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Abstract: The environmental issues we are currently facing require long-term prospective efforts for
sustainable growth. Renewable energy sources seem to be one of the most practical and efficient
alternatives in this regard. Understanding a nation’s pattern of energy use and renewable energy
production is crucial for developing strategic plans. No previous study has been performed to
explore the dynamics of power consumption with the change in renewable energy production on a
country-wide scale. In contrast, a number of deep learning algorithms have demonstrated acceptable
performance while handling sequential data in the era of data-driven predictions. In this study,
we developed a scheme to investigate and predict total power consumption and renewable energy
production time series for eleven years of data using a recurrent neural network (RNN). The dynamics
of the interaction between the total annual power consumption and renewable energy production
were investigated through extensive exploratory data analysis (EDA) and a feature engineering
framework. The performance of the model was found to be satisfactory through the comparison of
the predicted data with the observed data, the visualization of the distribution of the errors and root
mean squared error (RMSE), and the R2 values of 0.084 and 0.82. Higher performance was achieved
by increasing the number of epochs and hyperparameter tuning. The proposed framework has the
potential to be used and transferred to investigate the trend of renewable energy production and
power consumption and predict future scenarios for different communities. The incorporation of a
cloud-based platform into the proposed pipeline to perform predictive studies from data acquisition
to outcome generation may lead to real-time forecasting.

Keywords: recurrent neural network; renewable energy; power consumption; open power system
data; multivariate exploratory time series forecasting

1. Introduction

In recent decades, interest in renewable energy has grown significantly [1–4]. These
non-polluting, resource-unrestricted energies would provide the perfect electrical source
for any activity, whether household or industrial, if not for their unpredictability [5–7].
It is challenging to predict how much power will be gained from renewable sources,
because their throughput varies greatly depending on the circumstances and qualities of
the location in which they are found. In many nations today, it is essential to promote
the use of renewable energy sources, because they provide a wealth of benefits [8–10].
As a result, while the main energy resource imports are greatly decreased, the security
of the energy supply and the preservation of traditional resources are both guaranteed.
Additionally, the use of renewable energy spurs economic growth on a local, regional, and
international scale and generates new job possibilities [11–14]. Utilizing renewable energy
has the advantage of lessening environmental degradation [15–18].

Solar energy has emerged as one of the most important sources of energy in recent
years [19,20]. In some countries, solar energy uses a significant percentage of the sun’s
energy and has more predictable behavior than wind-based energy. As a result, it ranks
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among the most significant renewable energy sources for a variety of nations in south
Europe, including Spain, as well as other places along the same latitude, such as Saudi
Arabia or India [21–23]. Solar energy includes thermal solar energy, which transforms
solar radiation into thermal energy used to heat buildings, desalination plants, homes,
and water treatment facilities, among other things, and photovoltaic solar energy, which
transforms solar radiation into electrical energy that can be transported for purposes other
than heating [24,25]. Wind is a plentiful natural resource and sustainable energy source
that is known to be both clean and pollution-free. In general, the characteristics of wind
are its speed, direction, and time of occurrence. The force or speed of the wind determines
how much energy can be extracted from its natural flow [26,27]. Generally speaking,
the wind speed or force has a nonlinear and variable nature. Despite its natural origins,
wind has the capacity to produce the necessary amount of energy for a nation’s ongoing
needs. It is necessary to forecast wind speeds in order to increase the amount of energy
produced [28–30]. Wind speed forecasting strikes a balance between the energy generated
and the demand. An efficient technique for reducing operating costs and enhancing
grid system functionality is a wind speed prediction model that is very accurate and
dependable [31–35].

