
Citation: Charilogis, V.; Tsoulos, I.G.

A Parallel Implementation of the

Differential Evolution Method.

Analytics 2023, 2, 17–30. https://

doi.org/10.3390/analytics2010002

Received: 22 December 2022

Revised: 4 January 2023

Accepted: 5 January 2023

Published: 9 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

A Parallel Implementation of the Differential Evolution Method
Vasileios Charilogis † and Ioannis G. Tsoulos *,†

Department of Informatics and Telecommunications, University of Ioannina, 47100 Arta, Greece
* Correspondence: itsoulos@uoi.gr
† These authors contributed equally to this work.

Abstract: Global optimization is a widely used technique that finds application in many sciences such
as physics, economics, medicine, etc., and with many extensions, for example, in the area of machine
learning. However, in many cases, global minimization techniques require a high computational
time and, for this reason, parallel computational approaches should be used. In this paper, a new
parallel global optimization technique based on the differential evolutionary method is proposed.
This new technique uses a series of independent parallel computing units that periodically exchange
the best solutions they have found. Additionally, a new termination rule is proposed here that
exploits parallelism to accelerate process termination in a timely and valid manner. The new method
is applied to a number of problems in the established literature and the results are quite promising.

Keywords: global optimization; stopping rules; parallel computing

1. Introduction

The task of locating the global minimum of a continuous and differentiable function
f : S→ R, S ⊂ Rn is defined as

x∗ = arg min
x∈S

f (x). (1)

The set S is defined as:

S = [a1, b1]⊗ [a2, b2]⊗ . . . [an, bn]

A variety of practical problems from various research fields can be modeled as
global optimization problems, such as problems from physics [1–3], chemistry [4–6], eco-
nomics [7,8], medicine [9,10], etc. Many methods have been proposed to tackle the problem
of Equation (1), such as controlled random search methods [11–13], simulated anneal-
ing methods [14–16], differential evolution methods [17,18], particle swarm optimization
(PSO) methods [19–21], ant colony optimization [22,23], genetic algorithms [24–26], etc.
Reviews of stochastic methods for global optimization problems can be found in the work
of Pardalos et al. [27] or in the work of Fouskakis et al. [28].

The current work proposes a parallel implementation of the differential evolution
(DE) method that aims to speed up the optimization process of this particular method
and also tries to make adequate use of modern computing structures with multicore
architectures. The DE method initially generates a population of candidate solutions, which
iteratively evolves through the crossover process in order to discover the global minimum
of the objective function. The method was applied in various research fields such as
electromagnetics [29], energy consumption problems [30], job shop scheduling [31], image
segmentation [32], etc. The proposed method partitions the processing into independent
structural units, such as threads, and each of them acts independently. Furthermore, the new
method proposes a way of communication between the different building blocks of parallel
processing and a process termination technique suitably modified for parallel processing.

In the recent literature, several methods have been proposed that take full advantage
of parallel processing, such as parallel techniques [33–35], methods that take advantage of

Analytics 2023, 2, 17–30. https://doi.org/10.3390/analytics2010002 https://www.mdpi.com/journal/analytics

https://doi.org/10.3390/analytics2010002
https://doi.org/10.3390/analytics2010002
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/analytics
https://www.mdpi.com
https://doi.org/10.3390/analytics2010002
https://www.mdpi.com/journal/analytics
https://www.mdpi.com/article/10.3390/analytics2010002?type=check_update&version=1


Analytics 2023, 2 18

GPU architectures [36–38], etc. Moreover, Weber et al. [39] proposed a parallel DE method
for large-scale optimization problems using new search mechanisms for the individuals of
the subpopulations. Chen et al. [40] proposed a parallel DE method for cluster optimization
using modified genetic operators. Moreover, Penas et al. [41] suggested an enhanced paral-
lel asynchronous DE algorithm for problems in computational systems biology. Recently,
Sui et al. [42] proposed a parallel compact DE method applied to image segmentation.

The proposed technique is a modified version of the parallel island methodology for
different evolutionary techniques [43,44]. Therefore, in the proposed technique, the initial
population of agents (candidate solutions) is divided into a series of independent popula-
tions and each individual population evolves independently in a parallel computing unit,
such as a thread. Populations periodically exchange information with each other, such as
the lowest functional value to which they have been driven. The proposed technique uses
a new differential weight calculation scheme, can use a number of different information
exchange methods between the parallel computing units and furthermore proposes a new
termination method of the optimization process that can take advantage of the parallelism
so that the optimization terminates in time and is valid.

The rest of this article is organized as follows: in Section 2, the original DE method
as well as the proposed modifications are outlined, in Section 3, the experimental test
functions from the relevant literature and the associated experimental results are listed,
and finally, in Section 4, some conclusions and guidelines for future research are provided.

2. Method Description

In this section, the basic DE method is first presented and then, the proposed modifi-
cations are analyzed so that it can be executed in parallel.

2.1. The Original DE Method

The original method was originally proposed by Storn [45], and it has been modified in
various research papers. For example, the compact differential evolution algorithm [46,47],
a self-adaptive DE [48] where the parameters of the method are modified iteratively, fuzzy
logic modifications [49], etc. Moreover, a numerical study on some modifications of the DE
method can be found in the work of Kaelo et al. [50]. The base DE method has the steps
described below in Algorithm 1.

Algorithm 1: The steps of the base DE method
1. INPUT:

(a) The population size NP ≥ 4. The members of this population are also called agents.
(b) The crossover probability CR ∈ [0, 1].
(c) The differential weight F ∈ [0, 2].

