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Abstract: Location-based services (LBS) require users to provide their current location for service
delivery and customization. Location privacy protection addresses concerns associated with the
potential mishandling of location information submitted to the LBS provider. Location accuracy has a
direct impact on the quality of service (QoS), where higher location accuracy results in better QoS. In
general, the main goal of any location privacy technique is to achieve maximum QoS while providing
minimum or no location information if possible, and using dummy locations is one such location
privacy technique. In this paper, we introduced a temporal constraint attack whereby an adversary
can exploit the temporal constraints associated with the semantic category of locations to eliminate
dummy locations and identify the true location. We demonstrated how an adversary can devise
a temporal constraint attack to breach the location privacy of a residential location. We addressed
this major limitation of the current dummy approaches with a novel Voronoi-based semantically
balanced framework (VSBDG) capable of generating dummy locations that can withstand a temporal
constraint attack. Built based on real-world geospatial datasets, the VSBDG framework leverages
spatial relationships and operations. Our results show a high physical dispersion cosine similarity
of 0.988 between the semantic categories even with larger location set sizes. This indicates a strong
and scalable semantic balance for each semantic category within the VSBDG’s output location set.
The VSBDG algorithm is capable of producing location sets with high average minimum dispersion
distance values of 5861.894 m for residential locations and 6258.046 m for POI locations. The findings
demonstrate that the locations within each semantic category are scattered farther apart, entailing
optimized location privacy.
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1. Introduction

The widespread usage of mobile and smart Internet of Things (IoT) devices in our
daily lives has led to the universal adoption of Location Based Services (LBS) as a way to
customize service offerings anchored on users’ geographic locations [1]. In a typical LBS
scenario, users share their current location with the LBS service provider in exchange for
geographically personalized services without much control over what happens to their
location information after service delivery [2]. The possibility for the exploitation of location
data by an LBS provider or a data breach by an adversary opens the door for location
privacy concerns. Although location sharing has become a necessity for receiving high-
quality service in an LBS scenario, it is critical to achieving the maximum quality of service
without sacrificing the location privacy of the users. Sending dummy locations alongside
the true location to the LBS server is a well-explored approach for location privacy. The LBS
server would not be able to—under a perfect scenario—distinguish true from dummy
locations, so the server processes all locations and sends the results back to the users to
achieve location privacy. The dummy locations approach receives highly accurate LBS
query results because users’ true locations are delivered, thereby offering a better quality
of service compared to other location privacy techniques [3]. However, current dummy
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approaches overlook the distinction between various semantic categories and their intrinsic
temporal constraints such as residential versus non-residential locations. Due to these
limitations, the dummy locations produced are susceptible to temporal constraint attack by
an adversary in scenarios where the true location of the user is residential. This erosion
of location privacy protection for users of IoT devices whose legitimate locations are
residential locations urges the need for a solution that can originate dummy locations
capable of thwarting temporal constraint attacks by an adversary. In this paper, a novel
approach to generate dummy locations that are effective against temporal constraint attack
and preserve the location privacy of residential users is proposed and developed.

1.1. Background

More often than not, mobile apps and websites that offer LBS services require the
user to provide their current locations. The potential for misuse of location information by
LBS providers, coupled with the concerns over a possible breach of LBS servers resulting
in exposing user information to an adversary, makes a strong case for location privacy
protection [3]. In many cases, the quality of LBS services is directly related to the accuracy of
user locations. In other words, lowering the accuracy of the true locations lowers the quality
of results returned by an LBS query. The main goal of any location privacy algorithm is to
maximize quality of service while protecting user locations by sharing as little as possible
or not sharing the exact locations of users. The current approaches for location privacy
can be classified into four main categories—cloaking, dummy location, obfuscation, and
cryptographic [3]. Cloaking and obfuscation do not send the true location of the user to
the LBS server, thus resulting in a lower quality of services—specifically, LBS services
that require the exact location of the user [4]. The cryptography-based approaches are
computationally intensive, which renders them impractical [2]. The dummy location
approaches involve sending a user’s genuine location along with the dummy locations,
making these preferable for achieving high-quality LBS. The two main categories of LBS
services are (1) snapshot and (2) continuous services [3]. In a snapshot LBS, the user’s
location is submitted only once to the LBS server for query results, whereas, in a continuous
LBS, user locations are continuously reported to an LBS server to receive up-to-date query
results. An example of a snapshot LBS would be searching for the nearest point of interest
(POI) such as restaurants or hotels. An example of continuous LBS services would be using
an application for driving directions where the user’s current location is continuously sent
to the LBS server to track the user’s movement and provide up-to-date driving directions [3].
This paper’s research mainly focuses on generating dummy locations for location privacy
in the context of a snapshot LBS.

