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Abstract: Copulas are probabilistic functions that are being used more and more frequently to
describe, examine, and model the interdependence of continuous random variables. Among the
numerous proposed copulas, renewed interest has recently been shown in the so-called Celebioglu–
Cuadras copula. It is mainly because of its simplicity, exploitable dependence properties, and potential
for applicability. In this article, we contribute to the development of this copula by proposing three
generalized versions of it, each involving three tuning parameters. The main results are theoretical:
they consist of determining wide and manageable intervals of admissible values for the involved
parameters. The proofs are mainly based on limit, differentiation, and factorization techniques as
well as mathematical inequalities. Some of the configuration parameters are new in the literature,
and original phenomena are revealed. Subsequently, the basic properties of the proposed copulas are
studied, such as symmetry, quadrant dependence, various expansions, concordance ordering, tail
dependences, medial correlation, and Spearman correlation. Detailed examples, numerical tables,
and graphics are used to support the theory.
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1. Introduction

In the fields of statistics, probability, informatics, engineering, insurance, physics,
hydrology, medicine, astronomy, etc., copulas are prevalent. They are crucial for outlining,
investigating, and modeling the interconnectedness of the involved continuous random
variables. When only two continuous random variables are considered, which is the case in
many applications, two-dimensional copulas are required. A two-dimensional copula can
be defined as a cumulative distribution function (CDF) with uniform marginal distributions
on the unit square I = [0, 1]2. In the absolutely continuous case, a precise definition is
given below.

Definition 1. The function C : I → [0, 1] is an (absolutely continuous) two-dimensional copula if
and only if

(i) we have C(x, 0) = C(0, y) = 0 for any (x, y) ∈ I;

(ii) we have C(x, 1) = x and C(1, y) = y for any (x, y) ∈ I;

(iii) we have
∂2

∂x∂y
C(x, y) ≥ 0

for any (x, y) ∈ I.

Numerous two-dimensional copulas have been investigated in the literature. Exhaus-
tive lists can be found in [1–4]. The Ali–Mikhail–Haq (AMH), Clayton, Farlie–Gumbel–
Morgenstern (FGM), Frank, Fréchet, Galambos, Gumbel–Barnett (GB), Gumbel–Hougaard,
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Hüsler–Reiss, Joe, Marshall–Olkin, Plackett, and Raftery copulas are among the most
famous. They often depend on one or more parameters that confer interesting levels of
dependence and flexibility. Hence, classical copulas have been involved in numerous appli-
cations. See, for instance, [5–8]. Moreover, with the tremendous developments in computer
calculation, the subject of the copula is more interesting than ever for modern theoretical
and practical problems. Recent contributions on this topic can be found in [9–16].

For the purposes of this paper, a retrospective on the GB copula is necessary. To begin,
the GB copula can be presented as

C(x, y; a) = xy exp[a(log x)(log y)], (x, y) ∈ I,

with a ∈ [−1, 0]. It has the particularity of being one of the simplest Archimedean copula,
covering the independence copula: C(x, y; 0) = xy, and being well adapted to model vari-
ous negative-type dependence. See, for instance, [4]. Among the most recent developments
in the GB copula, the authors in [17,18] proposed a modified version demonstrating a
broader range of dependence. This modified GB copula, called the Celebioglu–Cuadras
(CC) copula, is indicated as

C(x, y; a) = xy exp[a(1− x)(1− y)], (x, y) ∈ I,

with a ∈ [−1, 1]. In addition to being flexible in the dependence sense, the CC copula
has a simple mathematical form, covers the independence copula, and has manageable
properties, including negative and positive-type dependence. It was recently mentioned in
diverse research articles, often as a member of general families of copulas. See, for instance,
Ref. [19] (Example 2.2), [20] (Example 2), [21] (Example 5), and [22] (Example 2). However,
to the best of our knowledge, despite the immediate advantages of this copula, there is not
much attention given to it.

In this paper, we provide theoretical contributions to the CC copula by proposing
three logical three-parameter generalizations of it. Our methodology follows the power
generalization schemes proposed in [23], where three-parameter-power-type generaliza-
tions of the FGM copula are discussed. To be more precise, our proposed copulas are of the
following forms:

Form 1: C1(x, y; θ) = xy exp
[

a(1− xb)(1− yc)
]
,

Form 2: C2(x, y; θ) = xy exp
[

a(1− x)b(1− y)c
]
,

Form 3: C3(x, y; θ) = xy exp
[

a(1− xb)(1− y)c
]
,

where θ = (a, b, c) ∈ R3.
Some of these generalized forms have been sketched in [19,22], but only for specific

values of a, b, and c. To the best of our knowledge, no global studies exist, and this paper
aims to fill this gap. Thus, the main challenge of this study is to determine wide and
manageable admissible domains of values for a, b, and c so that copulas of these forms
remain mathematically valid. Among the results, we show that negative values for b and c
are allowed, which goes beyond previous research and opens up new modeling possibilities.
Detailed examples are discussed, and graphics illustrate the theoretical findings. For
the three proposed copulas, we determine the expressions of the corresponding copula
densities and survival copulas. We explore some of their key properties, such as symmetry,
quadrant dependence, various expansions, concordance ordering, tail dependences, medial
correlation, and Spearman correlation.

The organization of the paper is composed of the following sections: Section 2 presents
the first generalization of the CC copula as well as its properties. Sections 3 and 4 are
analogous to Section 2 but for other generalizations of the CC copula (of Forms 2 and 3,
respectively). The paper ends with a conclusion in Section 5.
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2. Generalized CC Copula
2.1. Presentation and Result

The first proposed generalized CC copula is presented in the proposition below.

Proposition 1. Let θ = (a, b, c) ∈ R3. We consider the function C1(·; θ) : I → [0, 1] defined by

C1(x, y; θ) = xy exp
[

a(1− xb)(1− yc)
]
, (x, y) ∈ I. (1)

Then, C1(x, y; θ) is a copula for the following parameter configurations (non-overlapping):

Configuration 1: a ≥ 0, b > 0, c > 0, ab ≤ 1, and ac ≤ 1.

Configuration 2: a < 0, b > 0, c > 0, and abc ≥ −1.

Configuration 3: a < 0, b < 0, c < 0, ab ≥ 1, ac ≥ 1, and b + (1− ab)c + bc ≤ 0.

Proof. The proof is based on Definition 1 and limit, differentiation, well-chosen factorization
techniques, and inequalities. Let us distinguish the three different parameter configurations.

Configuration 1: We recall that a ≥ 0, b > 0, c > 0, ab ≤ 1, and ac ≤ 1.

(i) For any x ∈ [0, 1], we have C1(x, 0; θ) = x× 0× exp
[

a(1− xb)(1− 0c)
]
= 0, and,

similarly, for any y ∈ [0, 1], C1(0, y; θ) = 0.