2. OUTPUT:

(a) The agent xbest with the lower function value f
(
xbest

)
.

3. Initialize all agents in S.
4. While termination criteria are not held do

(a) For i = 1 . . . NP do

i. Select as x the agent i.
ii. Select randomly three agents a, b, c with the property a 6= b,

b 6= c, c 6= a.
iii. Select a random position R ∈ {1, . . . , n}
iv. Create the vector y = [y1,y2, . . . , yn ] with the following procedure
v. For j = 1, . . . , n do

A. Set ri ∈ [0, 1] a random number.
B. If rj < CR or j = R then yj = aj + F×

(
bj − cj

)
else yj = xj.

vi. If y ∈ S AND f (y) ≤ f (x) then x = y.
vii. EndFor

(b) EndFor

5. End While



Analytics 2023, 2 19

2.2. Proposed Modifications

In the proposed procedure, the population of agents is segmented into N independent
contiguous segments. Each section is called an island in the following text, similar to island
genetic algorithms [51,52], which are very popular parallel variants of genetic algorithms.
For example, if there are 10 agents and 2 islands, then agents 1–5 are assigned to island
1 and agents 6–10 to island 2. On each island, the process of differential evolution is
carried out independently. Of course, there should be some mechanism for communication
between the islands as well as some appropriate mechanism for terminating the overall
process. The proposed Algorithm 2 is presented next.

Algorithm 2: The steps of the proposed method

1. INPUT:

(a) The parameters NP, CR, F.
(b) The integer parameter N, which stands for the number of islands.
(c) The integer parameter NR, which represents the propagation rate.
(d) The integer parameter NI , which represents the number of islands that

should terminate in order to terminate the whole process.

2. OUTPUT:

(a) The agent xbest with the lower function value f
(
xbest

)
.

3. Initialize all agents in S.
4. Set iter = 1
5. For i = 1, . . . , N do in Parallel

(a) Perform for every island i the step 4.a of the base DE algorithm of
Section 2.1.

6. EndFor
7. If iter mod NR = 0, apply the propagation scheme of Section 2.3 to the islands.

The default value used in the experiments is the “1 to 1” case.
8. Set iter = iter + 1
9. If the termination rule of Section 2.4 is not valid, goto 5.
10. Apply local search procedure to xbest. The local search procedure used in the

proposed method is the BFGS variant of Powell [53].

2.3. Propagation Mechanism

During the propagation mechanism, the best values of the islands are spread to the
rest by replacing their worst values. In general, there are the following propagation cases:

1. One to one. In this case, a random island will send to another randomly selected
island its best value.

2. One to N. In this case, a random island will send its best value to all other islands.
3. N to one. In this case, all islands will inform a randomly selected island about their

best value.
4. N to N. All islands will inform all the other islands about their best value.

2.4. Termination Rule

In the proposed termination criterion, a simple criterion is checked separately on each
island. For every island i the difference

δ
(k)
i =

∣∣∣ f (k)i,min − f (k−1)
i,min

∣∣∣, (2)

is measured at each iteration k, where f (k)
i,min is the best located function value for island i

at iteration k. If δ
(k)
i ≤ ε for at least M consecutive iterations, then most likely the island i



Analytics 2023, 2 20

should terminate the population evolution. In the proposed technique, if the quantity of
Equation (2) holds for more than NI islands, then the overall algorithm terminates.

3. Experiments

In the following, the benchmark functions used in the experiments as well as the
experimental results are presented.

3.1. Test Functions

To evaluate the ability of the proposed technique to find the total minimum of func-
tions, a series of test functions from the relevant literature [54,55] were used and are
presented below.

• Bent-cigar function. The function is

f (x) = x2
1 + 106

n

∑
i=2

x2
i

with the global minimum f (x∗) = 0. For the conducted experiments, the value n = 10
was used.

• Bf1 function. The function Bohachevsky 1 is given by the equation

f (x) = x2
1 + 2x2

2 −
3

10
cos(3πx1)−

4
10

cos(4πx2) +
7

10

with x ∈ [−100, 100]2.

• Bf2 function. The function Bohachevsky 2 is given by the equation

f (x) = x2
1 + 2x2

2 −
3

10
cos(3πx1) cos(4πx2) +

3
10

with x ∈ [−50, 50]2.

• Branin function. The function is defined by f (x) =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+

10
(

1− 1
8π

)
cos(x1) + 10 with −5 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 15. The value of the global

minimum is 0.397887 with x ∈ [−10, 10]2.
• CM function. The cosine mixture function is given by the equation

f (x) =
n

∑
i=1

x2
i −

1
10

n

∑
i=1

cos(5πxi)

with x ∈ [−1, 1]n. For the conducted experiments, the value n = 4 was used.
• Discus function. The function is defined as

f (x) = 106x2
1 +

n

∑
i=2

x2
i

with global minimum f (x∗) = 0. For the conducted experiments, the value n = 10
was used.

• Easom function. The function is given by the equation

f (x) = − cos(x1) cos(x2) exp
(
(x2 − π)2 − (x1 − π)2

)
with x ∈ [−100, 100]2 and a global minimum of −1.0.



