNL [24]
applied in Section 5.2 needs at least Ω(M) time (assuming that it is left to compare all
feature vectors by a single remaining dimension at which they differ) and has O(nM2)
worst-case time complexity. The time taken by the actual tree clipping algorithm is heavily
dependent on the distribution of split information and takes at least the time proportional
to the remaining depth of the current node in the sLSD tree after the preparation step.
By building our algorithm on the sLSD tree, we obtain a hybrid approach that employs
both the DC strategy of Section 5.3 and some nested-loop algorithms of Section 5.2. Both
strategies are weighted by the maximum bucket size M. On the one extreme, for M = 1,
we get a kd tree-like structure with singletons as buckets. According to the complexities of
Section 4.2, setting M = 1 creates a much larger tree structure and exploits entirely the DC
strategy. On the other hand, taking any M > |D| puts the entire content in a single bucket
and just evaluates the nested-loop algorithm. For taking advantage of both algorithms,
a M ∈ (1, |D|2n+1 ] has to be chosen, dependent of the input data’s distribution. Obviously,
there are data sets for which choosing a small or large M results in a speed-up. A best-case
scenario for large M is a correlated data set with O(|U|) time complexity for the BNL of
any subset U ⊂ D. If the sLSD tree is balanced, we have a depth of O(log2

|D|
M ) and thus

|D|
M leaves. Hence, the algorithm will take at most O(|D| log2|D|) time. On the other hand,

extremely anti-correlated data can pose the worst-case running time for the BNL. However,
if the clipping condition holds for most of the time, we have for |D|M ≥ 2n the best case

running time O(log2
|D|
M − n) for the tree climbing algorithm that collects O(2n) buckets

of a balanced LSD tree in addition. For merging these buckets, we have 2nO(M) for a
best-case and 22n O(M2) for a worst-case time. Note that both times are independent of
|D|. Hence, we argue that the dimensional factor plays only a minor role for a reasonably
large |D| > 22n.
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Proposition 1. The Skyline Breaker algorithm accesses the optimal number of nodes for computing
the dynamic skyline set of q, i.e., no algorithm will solve the same problem while visiting fewer nodes
on the same data structure without knowledge of the contents of any bucket.

Proof. Let us assume that our algorithm unnecessarily inspects a bucket u that can be
safely pruned. The bucket u has a bounding rectangle with corner points (u0, . . . , u2n). Let
uL be a best corner, i.e., uL ≺q ui for every i = 1, . . . , 2n. In the contrary, there has to be an
element v ∈ D with f (v) ≺ uL. Otherwise, without further knowledge, we have to inspect
the bucket u. We also know that the NN of q is always part of the skyline set. Hence, every
algorithm that computes the dynamic skyline set has to access the bucket Ba that would
take a as a new element of the global skyline. Due to the fact that Algorithm 2 traverses the
tree from Bq upwards, we will encounter nodes in an ascending, weakly-sorted order with
respect to its best corner. In other words, the algorithm will either find a bucket containing
v before accessing u or find a bucket that dominates v. In both cases, we will not inspect
the bucket u; we clip either a subtree containing u or u itself.

7. Comparison to Other Geometrical Data Structures

Our usage of the LSD tree is motivated by modern computer hardware architectures
featuring large caches. While the well-known kd tree can be seen as a special case of an
LSD tree with a bucket of size 1, large bucket sizes leverage cache effects: for the skyline
computation within a bucket, we stick to a basic block-nested loop algorithm with a naïve
time complexity of O(nM2). However, this algorithm is practically fast if it operates on
data within the cache size of the CPU. Additionally, parallel evaluation is easy since the
dominance check for each element can be performed independently. In that sense, large
bucket sizes shrink the height of the LSD tree compared to the kd tree while spending
only a negligibly additional cost for the computation within the relatively large buckets.
Another well-known geometric representation is an r tree [25]. Since the internal node of an
r tree stores the complete geometric information about its bounding cuboid, computing this
information is cheap compared to our approach with the need to have a node-to-ancestor
path of length n to have the split information for all n dimensions. Nevertheless, skewed
distributions of the input can cause inefficiencies like empty or mostly empty cuboids. It
can also often happen that cuboids intersect such that it is harder to detect whether pruning
of nodes can be done.