1.2. Temporal Constraint Attack

In a temporal constraint attack, an adversary uses location information from historical
dummy-based LBS requests delivered by a specific user and exploits the differences in
temporal constraints between semantic categories, such as residential versus POI, in a
historical timeline to separate the dummy locations from a true user location. By eliminating
the dummies using a temporal constraint attack, an adversary is likely to identify the real
location of the user breaching the location privacy of the user. The primary purpose of a
residential location is housing, and it is where people live [5]. This fundamental assumption
that people live in their houses and not in their workplace or a restaurant forms the basis
for our argument that a residential location has different temporal constraints from point of
interest (POI)-based locations. When dummy locations are generated without consideration
of the distinction between residential and non-residential locations, an adversary can exploit
the semantic difference to eliminate dummy locations based on temporal constraints and
identify the true location of a user.
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For a given location, an adversary can use approaches such as reverse geocoding [6]
and other background information to find the specific address and the semantic category
of the location, such as residential or supermarket. Using this technique, an adversary
can retrieve semantic categories for all the locations in a dummy-based historical LBS
request. The adversary can then compare and evaluate the semantic categories of all these
locations in a historical timeline. By carrying out this evaluation within the context of
temporal constraints associated with semantic categories such as residential versus non-
residential purposes, an adversary can eliminate the dummy locations and increase the
probability of true location identification. Depending on the amount of historical location
requests possessed and the extent of semantic diversity implemented in generating dummy
locations, an adversary tends to be able to successfully eliminate all dummy locations and
to identify users’ legitimate locations.

In the following example, we demonstrate how an adversary can exploit historical
dummy-based LBS requests by viewing them in a temporal context of a single 24 h period
beginning at midnight (12 a.m.) up to 11.59 p.m. on the same day. Table 1 displays the
semantic information associated with locations in sample LBS requests containing true
and dummy locations sent to the LBS server by a single user at various times over one
day. Each row corresponds to a request made at a certain time of the day and shows
semantic categories for five locations {l1, . . . , lk = 5} where k is the total number of locations
dispatched to the LBS server in each request, with k − 1 dummy locations and one true
location (ResidentialTrue).

Table 1. Showing the semantic information associated with locations in sample LBS requests.

Location Semantic Type

Time l1 l2 l3 l4 l5

2:20 a.m. Restaurant ResidentialTrue Supermarket Shopping mall Gas station

4:01 a.m. Restaurant ResidentialTrue Supermarket Shopping mall Gas station

6:10 a.m. Restaurant ResidentialTrue Supermarket Shopping mall Gas station

9:15 a.m. Restaurant ResidentialTrue Supermarket Shopping mall Gas station

11:50 a.m. Restaurant ResidentialTrue Supermarket Shopping mall Gas station

3:00 p.m. Restaurant ResidentialTrue Supermarket Shopping mall Gas station

8.00 p.m. Restaurant ResidentialTrue Supermarket Shopping mall Gas station

11:20 p.m. Restaurant ResidentialTrue Supermarket Shopping mall Gas station

In this concrete example, we assume that an adversary possesses background informa-
tion that all the LBS requests listed in the table belong to the same user and request type,
and occurred on the same day within 24 h between midnight (12 a.m.) and 11:59 p.m. in a
specific time zone. We also assume that the dummy locations submitted for a given true
location do not change over time because the same dummy algorithm is used to generate
the dummy locations for every new request. Moreover, it is assumed that a POI location is a
place of business and is not used for residential purposes. The main goal of an adversary in
a temporal constraint attack is to eliminate the k − 1 locations and identify the kth location
that is also a true location. In the above example, it is easy to deduce that a location with a
semantic type, shopping mall, is a dummy location since it is unusual to be at a shopping
mall at 2:20 a.m. and also to be at a shopping mall throughout the entire day. Using the
same logic, we demonstrate that the two semantic types—restaurant and supermarket—can
be further eliminated. Although being at a gas station at 2.20 a.m. is possible, it can be
pruned as a dummy as it is unusual to be at the same gas station throughout the day.
By successfully eradicating the four locations, the fifth location of the residential semantic
type that remains is identified as the legitimate location. The adversary can also erase all
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four business locations since it is not usual for a user to be at a place of business for an
entire day, and can identify the residential location as the true location.