(ii) For any x ∈ [0, 1], we have C1(x, 1; θ) = x× 1× exp
[

a(1− xb)(1− 1c)
]
= x, and,

similarly, for any y ∈ [0, 1], C1(1, y; θ) = y.
(iii) For any (x, y) ∈ I, using standard differentiation techniques and appropriate

factorizations, we have

∂2

∂x∂y
C1(x, y; θ) = exp

[
a(1− xb)(1− xc)

]
×[

a2bcxbyc(1− xb)(1− yc) + (ab + ac + abc)xbyc − abxb − acyc + 1
]

= exp
[

a(1− xb)(1− xc)
]
[ f (x, y; θ) + g(x, y; θ) + h(x, y; θ)], (2)

where

f (x, y; θ) = a2bcxbyc(1− xb)(1− yc), g(x, y; θ) = (1− abxb)(1− acyc)

and
h(x, y; θ) = a(b + (1− ab)c + bc)xbyc.

Let us show that these functions are all positive (the exponential term in Equa-
tion (2) is always positive). Since (x, y) ∈ I, b > 0, and c > 0, it is obvious
that f (x, y; θ) ≥ 0. Since (x, y) ∈ I, ab ≤ 1, and ac ≤ 1, we immediately
have g(x, y; θ) ≥ 0. Since (x, y) ∈ I, b > 0, c > 0, and ab ≤ 1, we have
b + (1− ab)c + bc ≥ 0, and since a ≥ 0, we have h(x, y; θ) ≥ 0. As a result, for
Configuration 1, we have

∂2

∂x∂y
C1(x, y; θ) ≥ 0.

This ends the first portion of the proof.

Configuration 2: We recall that a < 0, b > 0, c > 0, and abc ≥ −1.

(i) and (ii) These points are similar to (i) and (ii) of Configuration 1.
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(iii) For any (x, y) ∈ I, by considering the basis of Equation (2), but with a different
decomposition more appropriate to the situation, we have

∂2

∂x∂y
C1(x, y; θ) = exp

[
a(1− xb)(1− xc)

]
×[

a2bcxbyc(1− xb)(1− yc) + (ab + ac + abc)xbyc − abxb − acyc + 1
]

= exp
[

a(1− xb)(1− xc)
]
[ f (x, y; θ) + g(x, y; θ) + h(x, y; θ)],

where

f (x, y; θ) = a2bcxbyc(1− xb)(1− yc), g(x, y; θ) = −ac(1− xb)yc

and
h(x, y; θ) = 1 + abxb((c + 1)yc − 1

)
.

Let us prove that these functions are positive. Since (x, y) ∈ I, b > 0, and
c > 0, we immediately have f (x, y; θ) ≥ 0. Since (x, y) ∈ I, a < 0, b > 0,
and c > 0, we have g(x, y; θ) ≥ 0. Since (x, y) ∈ I and c > 0, we have
(c + 1)yc − 1 ≤ (c + 1) − 1 = c. Hence, since a < 0, b > 0, c > 0, and
abc ≥ −1, we obtain

h(x, y; θ) ≥ 1 + abcxb ≥ 1− xb ≥ 0.

As a result, for Configuration 2, we have

∂2

∂x∂y
C1(x, y; θ) ≥ 0.

This ends the second portion of the proof.

Configuration 3: We recall that a < 0, b < 0, c < 0, ab ≥ 1, ac ≥ 1, and b+(1− ab)c+ bc ≤ 0.

(i) For any x ∈ [0, 1], since a < 0, b < 0, and c < 0, assumptions that are crucial here,
we have C1(x, 0; θ) = limy→0 xy exp

[
a(1− xb)(1− yc)

]
= 0× 0 = 0 (it is ∞ if

c > 0, hence the importance to have c < 0), and, similarly, for any y ∈ [0, 1],
C1(0, y; θ) = limx→0 xy exp

[
a(1− xb)(1− yc)

]
= 0× 0 = 0 (it is ∞ if b > 0,

hence the importance to have b < 0).

(ii) For any x ∈ [0, 1], we have C1(x, 1; θ) = x× 1× exp
[

a(1− xb)(1− 1c)
]
= x, and,

similarly, for any y ∈ [0, 1], C1(1, y; θ) = y.
(iii) For any (x, y) ∈ I, based on Equation (2), we have

∂2

∂x∂y
C1(x, y; θ) = exp

[
a(1− xb)(1− xc)

]
[ f (x, y; θ) + g(x, y; θ) + h(x, y; θ)],

where

f (x, y; θ) = a2bcxbyc(1− xb)(1− yc), g(x, y; θ) = (1− abxb)(1− acyc)

and
h(x, y; θ) = a(b + (1− ab)c + bc)xbyc.

Let us demonstrate that these functions are positive. Since (x, y) ∈ I, b <
0, and c < 0, as the products of two negative terms, we have bc > 0 and
(1− xb)(1− yc) ≥ 0, implying that f (x, y; θ) ≥ 0. Since a < 0, b < 0, and
ab ≥ 1, we have xb ≥ 1 and 1− abxb ≤ 1− ab ≤ 0, and, similarly, for a < 0,
c < 0, and ac ≥ 1, we have 1− acyc ≤ 0. Hence, g(x, y; θ) ≥ 0. If a < 0 and



Analytics 2023, 2 35

b+ (1− ab)c+ bc ≤ 0, it is clear that h(x, y; θ) ≥ 0. As a result, for Configuration
3, we have

∂2

∂x∂y
C1(x, y; θ) ≥ 0.

This ends the last portion of the proof.

The full proof of Proposition 1 is accomplished. �

For the purposes of this study, the copula presented in Equation (1) is called the
generalized CC (GCC) copula. The CC copula is obtained by taking a ∈ [−1, 1] and
b = c = 1, which are parameter values that combine those in Configurations 1 and 2 of
Proposition 1. Some special parameter values in examples considered in [22] belong to
Configurations 1 and 2. To the best of our knowledge, Configuration 3 of Proposition 1 is
the only one in the literature mentioning possible negative values for a, b, and c.

Based on Proposition 1, some parameter configuration examples with only one tuning
parameter are given below.

Example 1: For any γ > 0, Configuration 1 includes a = γ and b = c = 1/γ, that is

θ =

(
γ,

1
γ

,
1
γ

)
.

Example 2: For any γ > 0, Configuration 2 includes a = −1/γ and b = c =
√

γ, that is

θ =

(
− 1

γ
,
√

γ,
√

γ

)
.

Example 3: For any γ ∈ (0, 1], Configuration 3 includes a = −1/γ, b = −γ, and c = −1,
that is

θ =

(
− 1

γ
,−γ,−1

)
.

Of course, infinite other examples are possible. Perspective and contour plots of
the GCC copula are presented in Figures 1–3 for various parameter values belonging to
Configurations 1–3, respectively.
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Figure 1. Illustrations of the (a) perspective plot and (b) contour plot of the GCC copula for the
following configuration: a = 1/2 and b = c = 2, belonging to Configuration 1.