The use of deep learning (DL) has made it possible to anticipate various physical
systems with greater accuracy. Several industries use DL [36–40]. In the modern world,
virtually every power grid incorporates renewable-energy-based sources. For successful
participation in the electricity market, accurate predictions of renewable energy sources are
crucial. Considering how much these sources depend on consumption, it can be difficult to
forecast the planet’s production. In recent years, there has been a rise in ML research and
applications for forecasting plant output from renewable energy sources. Different models,
including feedforward backpropagation (FFBP), feedforward neural networks (FFNNs),
and multilayer feedforward with backpropagation neural networks (MFFNNBP), with
various learning algorithms, including Bayesian regularization (BR) and the Levenberg–
Marquardt (LM) algorithm, can be found in references under the category of variants of
neural networks [41–43]. Examples of these techniques include support vector regression
(SVR), random trees (RTs), M5P decision trees (M5PDTs), Gaussian process regression
(GPR), and physical photovoltaic forecasting models (P-PVFMs) [44–47]. Although several
approaches for the supervised training of RNNs have been investigated over the past
decade, and there are many types of training algorithms, none stand out as the ideal
model. Backpropagation revisited and through time are common training methods for
RNNs, as they combine the following two qualities: (1) they have a distributed hidden state
that enables them to store a significant amount of historical data effectively; and (2) they
implement nonlinear dynamics, which enables them to develop sophisticated ways to
update their hidden state. These are the main reasons that RNN can compute a large
dataset with enough neurons and time.

The use of RNN models to investigate the dynamics of energy consumption in relation
to renewable energy is a relatively recent development [48–52]. This study aimed to
evaluate how well RNN models can predict energy consumption using renewable energy
sources. In order to enable researchers, engineers, and decision makers to understand
the temporal dynamics of power consumption and renewable energy production so that
they can make informed engineering/managerial decisions, the goal of this study was to
build an effective and practical RNN framework for forecasting future scenarios of annual
power production and consumption [53–64]. The model was tested against observed
data to assess whether it performed well using daily energy consumption and renewable
energy production data for a country. With this model, engineers and managers would be
able to evaluate the short- and long-term behavior and trends of energy, allowing them
to eventually develop preventative measures based on earlier observational data for a
variety of issues in a region. The RNN-based method used in this study only requires
observed data; therefore, a substantial amount of computational effort is needed. To make
the most of the RNN results in this study, comprehensive exploratory data analysis, feature
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engineering, and hyperparameter optimization were conducted. The remainder of this
paper is structured as follows: Section 2 provides a full explanation of the fundamentals of
RNN and describes the data engineering and experimental methodology. The outcomes of
the experiment are thoroughly discussed and analyzed in Section 3. The conclusion portion
and closing thoughts regarding this article are presented in Section 4.

2. Data and Methods
2.1. Data Source and Workflow

The time series of the total energy consumption and wind and solar power production
was used in this study to forecast the future trends of the variables in Germany. The time-
series dataset was retrieved from open power system data (OPSD) for Germany, which
has been rapidly expanding its renewable energy production in recent years [65,66]. The
temporal resolution of the variables used for the RNN-based prediction was daily. The
dataset’s timeframe included data over a decade, from 2006 to 2017. Electricity usage
and generation from wind and solar sources were reported in gigawatt hours (GWh).
In Table 1, a full description of the variables is presented. In Figure 1, the full workflow
of the predictive analysis of renewable energy production and total energy consumption
is shown.

Table 1. Full description of the energy consumption variables used for EDA and predictive analysis
with RNN.

Energy Consumption Variables Unit Descriptions

Total consumption GWh (gigawatt hours) Daily total energy consumption
Wind power production GWh Daily wind power production
Solar power production GWh Daily solar power production
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The shifts and fluctuations in electricity usage and generation over time in Germany
were scrutinized in this paper. Time-series tools were used to examine both seasonal
variations and long-term trends in the production of wind and solar power, as well as
their consumption. Furthermore, these tools were used to compare the wind and solar
power production with electricity usage. Using an RNN model, we anticipated each day’s
consumption based on historical and observed data. Figure 2 shows the temporal variation
of the variables.
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2.2. Multivariate Exploratory Data Analysis

As indicated by activity 2 in Figure 1, a multivariate exploratory data analysis (EDA)
was performed to understand the internal distribution of the attributes of the variables.
The temporal distribution of all the variables was explored using several visual and nu-
merical representations. The EDA included the important process of conducting an initial
exploration of the variables to investigate the hidden patterns in the dataset. The EDA was
grouped into multiple activities in this study. The descriptive statistics of the variables are
presented alongside the probability distribution via histograms to determine the normality
(skewness) of the variables. Descriptive statistics provided an effective way to demonstrate
the basic distribution of the values of the variables according to the number of data points,
mean, standard deviation, percentiles, interquartile range, and range (max/min). The full
multivariate descriptive statistics of the all the variables are shown in Table 2. To show
the normality, histograms with a line of probability distribution were used as a visual
representation, and the Pearson coefficient of skewness (PCS) was used as an indicator of
skewness to analyze the distribution.