The example shows that, despite the maximum semantic diversity between true and
dummy locations, the adversary can still exploit the semantic information from the histori-
cal requests data and identify the true location by wiping out the k − 1 dummy locations.
The current dummy approaches fail to integrate the intrinsic semantic particularity, which,
in this case, is the notion of home associated with a residential location [5], and instead treat
the residential location as a general semantic type without any special attention. This could
result in potential dummy locations that are susceptible to temporal constraint attack as
shown in the example above.

1.3. Problem Statement

The semantic type of the location can have a significant impact on the effectiveness of
the dummy locations in protecting a true location from identification [7]. The conventional
approach is to use semantic location diversity to identify dummy locations that are seman-
tically different from each other and, thus, make it harder to distinguish between true and
dummy locations. This approach does not work in scenarios such as when the true location
is residential since the residential locations are inherently different from the non-residential
POI locations in terms of the purpose of use and hours of operation. A dummy approach
must handle these intrinsic differences between various semantic types to successfully
protect the location privacy of the user. Otherwise, this could result in generating dummy
locations that are susceptible to temporal constraint attacks. There is no known solution to
this problem since the existing dummy approaches either do not acknowledge the semantic
differences associated with handling a true location such as residence versus POI, or do
not factor in the semantic type of the location for dummy generation altogether. In this
paper, a novel dummy generation framework is devised to produce semantically balanced
dummy locations that can withstand a temporal constraint attack by adversaries. Although
the focus of this study is on addressing the temporal constraint attack in the case of a
user whose true location is a residence, the proposed framework is capable of furnishing
comprehensive location privacy for true locations of both residential and non-residential
POI semantic types. To the best of our knowledge, this paper is the first among its peers to
present temporal constraint attacks along with a candidate solution.

1.4. Major Contributions

The major contributions of this paper are as follows:

1. We introduce a new type of location privacy attack called ‘temporal constraint attack’
where an adversary can exploit the location semantics from a temporal dimension
for eliminating dummies and identifying the true location. In doing so, we provide
evidence on how a true location of residential semantic type can be compromised in a
temporal constraint attack.

2. A novel Voronoi-based semantically balanced dummy generation (VSBDG) approach
is proposed to generate dummy locations that are capable of withstanding a temporal
constraint attack by an adversary. In general, the VSBDG algorithm can achieve loca-
tion privacy protection regardless of the semantic type of the true location; whether it
is residential or non-residential. This is due to the semantically balanced nature of the
location set generated by the VSBDG.

3. One of the major drawbacks of existing dummy location studies is that they do not
consider the spatial context of the location, which is not possible unless the technique
is built upon real-world geospatial datasets. At best, the current approaches are tested
on simple real-world location datasets that contain a collection of point locations.
The VSBDG algorithm is built and tested on real-world geospatial datasets such as
land parcels and point of interest (POI) locations. The VSBDG algorithm leverages
spatial relationships and operations to identify spatially similar dummy locations for
a given true location.
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4. The Voronoi polygons are applied to model and delineate POI influence. We establish
an approach that uses a cosine similarity search for finding geographical areas within
the city with similar POI influence, and perform a parcel-based similarity search
to identify the residential dummy location within each similar Voronoi polygon.
This allowed us to identify spatially similar residential and POI dummy locations
and build semantically balanced location sets that are resistant not only to temporal
constraint attacks but also to location homogeneity attacks, location distribution
attacks, and map-matching attacks.

The rest of the paper is organized as follows. Section 2 describes the related work.
Section 3 presents the proposed methodology. In Section 4, we provide a detailed expla-
nation of the VSBDG algorithm. Section 5 articulates the experimental implementation
of the VSBDG on one sample location followed by a detailed experiments for verifying
effectiveness of the VSBDG algorithm. Section 6 evaluates the results from Section 5.3.
Finally, we state the conclusions and future directions in Section 7.