Analytics 2023, 2 36

x

0.0

0.2

0.4
0.6

0.8
1.0

y

0.0
0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

(a) (b)

Figure 2. Illustrations of the (a) perspective plot and (b) contour plot of the GCC copula for the
following configuration: a = −1/2, b = 2, and c = 1, belonging to Configuration 2.
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Figure 3. Illustrations of the (a) perspective plot and (b) contour plot of the GCC copula for the
following configuration: a = −2 and b = c = −1/2, belonging to Configuration 3.

From these figures, it is clear that the GCC copula is valid for the considered parameter
values. In addition, they demonstrate how the parameters a, b, and c influence the shapes
of the GCC copula.

Some important functions related to the GCC copula are presented below.

2.2. Central Functions

Based on the GCC copula, the GCC copula density is the function c1(·; θ) : I → [0, 1]
indicated as

c1(x, y; θ) =
∂2

∂x∂y
C1(x, y; θ) = exp

[
a(1− xb)(1− xc)

]
×[

a2bcxbyc(1− xb)(1− yc) + (ab + ac + abc)xbyc − abxb − acyc + 1
]
, (x, y) ∈ I.

The possible shapes of this function characterize the modeling capability of the GCC
copula. With this in mind, Figures 4–6 present the perspective and contour plots of this
copula density for parameter values belonging to Configurations 1–3, respectively.
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Figure 4. Illustrations of the (a) perspective plot and (b) contour plot of the GCC copula density for
the following configuration: a = 1/2 and b = c = 2, belonging to Configuration 1.
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Figure 5. Illustrations of the (a) perspective plot and (b) contour plot of the GCC copula density for
the following configuration: a = −1/2, b = 2, and c = 1, belonging to Configuration 2.
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Figure 6. Illustrations of the (a) perspective plot and (b) contour plot of the GCC copula density for
the following configuration: a = −2 and b = c = −1/2, belonging to Configuration 3.

From these figures, we see how the parameters a, b, and c affect the shapes of the
GCC copula density; really different shapes are obtained. Figure 6 shows particularly
abrupt changes at the extrema that are not observed in Figures 4 and 5. This highlights the
singularity of Configuration 3.

The copula density plays a major role in the practical aspect; it is involved in various
copula estimation methods, such as the maximum likelihood and the semiparametric
estimation. These methods and computationally appealing parametric inference algorithms
are treated and reviewed in detail in [24,25]. From a conceptual standpoint, there appears
to be no impediment to the simultaneous estimation of the parameters a, b, and c of the
GCC copula.
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As a last important function, the survival GCC copula is the function Ĉ1(·; θ) : I →
[0, 1] defined by

Ĉ1(x, y; θ) = x + y− 1 + C1(1− x, 1− y; θ)

= x + y− 1 + (1− x)(1− y) exp
{

a[1− (1− x)b][1− (1− y)c]
}

, (x, y) ∈ I.

It is a valid copula under Configurations 1–3, and it also defines a new copula with
the same analytical components as the GCC copula.

2.3. Key Characteristics

Some key characteristics of the GCC copula under Configurations 1–3, are now dis-
cussed.

• For a = 0 or b = c, the GCC copula is symmetric since C1(x, y; θ) = C1(y, x; θ) for any
(x, y) ∈ I. For a 6= 0 and b 6= c, it is not symmetric.

• In full generality, for a 6= 0, the GCC copula is not Archimedean, since the CC copula
is not. Indeed, for a = b = c = 1, that is θ = (1, 1, 1), we have

C1

(
1
4

, C1

(
1
2

,
1
3

; θ

)
; θ

)
= 0.1033978 6= 0.1045974 = C1

(
C1

(
1
4

,
1
2

; θ

)
,

1
3

; θ

)
. (3)

For more detail on this condition, see [4]. Similar numerical results can be proved for
other values arbitrarily chosen in Configurations 1–3.

• For a 6= 0, the GCC copula is not radially symmetric because there exists (x, y) such
that Ĉ1(x, y; θ) 6= C1(x, y; θ).

• The GCC copula is positively quadrant dependent for a ≥ 0 (corresponding to Config-
uration 1) since C1(x, y; θ) ≥ xy for any (x, y) ∈ I. It is negatively quadrant dependent
for a < 0 (corresponding to Configurations 2 and 3) since C1(x, y; θ) ≤ xy for any
(x, y) ∈ I.

• Using the following inequality: eu ≥ 1 + u for any u ∈ R, for any (x, y) ∈ I, we have

C1(x, y; θ) ≥ C∗(x, y; θ),

where C∗(x, y; θ) = xy
[
1 + a(1− xb)(1− yc)

]
. For some values of the parameters,

C∗(x, y; θ) represents the first generalized FGM copula described in [23]. Hence,
for some parameter values, C∗(x, y; θ) is smaller than C1(x, y; θ) with respect to the
concordance ordering.

• Using the following inequality: e−u ≥ 1− u for any u ∈ R, for a, b, and c, such that
u = a(1− xb)(1− yc) < 1 for any (x, y) ∈ I, we have

C1(x, y; θ) ≤ C�(x, y; θ),

where
C�(x, y; θ) =

xy
1− a(1− xb)(1− yc)

.

For some values of the parameters, C�(x, y; θ) represents a generalized AMH copula.
Hence, for some parameter values, C1(x, y; θ) is smaller than C�(x, y; θ) with respect
to the concordance ordering.

• The Fréchet–Hoeffding (FH) bounds are satisfied, as for any copula. More precisely,
for any (x, y) ∈ I, we have max(x + y− 1, 0) ≤ C1(x, y; θ) ≤ min(x, y).

• Using the exponential series and binomial expansions, the GCC copula can be ex-
pressed as

C1(x, y; θ) =
∞

∑
i=0

i

∑
j=0

i

∑
k=0

αi,j,kxbj+1yck+1, (4)
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where

αi,j,k =
ai

i!

(
i
j

)(
i
k

)
(−1)j+k.

The binomial coefficient is standardly defined as (z
k) = z(z − 1)(z − 2) . . . (z − k +

1)/(k!). Similarly, the GCC copula density can be expanded as

c1(x, y; θ) =
∞

∑
i=0

i

∑
j=0

i

∑
k=0

βi,j,kxbjyck,

where βi,j,k = (bj + 1)(ck + 1)αi,j,k. Approximations for various moment analyses are
possible as a result of this expansion.

• Using classical limit techniques, we obtain

λL = lim
x→0

C1(x, x; θ)

x
= lim

x→0
x exp

[
a(1− xb)(1− xc)

]
= 0

and

λU = lim
x→1

1− 2x + C1(x, x; θ)

1− x
= lim

x→1

1− 2x + x2 exp
[

a(1− xb)(1− xc)
]

1− x
= 0.

Hence, there is no tail dependence in the GCC copula.
• The medial correlation (or Blomqvist coefficient) of the GCC copula is indicated as

M = 4C1

(
1
2

,
1
2

; θ

)
− 1 = exp

[
a(1− 2−b)(1− 2−c)

]
− 1.