Analytics 2023, 2 21

• Exponential function. The function is given by

f (x) = − exp

(
−0.5

n

∑
i=1

x2
i

)
, −1 ≤ xi ≤ 1

The global minimum is located at x∗ = (0, 0, . . . , 0) with a value of −1. In our
experiments, we used this function with n = 4, 16, 64 and the corresponding functions
are denoted by the labels EXP4, EXP16 and EXP64.

• Griewank2 function. The function is given by

f (x) = 1 +
1

200

2

∑
i=1

x2
i −

2

∏
i=1

cos(xi)√
(i)

, x ∈ [−100, 100]2

The global minimum is located at the x∗ = (0, 0, . . . , 0) with a value of 0.
• Gkls function. f (x) = Gkls(x, n, w) is a function with w local minima, described

in [56] with x ∈ [−1, 1]n and n a positive integer between 2 and 100. The value of the
global minimum is −1 and in our experiments, we used n = 2, 3 and w = 50, 100.

• Hansen function. f (x) = ∑5
i=1 i cos[(i− 1)x1 + i]∑5

j=1 j cos[(j + 1)x2 + j], x ∈ [−10,
10]2. The global minimum of the function is −176.541793.

• Hartman 3 function. The function is given by

f (x) = −
4

∑
i=1

ci exp

(
−

3

∑
j=1

aij
(
xj − pij

)2
)

with x ∈ [0, 1]3 and a =


3 10 30

0.1 10 35
3 10 30

0.1 10 35

, c =


1

1.2
3

3.2

 and

p =


0.3689 0.117 0.2673
0.4699 0.4387 0.747
0.1091 0.8732 0.5547
0.03815 0.5743 0.8828

.

The value of the global minimum is −3.862782.
• Hartman 6 function.

f (x) = −
4

∑
i=1

ci exp

(
−

6

∑
j=1

aij
(
xj − pij

)2
)

with x ∈ [0, 1]6 and a =


10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8

17 8 0.05 10 0.1 14

, c =


1

1.2
3

3.2

 and

p =


0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

.

The value of the global minimum is −3.322368.



Analytics 2023, 2 22

• High conditioned elliptic function, defined as

f (x) =
n

∑
i=1

(
106
) i−1

n−1 x2
i

with global minimum f (x∗) = 0; the value n = 10 was used in the conducted
experiments

• Potential function. The molecular conformation corresponding to the global minimum
of the energy of N atoms interacting via the Lennard–Jones potential [57] was used as
a test case here. The function to be minimized is given by:

VLJ(r) = 4ε

[(σ

r

)12
−
(σ

r

)6
]

(3)

In the experiments, two different cases were studied: N = 3, 5
• Rastrigin function. The function is given by

f (x) = x2
1 + x2

2 − cos(18x1)− cos(18x2), x ∈ [−1, 1]2

• Shekel 7 function.

f (x) = −
7

∑
i=1

1
(x− ai)(x− ai)T + ci

with x ∈ [0, 10]4 and a =



4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7
2 9 2 9
5 3 5 3


, c =



0.1
0.2
0.2
0.4
0.4
0.6
0.3


.

• Shekel 5 function.

f (x) = −
5

∑
i=1

1
(x− ai)(x− ai)T + ci

with x ∈ [0, 10]4 and a =


4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7

, c =


0.1
0.2
0.2
0.4
0.4

.

• Shekel 10 function.

f (x) = −
10

∑
i=1

1
(x− ai)(x− ai)T + ci

with x ∈ [0, 10]4 and a =



4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7
2 9 2 9
5 5 3 3
8 1 8 1
6 2 6 2
7 3.6 7 3.6


, c =



0.1
0.2
0.2
0.4
0.4
0.6
0.3
0.7
0.5
0.6


.



Analytics 2023, 2 23

• Sinusoidal function. The function is given by

f (x) = −
(

2.5
n

∏
i=1

sin(xi − z) +
n

∏
i=1

sin(5(xi − z))

)
, 0 ≤ xi ≤ π.

The global minimum is located at x∗ = (2.09435, 2.09435, . . . , 2.09435) with f (x∗) =
−3.5. For the conducted experiments, the cases of n = 4, 8 and z = π

6 were studied.
The parameter z was used to shift the location of the global minimum [58].

• Test2N function. This function is given by the equation

f (x) =
1
2

n

∑
i=1

x4
i − 16x2

i + 5xi, xi ∈ [−5, 5].

The function has 2n in the specified range and in our experiments, we used n =
4, 5, 6, 7.

• Test30N function. This function is given by

f (x) =
1
10

sin2(3πx1)
n−1

∑
i=2

(
(xi − 1)2

(
1 + sin2(3πxi+1)

))
+ (xn − 1)2

(
1 + sin2(2πxn)

)
with x ∈ [−10, 10]. The function has 30n local minima in the specified range, and we
used n = 3, 4 in the conducted experiments.

3.2. Experimental Results

To evaluate the performance of the modified version of the differential evolutionary
technique, a series of experiments were performed in which the number of parallel com-
puting units varied from 1 to 10. The freely available OpenMP library [59] was used for
parallelization, and the method was coded in ANSI C++ inside the OPTIMUS optimization
package available from https://github.com/itsoulos/OPTIMUS (accessed on 4 January
2023). All the experiments were conducted on an AMD Ryzen 5950X with 128 GB of RAM
and the Debian Linux operating system. All the experiments were conducted 30 times using
different seed for the random generator each time and averages were reported. The val-
ues for the parameters used in the DE algorithm are shown in Table 1. The parameter F
(differential weight) was calculated as:

F = −1
2
+ 2× R, (4)

where R ∈ [0, 1] is a random number, which was used in [60]. This random scheme for the
calculation of the parameter F was used successfully to better explore the search space of
the objective function. The experimental results for different numbers of threads for the test
functions of the previous subsection are shown in Table 2. The number in the cells denote
average function calls for every test function. The number in parentheses stands for the
fraction of executions where the global optimum was successfully found. The absence of
this number indicates that the global minimum was computed for every independent run
(100% success). At the end of the table, an additional row named average has been added
and shows the total number of function calls for all test functions and the average success
rate in locating the global minimum.