Table 2. Descriptive statistics of the variables.

Variable Count Mean Std Min 25% 50% 75% Max

Consumption 4383 1338.67 165.77 842.39 1217.85 1367.12 1457.76 1709.56
Wind 2920 164.81 143.69 5.75 62.35 119.09 217.90 826.27
Solar 2188 89.25 58.55 1.96 35.17 86.40 135.07 241.58
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A visual representation of the distribution and the normality of the variables is shown
in Figure 3. The overall non-linearity of the wind production was high with left skewness.
The values of the Pearson correlation of skewness (PCS) were calculated for the numeric
measurement of the skewness. The PCS values for wind and solar power production
and total energy consumption were 5.97, 0.49, and 0.65. Wind power production showed
the highest non-normality among the variables. Normal distribution is a very crucial
part of RNN model performance, as it is directly linked to error minimization through
backpropagation. Normal distribution is the most crucial factor in the field of data-driven
predictive analysis, e.g., deep neural network regression. As the distribution of the values of
wind power production was highly skewed to the left, showing significant non-normality,
the neural network regression algorithms without appropriate data transformation did
not contribute to satisfactory outcomes with good optimization. As the distribution of the
renewable energy production series was found to be highly skewed, data transformation
was performed to decrease the non-normality of the series in the feature engineering stage.
The linear linkage was found to be low among the variables. The values of the linear
correlation coefficients are shown in the bivariate correlation plot in Figure 4. The direction
of the linear relationship was found to be both positive and negative.

2.3. Feature Engineering

As indicated by activity 3 in Figure 1, feature engineering (FE) was performed after
a successful EDA. FE is an important step before the training/testing phase of an RNN
algorithm. Without successful FE, any data-driven method may not yield a satisfactory per-
formance with minimum errors. Adequate optimization through iterative gradient descent
cannot be reached without the successful scrutiny of the dataset. Therefore, comprehensive
feature engineering was performed to transform the dataset so that it was more suitable
for the learning algorithm of the RNN. FE was performed to prepare the dataset for the
predictive analysis. The FE involved imputation, data transformation, data standardization,
and splitting the dataset into training and testing sets. Imputation was performed to fill the
null values so that the entire dataset became consistent. In this research, null values or null
observations were found in every variable. These cells in the dataset were imputed with
the median of the entire series. Three methods of data transformation were considered,
i.e., logarithmic, power, and cubic transformation, to bring the distribution of the features
closer to normal distribution. The Pearson coefficient was used as an indicator of normality.
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Through the data standardization process, the values of a variable were rescaled so
that the variable had a mean of 0 and variance of 1 (or Z-score normalization), which was
identical to the bell-shaped normal distribution curve. As the variable considered in this
study was the continuous independent variable, the standardization of the variable was
crucial for training/testing the neural network algorithm. Standardization was an impor-
tant step for the optimization problem. The RNN recurrent neural network model used the
gradient descent technique, with the feature value (renewable energy production) affecting
the step size of the technique. Smooth progress towards minima in gradient descent re-
quired the updating of the steps at the same rate for all the feature values. A standardized
variable is a prerequisite of reaching the minima in the gradient descent process.

z =
x− µ

σ
(1)

All the values in the renewable energy production series were standardized to prepare
the training dataset for the RNN model.