Tables 1–3 present the numerical values (rounded to the second decimal) for θ =
(γ, 1/γ, 1/γ), θ = (−1/γ,

√
γ,
√

γ), and θ = (−1/γ,−γ,−1), for several positive
values of γ, being special examples of Configurations 1–3, respectively. In fact, for the
values of gamma in the tables that follow, the grid 0.01, 0.09, 0.17, 0.25, 0.33, 0.41, 0.49,
0.57, 0.65, 0.73, 0.81, 0.89 is arbitrarily chosen, making all the future proposed copulas
mathematically valid.

Table 1. Values of the medial correlation of the GCC copula for θ = (γ, 1/γ, 1/γ) and several values
of γ, belonging to Configuration 1.

γ 0.01 0.09 0.17 0.25 0.33 0.41 0.49 0.57 0.65 0.73 0.81 0.89

M 0.01 0.09 0.18 0.25 0.29 0.31 0.32 0.33 0.32 0.32 0.31 0.3

Table 2. Values of the medial correlation of the GCC copula for θ = (−1/γ,
√

γ,
√

γ) and several
values of γ, belonging to Configuration 2.

γ 0.01 0.09 0.17 0.25 0.33 0.41 0.49 0.57 0.65 0.73 0.81 0.89

M −0.36 −0.32 −0.3 −0.29 −0.28 −0.27 −0.26 −0.25 −0.25 −0.24 −0.23 −0.23

Table 3. Values of the medial correlation of the GCC copula for θ = (−1/γ,−γ,−1) and several
values of γ, belonging to Configuration 3.

γ 0.01 0.09 0.17 0.25 0.33 0.41 0.49 0.57 0.65 0.73 0.81 0.89

M −0.5 −0.51 −0.52 −0.53 −0.54 −0.55 −0.56 −0.57 −0.58 −0.59 −0.61 −0.62
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From these tables, it can be seen that a negative or positive medial correlation can be
reached with a moderate wide amplitude of values (here, for the considered parameter
values, from −0.62 to 0.3).

• The rho of Spearman of the GCC copula is defined by

ρ = 12
∫ 1

0

∫ 1

0
[C1(x, y; θ)− xy]dxdy.

No closed-form expression exists. However, by using Equation (4), we can express it as

ρ = 12
∞

∑
i=1

i

∑
j=0

i

∑
k=0

αi,j,k
1

(bj + 2)(ck + 2)
.

Tables 4–6 present its numerical values (rounded to the second decimal) for
θ = (γ, 1/γ, 1/γ), θ = (−1/γ,

√
γ,
√

γ), and θ = (−1/γ,−γ,−1), for several posi-
tive values of γ, being special examples of Configurations 1–3, respectively.

Table 4. Values of the rho of Spearman of the GCC copula for θ = (γ, 1/γ, 1/γ) and several values of
γ, belonging to Configuration 1.

γ 0.01 0.09 0.17 0.25 0.33 0.41 0.49 0.57 0.65 0.73 0.81 0.89

ρ 0.03 0.2 0.3 0.36 0.4 0.41 0.42 0.42 0.42 0.41 0.4 0.39

Table 5. Values of the rho of Spearman of the GCC copula for θ = (−1/γ,
√

γ,
√

γ) and several
values of γ, belonging to Configuration 2.

γ 0.01 0.09 0.17 0.25 0.33 0.41 0.49 0.57 0.65 0.73 0.81 0.89

ρ −0.5 −0.44 −0.41 −0.39 −0.38 −0.36 −0.35 −0.34 −0.33 −0.32 −0.31 −0.31

Table 6. Values of the rho of Spearman of the GCC copula for θ = (−1/γ,−γ,−1) and several values
of γ, belonging to Configuration 3.

γ 0.01 0.09 0.17 0.25 0.33 0.41 0.49 0.57 0.65 0.73 0.81 0.89

ρ −0.68 −0.69 −0.71 −0.72 −0.73 −0.74 −0.75 −0.77 −0.78 −0.79 −0.8 −0.82

These tables demonstrate that the rho of Spearman of the GCC copula can be either
negative or positive with wide amplitude (here, from −0.82 to 0.39). It can be non-
monotonic according to the parameters. Thus, the GCC copula is ideal for modeling
various kinds of dependence.

• Let F(x) and G(x) be two unidimensional CDFs. Then, under Configurations 1–3,
we define a new two-dimensional CDF by considering the function H : I → [0, 1]
indicated as H(x, y; θ) = C1(F(x), G(y); θ). Thus, based on this function, there are
an endless number of potential new two-dimensional distributions. For choices of
motivated lifetime CDFs for F(x) and G(x), we refer to [26].

The section below explores another possible generalized GCC copula, following the
second generalization scheme of [23].

3. Second Generalized CC Copula
3.1. Presentation and Result

The second proposed generalized CC copula is indicated in the proposition below.
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Proposition 2. Let θ = (a, b, c) ∈ R3. We consider the function C2(·; θ) : I → [0, 1] defined by

C2(x, y; θ) = xy exp
[

a(1− x)b(1− y)c
]
, (x, y) ∈ I. (5)

Then, C2(x, y; θ) is a copula for the following parameter configurations (non-overlapping):

Configuration 1: a ≥ 0, b ≥ 1, c ≥ 1, ab ≤ 1, and ac ≤ 1.

Configuration 2: a < 0, b ≥ 1, c ≥ 1, and abc ≥ −1.

Proof. As for the proof of Proposition 1, the proof is based on Definition 1 using differentia-
tion, well-chosen factorization techniques, and inequalities. The two different parameter
configurations will be conjointly assumed for (i) and (ii), but they will be distinguished
for (iii).

(i) For any x ∈ [0, 1], we have C2(x, 0; θ) = x × 0 × exp
[

a(1− x)b(1− 0)c
]
= 0, and,

similarly, for any y ∈ [0, 1], C2(0, y; θ) = 0.

(ii) For any x ∈ [0, 1], we have C2(x, 1; θ) = x × 1× exp
[

a(1− x)b(1− 1)c
]
= x, and,

similarly, for any y ∈ [0, 1], C2(1, y; θ) = y.

(iii) For any (x, y) ∈ I, using standard differentiation techniques and well-chosen factor-
izations, we obtain

∂2

∂x∂y
C2(x, y; θ) = (1− x)−1(1− y)−1 exp

[
a(1− x)b(1− y)c

]
×[

a2bcxy(1− x)2b(1− y)2c + (1− x)b(1− y)c[(ab + ac + abc)xy− abx− acy] + (1− x)(1− y)
]

= (1− x)−1(1− y)−1 exp
[

a(1− x)b(1− y)c
]
×[

f (x, y; θ) + (1− x)b(1− y)cg(x, y; θ) + h(x, y; θ)
]
,

where

f (x, y; θ) = a2bcxy(1− x)2b(1− y)2c, g(x, y; θ) = (ab+ ac+ abc)xy− abx− acy+ 1

and
h(x, y; θ) = (1− x)(1− y)− (1− x)b(1− y)c.

Let us demonstrate that these functions are positive under the two different
parameter configurations.