As can be seen, as the number of computational threads increased, the required
number of function calls needed to locate the global minimum decreased, with no appre-
ciable difference in the overall reliability of the method, which remained extremely high
(99–100%). In addition, to show the dynamics of the proposed methodology, it was also
used in the training of an artificial neural network [61] for learning a common benchmark
problem from machine learning, the wine problem [62,63]. The sums of execution times for
30 independent runs are displayed in Figure 1. As we can see, as the number of network

https://github.com/itsoulos/OPTIMUS


Analytics 2023, 2 24

weights increased from w = 5 to w = 20, the gain from using multiple processing threads
increased as the training time decreased noticeably.

Table 1. Experimental settings.

Parameter Value

NP 200 agents
Propagation 1-to-1 method

NR 5 iterations
NI 2 islands
CR 0.9 for the crossover probability
M 15 iterations
ε 10−4

Table 2. Comparison of experimental results with a “1 to 1” propagation scheme. The first column
represents the name of the objective function and the remaining columns are the average function
calls using 1 to 10 processing threads for the proposed method.

Function Thread 1 Threads 4 Threads 5 Threads 10

BF1 5908 5517 5310 4887
BF2 5415 5008 4888 4577

BRANIN 5467 4767 4535 3895
CIGAR10 1886 1885 1885 1875

CM4 2518 2432 2330 2243 (0.97)
DISCUS10 1818 1816 1814 1807

EASOM 1807 1802 1801 1791
ELP10 44,910 41,731 41,930 29,944
EXP4 1820 1816 1814 1806
EXP16 1838 1835 1834 1830
EXP64 1842 1840 1839 1838

GKLS250 1987 1897 1879 1818
GKLS350 2428 2373 2299 2195

GRIEWANK2 5544 4811 4612 4208
POTENTIAL3 11,121 7868 7260 5598
POTENTIAL5 24,708 15,146 13,793 8620

HANSEN 23,035 13,602 12,178 9242
HARTMAN3 3406 3198 3162 2883
HARTMAN6 7611 6172 5739 4877 (0.97)
RASTRIGIN 5642 4537 4386 3707

ROSENBROCK4 11,859 10,441 10,139 9473
ROSENBROCK8 21,640 19,536 20,560 20,654

SHEKEL5 12,491 10,247 9754 5065 (0.80)
SHEKEL7 10,755 9183 8857 6996
SHEKEL10 10,257 9002 8705 7283

SINU4 6045 5473 5301 4434
SINU8 9764 8132 7748 4523

TEST2N4 8521 7487 7404 6834
TEST2N5 10,218 8916 8715 8050
TEST2N6 11,984 10,240 10,191 9175
TEST2N7 15,674 13,983 13,341 9760
TEST30N3 3720 3379 3349 2994
TEST30N4 3728 3382 3363 3031
Average 298,267 249,454 242,715 197,913 (0.99)



Analytics 2023, 2 25

Figure 1. Time comparison when the proposed method applied to Neural Network training.

In addition, to discover whether there was differentiation using the different propa-
gation techniques, additional experiments were performed using 10 processing threads.
In each processing thread, as before, the population of each island was 20 agents. The re-
sults from these experiments are shown in Table 3. From the experimental results, it appears
that most of the time, there were no significant changes in the total number of function
calls except in the case of an “N to N” propagation. There was a significant reduction in
function calls, but also a drop in reliability of the techniques from 99% to 91%. This may be
because, due to the exchange of the best costs between all the islands, the total population
was locked into local minima.

Table 3. Experiments for the proposed method using different options for the propagation method.
The number of processing threads was set to 10. Numbers in cells represent average function calls for
every test function.

Function 1 to 1 1 to N N to 1 N to N

BF1 4887 4259 4209 2792
BF2 4577 4021 3917 2691

BRANIN 3895 3378 3307 2382
CIGAR10 1875 1874 1871 1873

CM4 2243 (0.97) 2173 2136 (0.97) 2030
DISCUS10 1807 1810 1808 1809

EASOM 1791 1790 1791 1789
ELP10 29,944 42,025 22,876 19,117
EXP4 1806 1807 1811 1806
EXP16 1830 1829 1828 1824
EXP64 1838 1838 1838 1836

GKLS250 1818 1812 1810 1802
GKLS350 2195 2163 2109 2011 (0.97)

GRIEWANK2 4208 3620 3514 2445 (0.80)
POTENTIAL3 5598 4445 4353 2521
POTENTIAL5 8620 7475 7025 3374

HANSEN 9242 6075 6181 3135
HARTMAN3 2883 2664 2593 2207
HARTMAN6 4877 (0.97) 4327 (0.83) 4362 (0.80) 2834 (0.57)
RASTRIGIN 3707 3213 2870 2220 (0.90)

ROSENBROCK4 9473 8294 7883 7084
ROSENBROCK8 20,654 24,470 15,919 19,272

SHEKEL5 5065 (0.80) 7556 5386 (0.93) 4456 (0.70)



Analytics 2023, 2 26

Table 3. Cont.