7.1. Improving the Clipping Condition

The tree clipping (Algorithm 2) could be extended to use a list of known skyline points
instead of solely a (a as defined in Section 5.1). A large list S ′ ⊂ S of global skyline points
reinforces the clipping in Section 5.3 by testing o ≺q p for any o ∈ S ′ instead of only a.
Thus, a skyline subset will provide a higher chance of clipping. Actually, we can already
enlist some points while finding a; let us recall that the search for the NN of q can take
at most 2n − 1 buckets {Bi}i into account. Due to the distance-scan algorithm [22], each
of these buckets is a neighbor of Bq. A potentially huge number arises from the number
of orthants that are spawned by q (see Lemma 3). Because the bounding cuboids form
a connected region that contains q, there exists a certain area in which we can be sure
that local skyline points belong to the global dynamic skyline Sq(D). More precisely, we
compute the maximal cube (i.e., a cuboid with equal sides) that is contained in the union of
all buckets. We denote its side length with s. Then any o ∈ Sq(

⋃
i Bi) with ‖o− q‖l1 ≤ s is

in the global skyline Sq(D). If there is a p ≺q o, then ‖p− q‖l1 ≤ s and hence p ∈ Sq(
⋃

i Bi),
a contradiction for o being a local skyline point. By taking any as-yet encountered local
skyline point for filtering during the clipping, Proposition 1 is tightened to the statement
that the algorithm is optimal with respect to the class of algorithms that may also use
knowledge of the buckets’ contents.
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7.2. Analysis of Parallelism

At first glance, it seems an easy task to divide the algorithm into independent sub-
tasks: firstly, the input data are partitioned and each part gets processed by a different
thread. Particularly for a concurrent input source like data stored in the RAM of a CRCW
(Concurrent Read Concurrent Write) machine, there is no sequential bottleneck. In the
main step, each thread computes independently the skyline of its fetched input data.
Finally, we just merge the local skylines until a single (i.e., the global) skyline remains.
Unfortunately, the described algorithm is not embarrassingly parallel; it has several del-
icate parts that we have to take care of when adding concurrent structures to our code.
In particular, this involves the queue that holds the computed, local skylines. For this
job, Java 7’s ConcurrentLinkedQueue with wait-free access support [26] seemed fitting
for us. Moreover, before climbing up its LSD tree, every thread must have at least one
close neighbor of q in order to make use of the clipping technique. This may be either
a point of the thread’s own input data set, a global NN of q, or even a list comprising
every already found skyline point. Hence, we either use a global synchronization barrier
(meaning all threads wait for a global communication process to start) or a concurrent list
that is filled with newly found local skyline points and trimmed when an already stored
point gets dominated by a recently collected point; this point cannot be dominated by
another point from the list, otherwise the trimmed point would have been trimmed in
advance. The other parts of the implementation can be written in the MapReduce and
Fork/Join model. Both are two different models for parallel execution. They share the
common goal of easing parallelization of a given sequential task. Nevertheless, their field
of application is orthogonal. While MapReduce targets distributed computing, Fork/Join
works merely on a single node. We describe our algorithm as a hybrid approach that
employs both models—MapReduce for distributing the work-load to different nodes and
Fork/Join for local multi-threaded computation. For the latter, we just translate the ideas
of [4] to dynamic skyline computation. In order to describe our idea in the MapReduce
framework, let us take a partition

{
Uj
}

j∈J of D, i.e.,
⋃

j∈J Uj = D with Ui ∩ Uj = ∅

for i, j ∈ J pairwise different. The three functions map : ({j}, Uj) 7→ ({j},Sq(Uj
)
),

combine : ((a,Sq(A)), (b,Sq(B))) 7→ (a ∪ b,Sq(A ∪ B)) for each pairwise different subsets
a, b ⊂ J with any A, B ⊂ D, and reduce : (J,Sq(D)) 7→ Sq(D) represent the common work
flow of our MapReduce application. In particular, our implementation is a deterministic,
multi-threaded program [27] because its schedule is predetermined by a fixed number of
tasks that consists of the starting threads and the threads that combine the local skylines.
Nevertheless, the code of Subsection 5.3 is non-deterministic with respect to thread spawn-
ing. That is caused by the fact that the number of tasks is dependent on the effectiveness of
the clipping and the recursive divide-and-conquer technique. The latter tells us that the
tree clipping is a fully-strict computation [28]. Because common frameworks like Hadoop
do not allow dynamic task creation [29], the clipping cannot be described in terms of the
MapReduce model. Fortunately, translating this part of the algorithm to the Fork/Join
model seemed the right choice; Blumofe et al. [30] showed that the work-stealing technique
is optimal for scheduling fully strict computations.

7.3. Caching Dynamic Skylines

The construction of the sLSD trees in Section 5.1 is done on the fly, i.e., the tree is not
getting rebalanced during the initial bulk insertion of the data tuples D. For reuse, we
can restructure the sLSD trees to prevent worst-case scenarios for the subsequent queries.
Therefore, we exchange our median-based split strategy with a distribution-dependent
one [31] in order to cope, for instance, with skew-distributed data. An optimal refactoring
of the tree results in a balanced tree with O( |D|M ) depth. Additionally, we save after each
query the offset vector q along with its dynamic skyline set Sq(D) for reuse [2]. For effective
caching, we have to introduce the notion of orthants of q:
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Definition 1. The offset q splits the space into 2n orthants. If we give each orthant a number, we
can write the j-th orthant of q as Oq

j for every j = 1, . . . , 2n. By Lemma 1, we have Sq(D) ⊂⋃2n

j=1 Sq
(

Oq
j

)
.