2. Related Work

Dummy generation techniques for location privacy in location-based services or LBS
are well-studied. In general, dummy locations’ techniques operate under the premise that
sending dummy locations along with a true location will help conceal the true location from
identification by LBS servers or adversaries [8]. Hence, for dummy locations to successfully
preserve the location privacy of the true location, it is of paramount importance for the
dummies to be indistinguishable from the legitimate one. Without the high degree of simi-
larity between true locations and dummies, an adversary can exploit the dissimilarities for
eliminating dummies and identifying the true location. The dummy identification process
plays a vital role in ensuring that both dummy and true locations are indistinguishable
from one another, thereby maximizing location privacy.

A handful of early studies spearheaded the design of dummy generation techniques.
For example, Kido et al. [9] and Lu et al. [10] generated dummy locations without consid-
eration of their similarity to true locations. Niu et al. [11] proposed V-circle and V-grid
algorithms where final dummy locations are chosen based on their similarity in query
probability to a genuine location. Niu et al. [12] proposed a subsequent solution that
introduced an enhanced-DLS algorithm that not only generates dummy locations anchored
on their similarity in location query probability but also maximizes the physical dispersion
of the dummy locations to ensure good location privacy protection. Nisha et al. [13] de-
vised a proxy-based approach in which dummies are identified from within a privacy area
calculated using a proxy of the true location. The proxy instead of a true location along
with the dummies is sent to the LBS server for processing. Legitimate locations are later
extracted from the results received for the proxy location from the LBS server. Despite the
additional privacy achieved by not disclosing true locations, the client-side extraction of
true results may not be possible in real-world scenarios due to the resource constraints on
the clients’ devices.

Chen and Shen [7] developed MaxMinDistDS and Simp-MaxMinDistDS that deter-
mine the dummy locations using maximum semantic diversity and physical dispersion.
Zhang et al. [14] presented a similar approach applying maximum semantic diversity and
physical dispersion as a benchmark for selecting dummy locations. Anamala and Subra-
manian [15] introduced an approach to determining dummy locations using maximum
semantic diversity and historical location query probabilities as criteria. Shi et al. [16]
designed a dummy generation solution using semantic similarity between locations as a
principle. In this approach, a semantic location is defined as a vector of historical query
probabilities in a 24 h time period, during which the similarity between the semantic
locations is calculated using the cosine similarity. Zhang and Li [17] advocated for a
dummy generation model that combines semantic diversity, location query probabilities,
and physical dispersion for producing effective dummy locations. Semantic diversity
helps maximize location privacy in scenarios where genuine locations are situated in a
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semantically homogeneous area. However, this strategy fails to address the possibility of
a temporal constraint attack in scenarios such as a residential true location. In this case,
an adversary can exploit the semantic diversity in a temporal dimension [18] to eliminate
dummies and to identify the residential true location.

Alyousef et al. [19] implemented a novel approach to creating dummy locations
using deep learning. In this solution, the dummies are generated through a convolutional
neural network, based on their similarity to the true location in terms of location query
probability and the resulting maximum physical dispersion. The key limitations of using
location query probabilities in a real-world implementation are the difficulty associated
with obtaining query probability data from a trusted source for all locations within an area
of interest and the computational complexity associated with storing and processing these
data. Jagarlapudi et al. [20] proposed a method of using a drone to assist with dummy
generation. One of the major drawbacks of this approach lies in its reliance on a drone
because it is impractical to have a drone linked to a user’s device at all times.

The main goal of applying dummy locations for location privacy is to mask real loca-
tions from identification by an adversary, and this goal is achieved by producing dummy
locations that are indistinguishable from the true locations [8]. The current dummy ap-
proaches employ a variety of factors such as semantic diversity, location query probabilities,
physical dispersion [8], and spatial context [21] for evaluating locations. Except for semantic
diversity, these approaches do not consider the primary purpose served by a particular lo-
cation such as residential housing, commercial use, or office buildings. Dummy approaches
built on semantic diversity incorporate the location’s primary purpose as a way to catego-
rize locations to assist with the dummy generation process [7]. This approach, however,
fails in integrating the unique temporal aspects of a semantic category (e.g., residential
locations), which can be exploited by adversaries in temporal constraint attacks.