Configuration 1: We recall that a ≥ 0, b ≥ 1, c ≥ 1, ab ≤ 1, and ac ≤ 1. For any
(x, y) ∈ I, since a ≥ 0, b ≥ 1, and c ≥ 1, it is clear that f (x, y; θ) ≥ 0 and
h(x, y; θ) ≥ 0. Now, we can decompose g(x, y; θ) as

g(x, y; θ) = (1− abx)(1− acy) + a(b + (1− ab)c + bc)xy.

For a ≥ 0, b ≥ 1, c ≥ 1, ab ≤ 1, and ac ≤ 1, we get g(x, y; θ) ≥ 0 as a sum of
positive functions. Hence

∂2

∂x∂y
C2(x, y; θ) ≥ 0.

Configuration 2: We recall that a < 0, b ≥ 1, c ≥ 1, and abc ≥ −1. For any (x, y) ∈ I,
since a < 0, b ≥ 1, and c ≥ 1, it is clear that f (x, y; θ) ≥ 0 and h(x, y; θ) ≥ 0.
Now, we can express g(x, y; θ) as

g(x, y; θ) = −ac(1− x)y + 1 + abx[(c + 1)y− 1].



Analytics 2023, 2 42

For a < 0, b ≥ 1, and c ≥ 1, we have −ac(1− x)y ≥ 0 and a[(c + 1)y− 1] ≥ ac,
and it follows from abc ≥ −1 that

g(x, y; θ) ≥ 1 + abcx ≥ 1 + abc ≥ 0.

Hence
∂2

∂x∂y
C2(x, y; θ) ≥ 0.

Thus, the point (iii) is demonstrated for the two configurations.

The full proof of Proposition 2 ends. �

For the purposes of this study, the copula presented in Equation (5) is called the
second generalized CC (SGCC) copula. It is worth noting that in Configurations 1 and
2 of Proposition 2, we have b ≥ 1 and c ≥ 1, which seem crucial to have a valid copula.
As for the GCC copula, the CC copula is obtained by taking a ∈ [−1, 1] and b = c = 1,
which are parameter values that combine those in the two configurations. To the best of
our knowledge, the SGCC copula and these clear parameter configurations are new in the
literature. Based on Proposition 2, some parameter configuration examples with only one
tuning parameter are given below.

Example 1: For any γ ∈ (0, 1], Configuration 1 includes a = γ and b = c = 1/γ, that is

θ =

(
γ,

1
γ

,
1
γ

)
.

Example 2: For any γ ∈ (0, 1], Configuration 2 includes a = −γ, and b = c = 1/
√

γ, that is

θ =

(
−γ,

1√
γ

,
1√
γ

)
.

These are just a few examples of the infinite number of possible combinations. Perspec-
tive and contour plots of the SGCC copula are presented in Figures 7 and 8 for parameter
values belonging to Configurations 1 and 2, respectively.
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Figure 7. Illustrations of the (a) perspective plot and (b) contour plot of the SGCC copula for the
following configuration: a = 1/4 and b = c = 2, belonging to Configuration 1.
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Figure 8. Illustrations of the (a) perspective plot and (b) contour plot of the SGCC copula for the
following configuration: a = −1/2, b = 2, and c = 1, belonging to Configuration 2.

These figures make it obvious that the SGCC copula holds true for the parameter
values under consideration. Furthermore, they show how the shapes of the SGCC copula
are affected by the parameters a, b, and c.

Some important functions related to the SGCC copula are presented below.

3.2. Central Functions

Based on the SGCC copula, the SGCC copula density is the function c2(·; θ) : I → [0, 1]
indicated as

c2(x, y; θ) =
∂2

∂x∂y
C2(x, y; θ)

= (1− x)−1(1− y)−1 exp
[

a(1− x)b(1− y)c
]
×[

a2bcxy(1− x)2b(1− y)2c + (1− x)b(1− y)c[(ab + ac + abc)xy− abx− acy] + (1− x)(1− y)
]
,

(x, y) ∈ I.

The possible shapes of this function characterize the modeling capability of the
SGCC copula. As a visual approach, the perspective and contour plots of this cop-
ula density for parameter values belonging to Configurations 1 and 2 are shown in
Figures 9 and 10, respectively.
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Figure 9. Illustrations of the (a) perspective plot and (b) contour plot of the SGCC copula density for
the following configuration: a = 1/4 and b = c = 2, belonging to Configuration 1.
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Figure 10. Illustrations of the (a) perspective plot and (b) contour plot of the SGCC copula density
for the following configuration: a = −1/2, b = 2, and c = 1, belonging to Configuration 2.

From these figures, we see how the parameters a, b, and c affect the shapes of the
SGCC copula density.

As a last important function, the survival SGCC copula is the function Ĉ2(·; θ) : I →
[0, 1] defined by

Ĉ2(x, y; θ) = x + y− 1 + C2(1− x, 1− y; θ)

= x + y− 1 + (1− x)(1− y) exp
(

axbyc
)

, (x, y) ∈ I.

Under Configurations 1 and 2, it defines a legitimate copula and has the same analytical
elements as the SGCC copula.

3.3. Key Characteristics

Some key characteristics of the SGCC copula under Configurations 1 and 2 are now
discussed.

• For a = 0 or b = c, the SGCC copula is symmetric, since C2(x, y; θ) = C2(y, x; θ) for
any (x, y) ∈ I. For a 6= 0, and b 6= c, it is not symmetric.

• For a 6= 0, the SGCC copula is not Archimedean. For instance, for a = b = 1, that is
θ = (1, 1, 1), Equation (3) still holds since, in this case, C2(x, y; θ) = C1(x, y; θ).

• For a 6= 0, the SGCC copula is not radially symmetric because there exists (x, y) such
that Ĉ2(x, y; θ) 6= C2(x, y; θ).

• The SGCC copula is positively quadrant dependent for a ≥ 0 (corresponding to
Configuration 1), since C2(x, y; θ) ≥ xy for any (x, y) ∈ I. It is negatively quadrant
dependent for a < 0 (corresponding to Configuration 2) since C2(x, y; θ) ≤ xy for any
(x, y) ∈ I.

• Using the following inequality: eu ≥ 1 + u for any u ∈ R, for any (x, y) ∈ I, we obtain

C2(x, y; θ) ≥ C◦(x, y; θ),

where C◦(x, y; θ) = xy
[
1 + a(1− x)b(1− y)c

]
. For some values of the parameters,

C◦(x, y; θ) represents the second generalized FGM copula described in [23]. Hence,
for some parameter values, C◦(x, y; θ) is smaller than C2(x, y; θ) with respect to the
concordance ordering.

• Using the following inequality: e−u ≥ 1− u for any u ∈ R, for a, b, and c, such that
u = a(1− x)b(1− y)c < 1 for any (x, y) ∈ I, we have

C2(x, y; θ) ≤ C.(x, y; θ),

where
C.(x, y; θ) =

xy
1− a(1− x)b(1− y)c .
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For some values of the parameters, C.(x, y; θ) represents a generalized AMH copula.
Hence, for some parameter values, C2(x, y; θ) is smaller than C.(x, y; θ) with respect
to the concordance ordering.