Now, Proposition 1 and a variation of ([2], Lemma 2) comes in handy:

Lemma 5. Let q′ be an old offset and b a node of the sLSD tree whose bounding cuboid Cb ⊂ Oq′

j
belongs to the j-th orthant of q′, but does not contain any points of the j-th orthant skyline set
Sq′(Oq′

j ). If q is an offset and q′ belongs to the j-th orthant of q, then b does not intersect with
Sq(D) and thus can be clipped.

The cache is used to provide additional conditions for the clipping algorithm. Before
employing the cache, we take only these elements into consideration that effectively help
clipping:

Corollary 1 ([2]). Let q′ and q′′ be two old queries for which we have cached their results. If
q′ ≺q q′′, then elements of the dynamic skyline set of q′′ are either part or dominated by elements of
Sq′(D). Hence, q′′ will not clip additional nodes of the sLSD tree.

7.4. Evaluation

For the following evaluation, we used the implementation of the Skyline Breaker [4]
algorithm, called SB in the following, which is freely accessible from https://github.
com/koeppl/skylinebreaker (accessed on 30 December 2022). This implementation is
written in the Java language. In this evaluation, we used the SBQuick class applying the
pruning technique on the LSD trees with parallel threading. To compare our solution
with other skyline algorithms, we used the skyline benchmark software of Wiemann [32]
(https://github.com/sven-wi/SkylineCompare) (accessed on 30 December 2022). Upon
request, we received Java implementations for pskyline and parallelBBS of Im et al. [15]
written in this framework. While pskyline applies MapReduce on lists of tuples, parallelBBS
is based on the algorithm of Papadias et al. [7] using r trees as the geometric representation
of the data (cf. Section 7).

We ran our experiments on a Debian 11 machine with 128 GB of RAM and an Intel
Core i3–9100 CPU with four cores. The experiments are split into two parts. In the first part
(Figure 6), we scale the number of input tuples while evaluating the parallel algorithms
with four threads. In the second part (Figure 7), we scale the number of threads from one up
to four. In both parts, we select different correlations of the input data, which are randomly
generated by the framework based on the dataset generation of ([24], Figures 10–12).

https://github.com/koeppl/skylinebreaker
https://github.com/koeppl/skylinebreaker
https://github.com/sven-wi/SkylineCompare)
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Figure 6. Experiment varying the size of the input (in millions [M], i.e., 106) with four threads. The
time (y-axis) is in milliseconds and logarithmic scale. Each row uses a different random distribution
of the input values, and each column corresponds to a specific dimension n of the feature vectors.
The number of input tuples varies from 100,000 to 700,000 with steps of 100,000 units.
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Figure 7. Experiment varying the number of threads with fixed input size of 700,000 tuples. The time
(y-axis) is in milliseconds and logarithmic scale. Each row uses a different random distribution of
the input values, and each column corresponds to a specific dimension n of the feature vectors. The
number of threads varies from one to four.

Overall Evaluation. We observe that SB excels at small dimensions for which we
can quickly detect the boundaries of a bucket. For larger dimensions, the times for these
checks become longer, and thus the overall performance deteriorates with n more than
the performance of the other solutions. Following the curves while scaling the input,
we observe that SB is still in the competitive range with the other solutions, yet not the
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best choice if we want to evaluate pure skyline queries. In all different distributions, we
observe a similar progression of SB’s time curve, which supports the claim that the usage
of the LSD trees as geometric data structures makes the algorithm robust against different
data distributions.

Parallel Evaluation. When scaling the number of threads, we observe that SB be-
comes faster most of the time or stays roughly at a constant speed level. Other implementa-
tions deteriorate at several instances, becoming slower with a higher number of threads.
We can conclude that SB is suitable for the computation of the skyline set in parallel.

8. Conclusions

We studied a geometrical interpretation of the dynamic skyline problem by using LSD
trees. LSD trees have shown in practice that they can handle high-dimensional feature
vectors with low impact on the input data’s distribution. For the skyline computation,
we made use of an already existing algorithm, the Skyline Breaker algorithm. Some parts
of the parallel algorithm were changed in order to cope with the dynamic version of
skyline computation. The theoretical evaluation addresses the combinatorial nature of the
algorithm and treats both best- and worst-case scenarios with respect to different maximum
bucket sizes. Computing the boundaries of a selected bucket is easy in small dimensions
since it involves visiting only some closest ancestor nodes. Unfortunately, the boundary
computation has an exponential dependency on the dimension such that the approach can
quickly become less appealing if the dimension is relatively high compared to the input
size. In that case, we have seen in the experiments that other approaches are more suitable.
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