Function 1 to 1 1 to N N to 1 N to N

SHEKEL7 6996 7207 (0.90) 6488 (0.93) 4493 (0.80)
SHEKEL10 7283 6812 (0.93) 6440 3916 (0.73)

SINU4 4434 4204 4020 2796 (0.97)
SINU8 4523 5386 4605 3341 (0.90)

TEST2N4 6834 5777 5625 3609 (0.97)
TEST2N5 8050 6695 (0.97) 6647 4179 (0.73)
TEST2N6 9175 7770 (0.93) 7660 4522 (0.53)
TEST2N7 9760 9259 (0.77) 9081 5200 (0.57)
TEST30N3 2994 2814 2653 2210
TEST30N4 3031 2797 2700 2107
Average 197,913 (0.99) 201,649 (0.98) 167,316(0.98) 129,683 (0.91)

Furthermore, the proposed method was compared against the original differential
evolution method and two variants from the relevant literature, mentioned as DERL
and DELB [50]. The results from this comparison are shown in Table 4. As is evident,
the proposed technique significantly outperformed the other modifications of the different
evolutionary method. This was largely due to the different differential weight calculation
technique but also to the proposed termination method. The used differential weight
calculation technique largely succeeded in providing a better search of the search space,
while the new termination method terminated the optimization method in time. More-
over, this new termination technique was modified to perform well in parallel computing
environments as well.

Table 4. Comparison of the proposed method against other variants of the differential evolution technique.

Function Proposed Original DE DERL DELB

BF1 4887 5516 2881 5319
BF2 4577 5555 2895 5405

BRANIN 3895 5656 2857 4830
CIGAR10 1875 88,396 66,161 58,460

CM4 2243 (0.97) 9107 3856 6014
DISCUS10 1807 87,657 55,722 49,014

EASOM 1791 7879 7225 14,934
ELP10 29,944 33,371 9345 39,890
EXP4 1806 6027 2638 4142
EXP16 1830 26,194 25,117 11,740
EXP64 1838 26,497 27,831 18,346

GKLS250 1818 3800 1983 3706
GKLS350 2195 6206 2901 5027

GRIEWANK2 4208 6365 3325 6165
POTENTIAL3 5598 82,933 111,496 44,592
POTENTIAL5 8620 24,118 61,694 46,557

HANSEN 9242 18,470 7123 12212
HARTMAN3 2883 4655 2205 4124
HARTMAN6 4877 (0.97) 15,488 5343 7215 (0.93)
RASTRIGIN 3707 6362 3102 5704

ROSENBROCK4 9473 16,857 6679 10,411
ROSENBROCK8 20,654 56,445 17,198 22,939

SHEKEL5 5065 (0.80) 13,079 5224 (0.90) 8167
SHEKEL7 6996 12,409 4994 (0.97) 8093
SHEKEL10 7283 13,238 5240 8822



Analytics 2023, 2 27

Table 4. Cont.

Function Proposed Original DE DERL DELB

SINU4 4434 8977 3828 6052
SINU8 4523 28,871 9318 10,157

TEST2N4 6834 10,764 4529 7331
TEST2N5 8050 15,568 5917 8969
TEST2N6 9175 21,185 7613 10,648
TEST2N7 9760 28,411 9492 12,252

TEST30N3 2994 4965 2758 4693
TEST30N4 3031 5123 2688 5153
Average 197,913 (0.99) 706,144 491,178 (0.99) 477,083 (0.99)

Moreover, a statistical comparison was performed for the proposed method and
different numbers of processing threads, and the results are outlined in Figure 2. A statistical
comparison was also included for the results of the proposed method against the other
variations of the DE method and the corresponding plot is shown in Figure 3.

Figure 2. Statistical comparison for the proposed method and different numbers of threads.

Figure 3. Statistical comparison for the results of the proposed method against different variations of
the DE method.



Analytics 2023, 2 28

4. Conclusions

A new global optimization technique was presented in this manuscript, which can be
performed in parallel computing environments. This method was based on the well-known
differential evolutionary technique and partitioned the initial population of agents, so
as to create independent populations executed on parallel computing units. The parallel
units periodically exchanged the best values for the objective function with each other,
and from the experiments carried out it was found that the most robust information
exchange technique was the so-called “1 to 1”, where a randomly selected subpopulation
exchanges information with another randomly selected subpopulation. Furthermore,
a new termination method was proposed which could take full advantage of the parallel
computing environment. With this termination rule, the decision to terminate the method
could be efficiently made even by a small portion of the independent computing units.

From the experimental results, it appeared that the proposed technique could success-
fully find the global minimum in a series of problems from the relevant literature, and in
fact, as the number of parallel processing units increased, the required number of function
calls decreased. Furthermore, after experiments on a difficult problem such as the training
of artificial neural networks, it was shown that the time required for the optimization
process decreased dramatically with the increase of threads.

However, much can still be done to improve the methodology, such as finding a bet-
ter way of communication between parallel processing units or even formulating more
efficient termination criteria that exploit parallel computing environments. In addition,
the proposed technique could be applied to other global optimization techniques such as
genetic algorithms or particle swarm optimization.