Another major drawback of all the aforementioned approaches is that the spatial
context is not factored in when qualifying dummy locations. Dummy locations generated
without accounting for their similarity to real locations in a spatial context can be an easy
target for location homogeneity and map-matching attacks [22] by an adversary. Amid a
location homogeneity attack, both true and dummy locations are located in the same parcel
area such as a university campus or hospital area, allowing for an easy inference about the
general whereabouts of the user by an adversary. In a map-matching attack, an adversary
eliminates dummies that are situated in natural areas such as lakes, mountains, and green
areas by overlaying the dummy and real locations on a map. A map-matching attack
is also a possibility in cases where the dummy locations are located in geographically
dissimilar areas compared to the true location. Here is an example: A legitimate location is
a residential house and all the dummies are located on roads. Hence, the spatial context
plays a vital role in determining the dummy locations that provide maximum location
privacy. Tadakaluru [21] proposed a parcel-based similarity scheme to create dummy
locations that are similar in a spatial context to a true location. The study used real-world
parcel data to assess and evaluate the spatial context of locations to forge dummy locations
from the parcels that are spatially similar to the parcel of the input location [21].

3. Proposed Methodology

We propose a point of interest (POI)-based approach to producing semantically bal-
anced dummy locations. A physical location associated with a POI is employed for de-
lineating the influence of the POI within a geographical space through Voronoi polygons.
Within each Voronoi POI influence area, the parcel-based dummy generation framework
devised by Tadakaluru [21] is then deployed to create dummy locations that are spatially
similar to legitimate ones. These topics are further articulated in detail in Sections 3.1–3.4.
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3.1. Relationship between Geographic Location, Address, and Land Parcel

A geographic location is an exact physical place on the Earth’s surface usually repre-
sented by a unique latitude and longitude pair. In a majority of the state-of-the-art location
privacy studies, the term location is generally used to refer to a geographic location. An ad-
versary can leverage the street address associated with the geographic location to obtain
sensitive information about a user [23] and, hence, this trick plays an important role in
building privacy-preserving mechanisms. An address is generally associated with a parcel
of land that has designated property ownership boundaries. When someone refers to a
specific geographic location (i.e., longitude, latitude) in an urban setting, it is normally
linked to an address that is representative of a land parcel. In other words, any physical
location located within a land parcel is associated with a unique address assigned to the
land parcel [24]. Despite the importance of address and land parcels, most dummy-location
generation approaches in location privacy assume that a single physical location is enough
to represent an address and the underlying land parcel. As a result, these solutions use
the physical location as a sole spatial component within their algorithms. In this study,
we make use of land parcels rather than single locations to select areas that are similar in
a spatial context to the area containing real locations. Applying the land parcels, we can
delineate the geographical boundary of a POI location to support the distinction between
residential and non-residential locations in the VSBDG algorithm. Without this delineation
offered by the land parcel, it is impossible to guarantee that a chosen location is of a certain
semantic type—an important requirement for building a semantically balanced dummy
location set.

3.2. Modeling POI Influence Using Voronoi Polygons

A Voronoi diagram anchored on POI locations is employed to divide a geographical
area into polygons, with each enclosing a single POI location such that any location within a
given polygon is closer to the related POI than to any other POI locations [25]. The locations
lying on the edge of a Voronoi polygon are equidistant to POIs associated with the two
Voronoi polygons sharing an edge. The main purpose for adopting Voronoi polygons in
the proposed approach is to avoid dynamic runtime analysis of POIs in such a way that
an efficient dummy generation process becomes viable. This idea is made possible by
the intrinsic property of a Voronoi polygon, which contains only a single POI. This novel
design facilitates the selection of deterministic proportions of POIs and residential locations
within a geographic area influenced by the given POI, a Voronoi polygon. The Voronoi
polygons are generated as part of data pre-processing and reused for each new dummy
generation request. The predictability of POIs within a group of Voronoi polygons elim-
inated a pressing need for proximity queries looking for the POIs within a geographical
area influenced by a POI during runtime. Given the Voronoi polygons for a POI dataset,
a semantically balanced location set L containing both true and dummy locations can be
formally expressed as:

L = {l1, l2, . . . , lm, lm + 1, lm + 2, ..., ln}, where
n: total number of locations,
m: number of non-residential locations (POIs),
n − m: number of residential locations.

• m is defined as the number of Voronoi polygons used in generating a dummy location
set because each Voronoi polygon contains one POI location.

• With at least two locations selected from each Voronoi polygon, there are 2m + 1
minimum number of dummy locations and one legitimate location.