• In full generality, there is no immediate concordance ordering between the GCC and
SGCC copulas.

• The FH bounds hold.
• For (x, y) ∈ [0, 1)2, using the exponential series and generalized binomial expansions,

the SGCC copula can be expressed as

C2(x, y; θ) =
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

µi,j,kxj+1yk+1, (6)

where

µi,j,k =
ai

i!

(
bi
j

)(
ci
k

)
(−1)j+k.

Similarly, the SGCC copula density can be expanded as

c2(x, y; θ) =
∞

∑
i=0

i

∑
j=0

i

∑
k=0

νi,j,kxjyk,

where νi,j,k = (j + 1)(k + 1)µi,j,k. Approximations for various moment analyses are
possible as a result of this expansion.

• Let us now investigate the possible tail dependence of the SGCC copula. Using
standard limit techniques, we have

λL = lim
x→0

C2(x, x; θ)

x
= lim

x→0
x exp

[
a(1− x)b+c

]
= 0

and

λU = lim
x→1

1− 2x + C2(x, x; θ)

1− x
= lim

x→1

1− 2x + x2 exp
[

a(1− x)b+c
]

1− x
= 0.

As a result, the SGCC copula has no tail dependence.
• The medial correlation of the SGCC copula is simply indicated as

M = 4C2

(
1
2

,
1
2

; θ

)
− 1 = exp

(
a2−(b+c)

)
− 1.

As numerical works, Tables 7 and 8 show some numerical values of M for θ =
(γ, 1/γ, 1/γ) and θ = (−γ, 1/

√
γ, 1/

√
γ) (rounded to the second decimal), for several

values of γ ∈ (0, 1], being special examples of Configurations 1 and 2, respectively.

Table 7. Values of the medial correlation of the SGCC copula for θ = (γ, 1/γ, 1/γ) and several values
of γ, belonging to Configuration 1.

γ 0.01 0.09 0.17 0.25 0.33 0.41 0.49 0.57 0.65 0.73 0.81 0.89

M 0 0 0 0 0 0.01 0.03 0.05 0.08 0.12 0.16 0.21

Table 8. Values of the medial correlation of the SGCC copula for θ = (−γ, 1/
√

γ, 1/
√

γ) and several
values of γ, belonging to Configuration 2.

γ 0.01 0.09 0.17 0.25 0.33 0.41 0.49 0.57 0.65 0.73 0.81 0.89

M 0 0 −0.01 −0.02 −0.03 −0.05 −0.07 −0.09 −0.11 −0.13 −0.16 −0.19
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These tables show that a moderate amplitude of values can result in a medial correla-
tion that is either negative or positive (here, from −0.19 to 0.21).

• The rho of Spearman of the SGCC copula is defined by

ρ = 12
∫ 1

0

∫ 1

0
[C2(x, y; θ)− xy]dxdy.

Clearly, it does not have a closed-form expression. However, by using Equation (6),
we can expand it as

ρ = 12
∞

∑
i=1

∞

∑
j=0

∞

∑
k=0

µi,j,k
1

(j + 2)(k + 2)
.

Tables 9 and 10 determine its numerical values for θ = (γ, 1/γ, 1/γ) and θ =
(−γ, 1/

√
γ, 1/

√
γ) (rounded to the second decimal), for several values of γ ∈ (0, 1],

being special examples of Configurations 1 and 2, respectively.

Table 9. Values of the rho of Spearman of the SGCC copula for θ = (γ, 1/γ, 1/γ) and several values
of γ, belonging to Configuration 1.

γ 0.01 0.09 0.17 0.25 0.33 0.41 0.49 0.57 0.65 0.73 0.81 0.89

ρ 0 0 0 0 0.01 0.02 0.04 0.07 0.1 0.15 0.2 0.27

Table 10. Values of the rho of Spearman of the SGCC copula for θ = (−γ, 1/
√

γ, 1/
√

γ) and several
values of γ ∈ (0, 1], belonging to Configuration 2.

γ 0.01 0.09 0.17 0.25 0.33 0.41 0.49 0.57 0.65 0.73 0.81 0.89

ρ 0 0 −0.01 −0.02 −0.04 −0.06 −0.08 −0.11 −0.14 −0.17 −0.21 −0.24

These tables demonstrate that the rho of Spearman of the SGCC copula can be either
negative or positive with wide amplitude (here, from −0.24 to 0.27). Thus, the SGCC
copula is ideal to model various kinds of dependence.

• Let F(x) and G(x) be two unidimensional CDFs. Then, under Configurations 1 and
2, we define a new two-dimensional CDF by considering the function H : I → [0, 1]
indicated as H(x, y; θ) = C2(F(x), G(y); θ). Thus, based on this function, there are an
endless number of potential new two-dimensional distributions. We again refer to [26]
while discussing the options for motivated lifetime CDFs for F(x) and G(x).

A third generalized CC copula that mixes the power schemes of the GCC and SGCC copulas
is described in the next section.

4. Third Generalized CC Copula
4.1. Presentation and Result

The third proposed generalized CC copula is indicated in the proposition below.

Proposition 3. Let θ = (a, b, c) ∈ R3. We consider the function C3(·; θ) : I → [0, 1] defined by

C3(x, y; θ) = xy exp
[

a(1− xb)(1− y)c
]
, (x, y) ∈ I. (7)

Then, C3(x, y; θ) is a copula for the following parameter configurations (non-overlapping):

Configuration 1: a ≥ 0, b > 0, c ≥ 1, ab ≤ 1, and ac ≤ 1.

Configuration 2: a < 0, b > 0, c ≥ 1, and abc ≥ −1.

Proof. As for the proof of Propositions 1 and 2, the proof is based on Definition 1 using
differentiation, well-chosen factorization techniques, and inequalities. The two different
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parameter configurations will be conjointly assumed for (i) and (ii), but they will be
distinguished for (iii).

(i) For any x ∈ [0, 1], we have C3(x, 0; θ) = x × 0 × exp
[

a(1− xb)(1− 0)c
]
= 0, and,

similarly, for any y ∈ [0, 1], C3(0, y; θ) = 0.

(ii) For any x ∈ [0, 1], we have C3(x, 1; θ) = x × 1× exp
[

a(1− xb)(1− 1)c
]
= x, and,

similarly, for any y ∈ [0, 1], C3(1, y; θ) = y.

(iii) Using conventional differentiation methods and carefully chosen factorizations, we
obtain, for any (x, y) ∈ I,

∂2

∂x∂y
C3(x, y; θ) = (1− y)−1 exp

[
a(1− xb)(1− y)c

]
×[

a2bcxby(1− xb)(1− y)2c + (1− y)c[(ab + ac + abc)xby− abxb − acy] + 1− y
]

= (1− y)−1 exp
[

a(1− xb)(1− y)c
]
×

[ f (x, y; θ) + (1− y)cg(x, y; θ) + h(x, y; θ)],

where

f (x, y; θ) = a2bcxby(1− xb)(1− y)2c, g(x, y; θ) = (ab+ ac+ abc)xby− abxb− acy+ 1

and
h(x, y; θ) = 1− y− (1− y)c.