Equation (1) shows the standardization formula for the renewable energy production
series. The difference between the renewable energy production value and the minimum
of the entire renewable energy production series was divided by the range of the series,
providing the standardized data, which were further used in the training/testing process
of the RNN, indicated as activity 4 in Figure 1. The entire standardized renewable energy
production series was split into two portions, i.e., a training set that was used to train
the model and a testing set that was used to test/evaluate the model. Seventy percent of
the dataset was used for training, and thirty percent was used for testing. In a nutshell,
EDA and feature engineering were pivotal steps for the satisfactory performance of the
predictive model.

2.4. Recurrent Neural Network (RNN)

Recurrent neural networks (RNNs) are a type of neural system that can reveal dynamic
temporal behavior by enabling the use of hidden states and previous outputs as inputs.
RNNs, which are derived from feedforward neural networks, process input sequences of
various lengths using their internal state (memory) and connect the outputs of all neurons
to their inputs. The main structural concept of an NN is the replication of connection
weight configurations to zero to imitate the lack of connections between particular neurons.

For each timestep t, the activation a〈t〉 and the output y〈t〉 are expressed as follows:

a〈t〉 = g1

(
Waaa〈t−1〉 + Waxx〈t〉 + ba

)
(2)

y〈t〉 = g2

(
Wyaa〈t〉 + by

)
(3)

where Wax, Waa, Wya, ba, and by are coefficients that are shared temporally, and g1 and g2
are activation functions (Figure 4).

In the case of a recurrent neural network, the loss function
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2.5. Model Evaluation

As indicated by activity 5 in Figure 1, the model performance was evaluated. The
coefficient of determination (R2) is a popular error metric for assessing the accuracy of a
model by depicting the model fitness to datapoint values. The better the model fits the data,
the higher the R2. The square root of the coefficient of determination is represented as the
correlation coefficient (R), which was the second error function implemented in this study.

R2 =

(
∑N

t=1

(
Qt(com) −Q(com)

)(
Qt(obs) −Q(obs)

))2(
∑N

t=1

(
Qt(com) −Q(com)

)2
)(

∑N
t=1

(
Qt(obs) −Q(obs)

)2
) (6)

3. Results and Discussion

After the successful training of the RNN model, it was deployed to predict the target
variable (activity 6 in Figure 1). The output from the RNN algorithm was compared to
the observed renewable energy production data from the database through visualization,
as shown in Figure 5. Both the observed and predicted renewable energy production
time series were plotted against the number of datapoints. The overall distribution of the
predicted renewable energy production values was approximately identical to that of the
observed data, demonstrating the satisfactory performance of the RNN algorithm. After the
RNN model was trained with the training portion of the dataset, the entire observed dataset
was fed in to predict the outcome. The entire dataset was divided into training and testing
sets in the proportions 70% and 30%. The training dataset was used to train the model, and
the testing dataset was used to evaluate the model performance. The observed data are
shown in Figure 5a in green. In Figure 5b, the deep cyan portion of the plot indicates the
training portion of the dataset, whereas the deep blue portion shows the testing portion.
The RMSE values of the training and testing portion were 0.097 and 0.045, respectively. The
lower RMSE values showed the satisfactory performance of the RNN algorithm.

The rolling mean of the predicted consumption series showed the temporal dynamics
of consumption in relation to the original observed consumption throughout the study
period. It demonstrated the impact of downscaling the data with comparatively coarser
datapoints for the target variable (consumption). The downscaling of a temporal series
is usually conducted to reduce the size of the dataset to obtain faster computation ability
as well as to reduce the burden of a large amount of observed data with a finer temporal
resolution. However, observing and storing a large amount of data is always expensive and
has significant limitations. Therefore, the rolling mean could be a good tool for determining
whether there is any significant difference between observed and transformed data, with
the potential to assist decision makers in evaluating future scenarios.
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Model Evaluation Metrics and Improvement