Author Contributions: I.G.T. and V.C., conceived of the idea and methodology and supervised the
technical part regarding the software. I.G.T., conducted the experiments, employed test functions
and provided the comparative experiments. V.C., performed the statistical analysis and prepared the
manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: The experiments of this research work were performed at the high-performance computing
system established at Knowledge and Intelligent Computing Laboratory, Department of Informatics
and Telecommunications, University of Ioannina, acquired with the project “Educational Laboratory
equipment of TEI of Epirus” with MIS 5007094 funded by the Operational Programme “Epirus”
2014–2020, by ERDF and national funds.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The experiments of this research work were performed at the high-performance
computing system established at Knowledge and Intelligent Computing Laboratory, Department of
Informatics and Telecommunications, University of Ioannina, acquired with the project “Educational
Laboratory equipment of TEI of Epirus” with MIS 5007094 funded by the Operational Programme
“Epirus” 2014–2020, by ERDF and national funds.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Honda, M. Application of genetic algorithms to modelings of fusion plasma physics. Comput. Phys. Commun. 2018, 231, 94–106.

[CrossRef]
2. Luo, X.L.; Feng, J.; Zhang, H.H. A genetic algorithm for astroparticle physics studies. Comput. Phys. Commun. 2020, 250, 106818.

[CrossRef]
3. Aljohani, T.M.; Ebrahim, A.F.; Mohammed, O. Single and Multiobjective Optimal Reactive Power Dispatch Based on Hybrid

Artificial Physics–Particle Swarm Optimization. Energies 2019, 12, 2333. [CrossRef]
4. Pardalos, P.M.; Shalloway, D.; Xue, G. Optimization methods for computing global minima of nonconvex potential energy

functions. J. Glob. Optim. 1994, 4, 117–133. [CrossRef]

http://doi.org/10.1016/j.cpc.2018.04.025
http://dx.doi.org/10.1016/j.cpc.2019.06.008
http://dx.doi.org/10.3390/en12122333
http://dx.doi.org/10.1007/BF01096719


Analytics 2023, 2 29

5. Liwo, A.; Lee, J.; Ripoll, D.R.; Pillardy, J.; Scheraga, H.A. Protein structure prediction by global optimization of a potential energy
function. Biophysics 1999, 96, 5482–5485. [CrossRef]

6. An, J.; He, G.; Qin, F.; Li, R.; Huang, Z. A new framework of global sensitivity analysis for the chemical kinetic model using
PSO-BPNN. Comput. Chem. Eng. 2018, 112, 154–164. [CrossRef]

7. Gaing, Z.-L. Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Trans.
Power Syst. 2003, 18, 1187–1195. [CrossRef]

8. Basu, M. A simulated annealing-based goal-attainment method for economic emission load dispatch of fixed head hydrothermal
power systems. Int. J. Electr. Power Energy Syst. 2005, 27, 147–153. [CrossRef]

9. Cherruault, Y. Global optimization in biology and medicine. Math. Comput. Model. 1994, 20, 119–132. [CrossRef]
10. Lee, E.K. Large-Scale Optimization-Based Classification Models in Medicine and Biology. Ann. Biomed. Eng. 2007, 35, 1095–1109.

[CrossRef]
11. Price, W.L. Global optimization by controlled random search. J. Optim. Theory Appl. 1983, 40, 333–348. [CrossRef]
12. Křivý, I.; Tvrdík, J. The controlled random search algorithm in optimizing regression models. Comput. Stat. Data Anal. 1995,

20, 229–234. [CrossRef]
13. Ali, M.M.; Törn, A.; Viitanen, S. A Numerical Comparison of Some Modified Controlled Random Search Algorithms. J. Glob.

1997, 11, 377–385.
14. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [CrossRef]
15. Ingber, L. Very fast simulated re-annealing. Math. Comput. Model. 1989, 12, 967–973. [CrossRef]
16. Eglese, R.W. Simulated annealing: A tool for operational research. Simulated Annealing Tool Oper. Res. 1990, 46, 271–281. [CrossRef]
17. Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces.

J. Glob. Optim. 1997, 11, 341–359. [CrossRef]
18. Liu, J.; Lampinen, J. A Fuzzy Adaptive Differential Evolution Algorithm. Soft Comput. 2005, 9, 448–462. [CrossRef]
19. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural

Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [CrossRef]
20. Poli, R.; Kennedy, J.K.; Blackwell, T. Particle swarm optimization An Overview. Swarm Intell. 2007, 1, 33–57. [CrossRef]
21. Trelea, I.C. The particle swarm optimization algorithm: Convergence analysis and parameter selection. Inf. Process. Lett. 2003,

85, 317–325. [CrossRef]
22. Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [CrossRef]
23. Socha, K.; Dorigo, M. Ant colony optimization for continuous domains. Eur. J. Oper. Res. 2008, 185, 1155–1173. [CrossRef]
24. Goldberg, D. Genetic Algorithms in Search, Optimization and Machine Learning, Addison; Wesley Publishing Company: Reading, MA,

USA, 1989.
25. Michaelewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs; Springer: Berlin/Heidelberg, Germany, 1996.
26. Grady, S.A.; Hussaini, M.Y.; Abdullah, M.M. Placement of wind turbines using genetic algorithms. Renew. Energy 2005,

30, 259–270. [CrossRef]
27. Pardalos, P.M.; Romeijn, H.E.; Tuy, H. Recent developments and trends in global optimization. J. Comput. Appl. Math. 2000,

124, 209–228. [CrossRef]
28. Fouskakis, D.; Draper, D. Stochastic Optimization: A Review. Int. Stat. Rev. 2002, 70, 315–349. [CrossRef]
29. Rocca, P.; Oliveri, G.; Massa, A. Differential Evolution as Applied to Electromagnetics. IEEE Antennas Propag. Mag. 2011, 53, 38–49.