Let us demonstrate that these functions are positive under the two different
parameter configurations.

Configuration 1: We recall that a ≥ 0, b > 0, c ≥ 1, ab ≤ 1, and ac ≤ 1. For any
(x, y) ∈ I, since a ≥ 0, b > 0, and c ≥ 1, it is clear that f (x, y; θ) ≥ 0 and
h(x, y; θ) ≥ 0. Now, we can write g(x, y; θ) as

g(x, y; θ) = (1− abxb)(1− acy) + a(b + (1− ab)c + bc)xby.

For a ≥ 0, b > 0, c ≥ 1, ab ≤ 1, and ac ≤ 1, we obtain g(x, y; θ) ≥ 0 as a sum of
positive functions. Hence

∂2

∂x∂y
C3(x, y; θ) ≥ 0.

Configuration 2: We recall that a < 0, b > 0, c ≥ 1, and abc ≥ −1. For any (x, y) ∈ I,
since a < 0, b > 0, and c ≥ 1, it is clear that f (x, y; θ) ≥ 0 and h(x, y; θ) ≥ 0.
Now, we can express g(x, y; θ) as

g(x, y; θ) = −ac(1− xb)y + 1 + abxb[(c + 1)y− 1].

For a < 0, b > 0, and c ≥ 1, we have −ac(1− xb)y ≥ 0 and a[(c + 1)y− 1] ≥ ac,
and it follows from abc ≥ −1 that

g(x, y; θ) ≥ 1 + abcxb ≥ 1 + abc ≥ 0.

Hence
∂2

∂x∂y
C3(x, y; θ) ≥ 0.

Thus, for the two configurations, point (iii) is shown.
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This concludes the proof of Proposition 3. �

For the purposes of this study, the copula presented in Equation (7) is called the
third generalized CC (TGCC) copula. When we compare the parameter configurations in
Propositions 2 and 3, we see that the assumption b ≥ 1 for the TGCC is relaxed, allowing
values of b ∈ (0, 1). As for the GCC and SGCC copulas, the CC copula is obtained by
taking a ∈ [−1, 1] and b = c = 1, which are parameter values that combine those in the two
configurations. To the best of our knowledge, as with the SGCC copula, the TGCC copula
and these clear parameter configurations are new in the literature. Based on Proposition 3,
some parameter configuration examples with only one tuning parameter are given below.

Example 1: For any γ ∈ (0, 1], Configuration 1 includes a = γ and b = c = 1/γ, that is

θ =

(
γ,

1
γ

,
1
γ

)
.

Example 2: For any γ ∈ (0, 1], Configuration 2 includes a = −γ, and b = c = 1/
√

γ, that is

θ =

(
−γ,

1√
γ

,
1√
γ

)
.

These are just a few examples of the infinite number of possible combinations. Perspective
and contour plots of the TGCC copula are presented in Figures 11 and 12 for parameter
values belonging to Configurations 1 and 2, respectively.
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Figure 11. Illustrations of the (a) perspective plot and (b) contour plot of the TGCC copula for the
following configuration: a = 1/4 and b = c = 2, belonging to Configuration 1.
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Figure 12. Illustrations of the (a) perspective plot and (b) contour plot of the TGCC copula for the
following configuration: a = −1/2, b = 2, and c = 1, belonging to Configuration 2.
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These figures clearly show that given the parameter values under discussion, the
TGCC copula holds true. Furthermore, they demonstrate how the parameters a, b, and c
affect the curve morphologies of the TGCC copula.

Some important functions related to the TGCC copula are presented below.

4.2. Central Functions

Based on the TGCC copula, the TGCC copula density is the function c3(·; θ) : I → [0, 1]
indicated as

c3(x, y; θ) =
∂2

∂x∂y
C3(x, y; θ)

= (1− y)−1 exp
[

a(1− xb)(1− y)c
]
×[

a2bcxby(1− xb)(1− y)2c + (1− y)c[(ab + ac + abc)xby− abxb − acy] + 1− y
]
,

(x, y) ∈ I.

The modeling abilities of the TGCC copula are exhibited in the potential shapes of
c3(x, y; θ). For a more visual approach, Figures 13 and 14 illustrate the perspective and
contour plots of this copula density for parameter values belonging to Configurations 1
and 2, respectively.
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Figure 13. Illustrations of the (a) perspective plot and (b) contour plot of the TGCC copula density
for the following configuration: a = 1/4 and b = c = 2, belonging to Configuration 1.
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Figure 14. Illustrations of the (a) perspective plot and (b) contour plot of the TGCC copula density
for the following configuration: a = −1/2, b = 2, and c = 1, belonging to Configuration 2.

From these figures, we see how the parameters a, b, and c affect the shapes of the
TGCC copula density; the overall shapes between Figures 13 and 14 are really different.
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As a last important function, the survival TGCC copula is the function Ĉ3(·; θ) : I →
[0, 1] defined by

Ĉ3(x, y; θ) = x + y− 1 + C3(1− x, 1− y; θ)

= x + y− 1 + (1− x)(1− y) exp
{

a[1− (1− x)b]yc
}

, (x, y) ∈ I.

Under Configurations 1 and 2, it defines a legitimate copula and has the same analytical
elements as the TGCC copula.

4.3. Key Characteristics

Some key characteristics of the TGCC copula under Configurations 1 and 2 are
now discussed.

• The TGCC copula is not symmetric except for the case a = 0, or b = c = 1.
• For a 6= 0, like the GCC and SGCC copulas, the TGCC copula is not Archimedean.
• For a 6= 0, the TGCC copula is not radially symmetric because there exists (x, y) such

that Ĉ3(x, y; θ) 6= C3(x, y; θ).
• The TGCC copula is positively quadrant dependent for a ≥ 0 (corresponding to

Configuration 1) since C3(x, y; θ) ≥ xy for any (x, y) ∈ I. It is negatively quadrant
dependent for a < 0 (corresponding to Configuration 2) since C3(x, y; θ) ≤ xy for any
(x, y) ∈ I.

• Using the following inequality: eu ≥ 1 + u for any u ∈ R, for any (x, y) ∈ I, we obtain

C3(x, y; θ) ≥ C?(x, y; θ),

where C?(x, y; θ) = xy
[
1 + a(1− xb)(1− y)c

]
. Hence, for some parameter values,

C?(x, y; θ) is smaller than C3(x, y; θ) with respect to the concordance ordering.
• Using the following inequality: e−u ≥ 1− u for any u ∈ R, for a, b, and c, such that

u = a(1− xb)(1− y)c < 1 for any (x, y) ∈ I, we have

C3(x, y; θ) ≤ C.(x, y; θ),

where
C.(x, y; θ) =

xy
1− a(1− xb)(1− y)c .

For some values of the parameters, C/(x, y; θ) represents a generalized AMH copula.
Hence, for some parameter values, C3(x, y; θ) is smaller than C/(x, y; θ) with respect
to the concordance ordering.