The performance of the RNN neural network was evaluated using three error metrics,
i.e., the root mean square error (RMSE), the coefficient of determination (R2), and the
Nash–Sutcliffe model efficiency coefficient (E) [64]. Further, the performance of the model
was also evaluated and improved through increasing the number of iterations, i.e., epochs,
in the neural network. The value of R2 is plotted against an increasing number of epochs
in Figure 6. The number of epochs was increased up to 100 to improve the performance.
The RMSE value was found to decrease from 0.01 to 0.0025, which indicated satisfactory
performance by the RNN algorithm. The model performance increased significantly from
the very beginning of the iterations for both the training and testing scenarios. The trend
of change in the decrease in the RMSE values reached a near-steady state after 20 epochs.
A local decrease in the performance, i.e., increase in the RMSE value, could be seen after
20 epochs (Figure 6).
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Observed and predicted energy values from the RNN model and the distribution of
the RMSE values are illustrated in Figure 7 using a scatter plot. The scatterplot shows
that the points followed an approximately 45◦ trend line originating at zero. Some points
were located outside of the main cluster of points, which showed an error in the predic-
tion process. The R2 value of the best-fitted straight line was +0.862, which indicated
good performance.
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Time-series prediction for renewable energy production and consumption is a pivotal
task in the field of power management. The application of data-driven prediction models is
highly efficacious in predicting energy variables without taking complicated equations and
assumptions into consideration. In this study, annual power consumption and renewable
energy production were predicted using the most powerful neural network for predicting
sequential data, i.e., a recurrent neural network (RNN).

The RNN algorithm was capable of recalling both the short- and long-term patterns
of the time series for forecasting. The range of the energy time series considered in this
research was quite large, containing multiple seasonal dynamics. Traditional physics-based
numerical modeling tools require assumptions, other correlated variables, and the ex-
pensive calibration of the parameters. Compared to the other neural network regression
models, RNNs have been proven to show good performance, especially in time-series
prediction. As energy consumption and production provided sequential data with consid-
erable temporal dynamics, an RNN was used to quantify future values based on past data.
As the shape of the energy dataset was comparatively large, representing eleven years of
daily data, the RNN algorithms showed a highly satisfactory performance.

4. Conclusions

This study contributes to the development of a reproducible template for analyzing
large amounts of exploratory data in order to understand the distinctive temporal dynamics
of energy consumption and renewable energy production. Various modern data exploration
technologies were used to uncover a hidden pattern in the distribution of energy values
based on more than eleven years of data, which was a necessary condition for the successful
training of the RNN algorithm. Following a successful training phase, an explicit iterative
performance record was used to tweak and optimize the RNN. This performance record
could then be used to anticipate the energy values in a similar geographic area. The
effectiveness of the RNN algorithm in predicting energy showed how well-suited the
algorithm is to energy time series. Many error metrics indicated positive performance with
small errors. In this study, an RNN algorithm was used to forecast energy consumption
based on the dynamics of renewable energy production. The proposed model could be used
as a tool for planning and designing energy distribution systems in communities to improve
operational and maintenance decisions. The proposed model framework was found to be
highly efficient in predicting time-series data for energy consumption, presenting minimum
errors when compared with the observed data.

The RNN algorithm was trained using only the observed data without any intermedi-
ate transformation of the variables using physics-based equations. Therefore, the proposed
framework could be a powerful tool for predicting energy consumption in a real-time
manner without the burden of further computation with physic-based models. This is a
powerful analytical advancement in practice.

Along with the benefits, there are a few disadvantages of adopting this RNN, including
the following: (1) a large amount of time is necessary to train the model, with more time
required for RNN analysis and for running the model over a big dataset compared to
other conceptual models. The computing effort/time needed for the RNN algorithm in
this investigation was discovered to be extremely high. (2) The slow process also made it
necessary to use more of the system’s memory and storage capacity, which could make it
difficult to train on a large dataset, as was the case in our study. (3) A challenging aspect of
RNNs for time-series data processing is overfitting, which can lead to incorrect extremely
low error measurements. (4) Despite the fact that the essential factor for implementing
RNNs is the capacity to compare time lags throughout the whole time-series dataset, we
were unable to obtain sufficient performance for this dataset for periods longer than three
days. Any time lapses that occurred during a three-day period were flawless and produced
low error measurements that were satisfactory. To achieve the best results, future research
projects should be carried out incorporating high-performance computing and cloud-based
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processes. To test the model’s transferability, RNN models with various configurations
should be used in various geographic and climatic regions.
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