[CrossRef]
30. Lee, W.S.; Chen, Y.T.; Kao, Y. Optimal chiller loading by differential evolution algorithm for reducing energy consumption. Energy

Build. 2011, 43, 599–604. [CrossRef]
31. Yuan, Y.; Xu, H. Flexible job shop scheduling using hybrid differential evolution algorithms. Comput. Ind. 2013, 65, 246–260.

[CrossRef]
32. Xu, L.; Jia, H.; Lang, C.; Peng, X.; Sun, K. A Novel Method for Multilevel Color Image Segmentation Based on Dragonfly

Algorithm and Differential Evolution. IEEE Access 2019, 7, 19502–19538. [CrossRef]
33. Schutte, J.F.; Reinbolt, J.A.; Fregly, B.J.; Haftka, R.; George, A.D. Parallel global optimization with the particle swarm algorithm.

Int. J. Numer. Methods Eng. 2004, 61, 2296–2315. [CrossRef]
34. Larson, J.; Wild, S.M. Asynchronously parallel optimization solver for finding multiple minima. Math. Comput. 2018, 10, 303–332.

[CrossRef]
35. Tsoulos, I.G.; Tzallas, A.; Tsalikakis, D. PDoublePop: An implementation of parallel genetic algorithm for function optimization.

Comput. Phys. Commun. 2016, 209, 183–189. [CrossRef]
36. Kamil, R.; Reiji, S. An Efficient GPU Implementation of a Multi-Start TSP Solver for Large Problem Instances. In Proceedings

of the 14th Annual Conference Companion on Genetic and Evolutionary Computation, Philadelphia, PA, USA, 7–11 July 2012;
pp. 1441–1442.

37. Van Luong, T.; Melab, N.; Talbi, E.G. GPU-Based Multi-start Local Search Algorithms. In Learning and Intelligent Optimization;
Coello, C.A.C., Ed.; LION 2011. Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6683.
[CrossRef]

38. Barkalov, K.; Gergel, V. Parallel global optimization on GPU. J. Glob. Optim. 2016, 66, 3–20. [CrossRef]

http://dx.doi.org/10.1073/pnas.96.10.5482
http://dx.doi.org/10.1016/j.compchemeng.2018.02.003
http://dx.doi.org/10.1109/TPWRS.2003.814889
http://dx.doi.org/10.1016/j.ijepes.2004.09.004
http://dx.doi.org/10.1016/0895-7177(94)90027-2
http://dx.doi.org/10.1007/s10439-007-9317-7
http://dx.doi.org/10.1007/BF00933504
http://dx.doi.org/10.1016/0167-9473(95)90127-2
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1016/0895-7177(89)90202-1
http://dx.doi.org/10.1016/0377-2217(90)90001-R
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1007/s00500-004-0363-x
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1007/s11721-007-0002-0
http://dx.doi.org/10.1016/S0020-0190(02)00447-7
http://dx.doi.org/10.1109/MCI.2006.329691
http://dx.doi.org/10.1016/j.ejor.2006.06.046
http://dx.doi.org/10.1016/j.renene.2004.05.007
http://dx.doi.org/10.1016/S0377-0427(00)00425-8
http://dx.doi.org/10.1111/j.1751-5823.2002.tb00174.x
http://dx.doi.org/10.1109/MAP.2011.5773566
http://dx.doi.org/10.1016/j.enbuild.2010.10.028
http://dx.doi.org/10.1016/j.cie.2013.02.022
http://dx.doi.org/10.1109/ACCESS.2019.2896673
http://dx.doi.org/10.1002/nme.1149
http://dx.doi.org/10.1007/s12532-017-0131-4
http://dx.doi.org/10.1016/j.cpc.2016.09.006
http://dx.doi.org/10.1007/978-3-642-25566-3_24
http://dx.doi.org/10.1007/s10898-016-0411-y


Analytics 2023, 2 30

39. Weber, M.; Neri, F.; Tirronen, V. Shuffle or update parallel differential evolution for large-scale optimization. Soft Comput. 2011,
15, 2089–2107. [CrossRef]

40. Chen, Z.; Jiang, X.; Li, J.; Li, S.; Wang, L. PDECO: Parallel differential evolution for clusters optimization. J. Comput. Chem. 2013,
34, 1046–1059. [CrossRef]

41. Penas, D.R.; Banga, J.R.; Gonzalez, P.; Doallo, R. Enhanced parallel Differential Evolution algorithm for problems in computational
systems biology. Appl. Soft Comput. 2015, 33, 86–99. [CrossRef]

42. Sui, X.; Chu, S.C.; Pan, J.S.; Luo, H. Parallel Compact Differential Evolution for Optimization Applied to Image Segmentation.
Appl. Sci. 2020, 10, 2195. [CrossRef]

43. Skakovski, A.; Jędrzejowicz, P. An island-based differential evolution algorithm with the multi-size populations. Expert Syst.
Appl. 2019, 126, 308–320. [CrossRef]

44. Skakovski, A.; Jędrzejowicz, P. A Multisize no Migration Island-Based Differential Evolution Algorithm with Removal of
Ineffective Islands. IEEE Access 2022, 10, 34539–34549. [CrossRef]

45. Storn, R. On the usage of differential evolution for function optimization. In Proceedings of the North American Fuzzy Information
Processing, Berkeley, CA, USA, 19–22 June 1996; pp. 519–523.