• In full generality, there is no concordance ordering between the GCC, SGCC and
TGCC copulas.

• The FH bounds hold.
• For (x, y) ∈ [0, 1]× [0, 1), using the exponential series and (standard and generalized)

binomial expansions, the TGCC copula can be expressed as

C3(x, y; θ) =
∞

∑
i=0

i

∑
j=0

∞

∑
k=0

ξi,j,kxbj+1yk+1, (8)

where

ξi,j,k =
ai

i!

(
i
j

)(
ci
k

)
(−1)j+k.

Similarly, the TGCC copula density can be expanded as

c3(x, y; θ) =
∞

∑
i=0

i

∑
j=0

∞

∑
k=0

ζi,j,kxbjyk,
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where ζi,j,k = (bj + 1)(k + 1)ξi,j,k.
• The possible tail dependence of the TGCC copula is now explored. Using standard

limit techniques, we have

λL = lim
x→0

C3(x, x; θ)

x
= lim

x→0
x exp

[
a(1− xb)(1− x)c

]
= 0

and

λU = lim
x→1

1− 2x + C3(x, x; θ)

1− x
= lim

x→1

1− 2x + x2 exp
[

a(1− xb)(1− x)c
]

1− x
= 0.

Hence, the TGCC copula has no tail dependence.
• The medial correlation of the TGCC copula is given by

M = 4C3

(
1
2

,
1
2

; θ

)
− 1 = exp

[
a(1− 2−b)2−c

]
− 1.

As numerical works, Tables 11 and 12 show some numerical values of M for θ =
(γ, 1/γ, 1/γ) and θ = (−γ, 1/

√
γ, 1/

√
γ) (rounded to the second decimal), for several

values of γ ∈ (0, 1], being special examples of Configurations 1 and 2, respectively.

Table 11. Values of the medial correlation of the TGCC copula for θ = (γ, 1/γ, 1/γ) and several
values of γ ∈ (0, 1], belonging to Configuration 1.

γ 0.01 0.09 0.17 0.25 0.33 0.41 0.49 0.57 0.65 0.73 0.81 0.89

M 0 0 0 0.01 0.04 0.06 0.09 0.13 0.16 0.19 0.22 0.25

Table 12. Values of the medial correlation of the TGCC copula for θ = (−γ, 1/
√

γ, 1/
√

γ) and several
values of γ, belonging to Configuration 2.

γ 0.01 0.09 0.17 0.25 0.33 0.41 0.49 0.57 0.65 0.73 0.81 0.89

M 0 −0.01 −0.03 −0.05 −0.07 −0.09 −0.11 −0.13 −0.15 −0.16 −0.18 −0.2

These tables show that a moderate amplitude of values can result in a medial correla-
tion that is either negative or positive (here, from −0.2 to 0.25).

• The rho of Spearman of the TGCC copula is defined by

ρ = 12
∫ 1

0

∫ 1

0
[C3(x, y; θ)− xy]dxdy.

It is evident that it lacks a closed-form expression. However, by using Equation (6),
we can expand it as

ρ = 12
∞

∑
i=1

i

∑
j=0

∞

∑
k=0

ξi,j,k
1

(bj + 2)(k + 2)
.

Tables 13 and 14 determine its numerical values for θ = (γ, 1/γ, 1/γ) and θ =
(−γ, 1/

√
γ, 1/

√
γ) (rounded to the second decimal), for several values of γ ∈ (0, 1],

being special examples of Configurations 1 and 2, respectively.
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Table 13. Values of the rho of Spearman of the TGCC copula for θ = (γ, 1/γ, 1/γ) and several values
of γ ∈ (0, 1], belonging to Configuration 1.

γ 0.01 0.09 0.17 0.25 0.33 0.41 0.49 0.57 0.65 0.73 0.81 0.89

ρ 0 0 0.01 0.03 0.06 0.09 0.13 0.17 0.21 0.25 0.29 0.33

Table 14. Values of the rho of Spearman of the TGCC copula for θ = (−γ, 1/
√

γ, 1/
√

γ) and several
values of γ ∈ (0, 1], belonging to Configuration 2.

γ 0.01 0.09 0.17 0.25 0.33 0.41 0.49 0.57 0.65 0.73 0.81 0.89

ρ 0 −0.01 −0.04 −0.06 −0.09 −0.11 −0.14 −0.16 −0.19 −0.21 −0.24 −0.26

These tables show that the rho of Spearman of the TGCC copula can have a wide
range of amplitudes, from negative to positive (here, from −0.25 to 0.33). The TGCC
copula is hence perfect for modeling different types of dependence.

• Let F(x) and G(x) be two unidimensional CDFs. Then, under Configurations 1 and
2, we define a new two-dimensional CDF by considering the function H : I → [0, 1]
indicated as H(x, y; θ) = C3(F(x), G(y); θ). Thus, based on this function, there are an
endless number of potential new two-dimensional distributions.

As a last remark, based on Proposition 3 and a basic inversion of the roles of b and
c, and those of x and y, it is clear that the two-dimensional function C4(·; θ) : I → [0, 1]
defined by

C4(x, y; θ) = xy exp
[

a(1− x)b(1− yc)
]
, (x, y) ∈ I,

where θ = (a, b, c) ∈ R3, is a copula for the following parameter configurations (non-
overlapping):

Configuration 1: a ≥ 0, b ≥ 1, c > 0, ab ≤ 1, and ac ≤ 1.

Configuration 2: a < 0, b ≥ 1, c > 0, and abc ≥ −1.

The properties already discussed for the TGCC copula can be transferred to this copula
with no additional work.

5. Conclusions and Possible Extensions

In this paper, we have emphasized and investigated three new three-parameter copulas
that generalize the Celebioglu–Cuadras (CC) copula as described in [17,18]. We have
identified the main parameter configurations for which the copula remains valid in the
mathematical sense. Surprising phenomena were observed for some negative values of the
parameters. Numerical and graphic works illustrated the findings. The main properties of
the copulas were described in detail, such as their symmetry, quadrant dependence, various
expansions, concordance ordering, tail dependences, medial correlation, and Spearman
correlation. Thus, this study has the merit of promoting flexible versions of the CC copula,
expanding the copula repertoire in the literature, and making available new dependence
models for various data analyses (construction of semiparametric models, regression
models, etc.). The practical aspect, however, needs further developments that we will
leave for future work. In particular, the balance between complexity and robustness of
the proposed copula needs investigation. As another theoretical perspectives, possible
higher-dimensional generalized CC copulas, say of dimension n, include those of the
following form:

C†(x; θ) =

[
n

∏
i=1

xi

]
exp

[
a

n

∏
i=1

(1− xδi
i )

di(1−δi)

]
,
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where x = (x1, . . . , xn) ∈ [0, 1]n and θ = (a, d1, . . . , dn) ∈ Rn+1, and (δ1, . . . , δn) ∈ {0, 1}n.
This general copula form should also be feasible, but further research is needed to establish
appropriate parameter values.
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