46. F. Neri, E. Mininno, Memetic Compact Differential Evolution for Cartesian Robot Control. IEEE Comput. Intell. 2010, 5, 54–65.
[CrossRef]

47. Mininno, E.; Neri, F.; Cupertino, F.; Naso, D. Compact Differential Evolution. IEEE Trans. Evol. 2011, 15, 32–54. [CrossRef]
48. Qin, A.K.; Huang, V.L.; Suganthan, P.N. Differential Evolution Algorithm with Strategy Adaptation for Global Numerical

Optimization. IEEE Trans. Evol. Comput. 2009, 13, 398–417. [CrossRef]
49. Hachicha, N.; Jarboui, B.; Siarry, P. A fuzzy logic control using a differential evolution algorithm aimed at modelling the financial

market dynamics. Inf. Sci. 2011, 181, 79–91. [CrossRef]
50. Kaelo, P.; Ali, M.M. A numerical study of some modified differential evolution algorithms. Eur. J. Oper. 2006, 169, 1176–1184.

[CrossRef]
51. Corcoran, A.L.; Wainwright, R.L. A parallel island model genetic algorithm for the multiprocessor scheduling problem. In

Proceedings of the 1994 ACM Symposium on Applied Computing, SAC ’94, Phoenix, AZ, USA, 6–8 March 1994; pp. 483–487.
52. Whitley, D.; Rana, S.; Heckendorn, R.B. Island model genetic algorithms and linearly separable problems. In Evolutionary

Computing; Series Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1997; Volume 1305, pp. 109–125.
53. Powell, M.J.D. A Tolerant Algorithm for Linearly Constrained Optimization Calculations. Math. Program. 1989, 45, 547–566.

[CrossRef]
54. Ali, M.M. Charoenchai Khompatraporn, Zelda B. Zabinsky, A Numerical Evaluation of Several Stochastic Algorithms on Selected

Continuous Global Optimization Test Problems. J. Glob. Optim. 2005, 31, 635–672. [CrossRef]
55. Floudas, C.A.; Pardalos, P.M.; Adjiman, C.; Esposoto, W.; Gümüs, Z.; Harding, S.; Klepeis, J.; Meyer, C.; Schweiger, C. Handbook of

Test Problems in Local and Global Optimization; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999.
56. Gaviano, M.; Ksasov, D.E.; Lera, D.; Sergeyev, Y.D. Software for generation of classes of test functions with known local and

global minima for global optimization. ACM Trans. Math. Softw. 2003, 29, 469–480. [CrossRef]
57. Lennard-Jones, J.E. On the Determination of Molecular Fields. Proc. R. Soc. Lond. A 1924, 106, 463–477.
58. Zabinsky, Z.B.; Graesser, D.L.; Tuttle, M.E.; Kim, G.I. Global optimization of composite laminates using improving hit and run. In

Recent Advances in Global Optimization; ACM Digital Library: New York, NY, USA, 1992; pp. 343–368.
59. Chandra, R.; Dagum, L.; Kohr, D.; Maydan, D.; McDonald, J.; Menon, R. Parallel Programming in OpenMP; Morgan Kaufmann

Publishers Inc.: Burlington, MA, USA, 2001.
60. Charilogis, V.; Tsoulos, I.G.; Tzallas, A.; Karvounis, E. Modifications for the Differential Evolution Algorithm. Symmetry 2022,

14, 447. [CrossRef]
61. Bishop, C.M. Neural networks and their applications. Rev. Sci. Instrum. 1994, 65, 1803–1832. [CrossRef]
62. Raymer, M.; Doom, T.E.; Kuhn, L.A.; Punch, W.F. Knowledge discovery in medical and biological datasets using a hybrid Bayes

classifier/evolutionary algorithm. IEEE Trans. Syst. Man Cybern Part B 2003, 33, 802–813. [CrossRef]
63. Zhong, P.; Fukushima, M. Regularized nonsmooth Newton method for multi-class support vector machines. Optim. Methods

Softw. 2007, 22, 225–236. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s00500-010-0640-9
http://dx.doi.org/10.1002/jcc.23235
http://dx.doi.org/10.1016/j.asoc.2015.04.025
http://dx.doi.org/10.3390/app10062195
http://dx.doi.org/10.1016/j.eswa.2019.02.027
http://dx.doi.org/10.1109/ACCESS.2022.3162634
http://dx.doi.org/10.1109/MCI.2010.936305
http://dx.doi.org/10.1109/TEVC.2010.2058120
http://dx.doi.org/10.1109/TEVC.2008.927706
http://dx.doi.org/10.1016/j.ins.2010.09.010
http://dx.doi.org/10.1016/j.ejor.2004.08.047
http://dx.doi.org/10.1007/BF01589118
http://dx.doi.org/10.1007/s10898-004-9972-2
http://dx.doi.org/10.1145/962437.962444
http://dx.doi.org/10.3390/sym14030447
http://dx.doi.org/10.1063/1.1144830
http://dx.doi.org/10.1109/TSMCB.2003.816922
http://dx.doi.org/10.1080/10556780600834745

	Introduction
	Method Description
	The Original DE Method
	Proposed Modifications
	Propagation Mechanism 
	Termination Rule 

	Experiments
	Test Functions 
	Experimental Results

	Conclusions
	References