Analytics 2023, 2 253

3.3. Cosine Similarity between Voronoi Polygons

In this study, we advocate for cosine similarity to find spaces that are similar to the
Voronoi polygon embracing users’ genuine locations. The cosine similarity between two
vectors A and B is measured using the cosine angle between the vectors, which can be
calculated in the Euclidean space [26] using the following formula:

Cosine Similarity (A, B) = ∑n
i=1 AiBi√

∑n
i=1 A2

i

√
∑n

i=1 B2
i

. (1)

The cosine similarity gauges similarity based on the direction of vectors using the
cosine angle instead of the magnitude of vectors. This measure aligns with the goal to
identify Voronoi polygons that are similar to the input Voronoi polygon in POI influence
in a spatial context rather than the magnitudes of feature attributes. For this reason, the
attribute vectors of both target and candidate Voronoi polygons are compared and ranked
using cosine similarity ordered with highly similar polygons at the top and least similar at
the bottom. Dummy locations are picked from the Voronoi polygons that are most similar
in cosine relationship to the input Voronoi polygon containing the true location.

3.4. Parcel-based Similarity Search

The parcel-based location privacy framework proposed by Tadakaluru [21] uses the
similarity search to select dummy locations that are similar in a spatial context to real
locations. In this study, the parcel-based similarity search is deployed to forge residential
dummy locations within each candidate Voronoi polygon that is cosine-similar to the
Voronoi polygon containing the input location. The parcel-based similarity search is driven
by the Euclidean distance between the attribute values of target and candidate parcels.
For each target and candidate parcel, the total sum of squared differences (SSD) between
standardized attribute values is calculated. The candidate parcels are then ranked based on
their SSD values with the target parcel, where the candidate parcel with the lowest SSD
value ranked higher is considered to be the most similar one to the input parcel. The SSD
between two parcels P and Q with n attributes can be calculated as follows.

SSD (P, Q) = ∑n
i=1(Pi − Qi)

2

4. Voronoi-Based Semantically Balanced Dummy Generation (VSBDG)

The main objective of the proposed approach is to generate semantically balanced
dummy locations that can effectively withstand a temporal constraint attack, thereby
maximizing location privacy for users. The semantic balance between residential and
non-residential dummy locations is accomplished by dividing a geographical area, such
as a city or county bounding a true location, into separate regions based on POI influence.
The Voronoi polygons are generated using the POI dataset, where each Voronoi polygon is
associated with a single POI location (see also Section 3.2). The key rationale behind the
deployment of Voronoi is to facilitate a guaranteed and predictable selection of one POI
within each Voronoi polygon, control the ratio of residential versus non-residential (POI)
dummy locations, and preserve the semantic balance of a given location set.

Algorithm 1 originates a semantically balanced location set for a given legitimate
location using land parcels, POI-based Voronoi polygons, and POIs’ dataset(s) for a geo-
graphical region like a city or a county. The first steps in rows 1 and 2 identify the relevant
land parcel ptrue and Voronoi polygon vtrue outlining the true location lt using spatial join.
Then, the next major step involves using a cosine similarity search to identify the top m
Voronoi polygons that are similar to vtrue. A next similarity search based on the Euclidean
distance between attributes is performed to pinpoint the land parcel (parcels_similari) that
is most similar to ptrue in each of the m Voronoi polygons. Finally, the associated POI and
the centroid of parcels_similari for each of m Voronoi polygons are appended to the dummy
location set, returning 2m + 1 dummy locations in total.
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Algorithm 1: VSBDG—To identify semantically balanced dummy locations for a given residential true location

Input: True location lt (Longitude, Latitude), Location set size k
Datasets: Land Parcels P, POI-based Voronoi polygons dataset V
Output: Location set D of size k
1. Determine land parcel ptrue outlining lt using spatial join between lt and P
2. Determine Voronoi polygon vtrue outlining lt using spatial join between lt and V
3. m = (k − 2)/2 // m is total number of similar Voronoi polygons to be identified
4. Vsimilar = Cosine Similarity Search(target = vtrue, candidate set = V, output length = m)
// Perform cosine similarity search to identify top m Voronoi polygons from V that are similar to vtrue
5. For each Voronoi polygon vi in Vsimilar
6. Set candidate_parcels_seti = parcels within Voronoi polygon vi
7. prclSimi = Euclidean Similarity Search(target = ptrue, candidate set = candidate_parcels_seti, output

length = 1)
// Perform Euclidean Similarity Search to identify top 1 land parcel from candidate_parcels_seti that is -

// most similar to ptrue
8. Calculate dummyresidential using parcel centroid of prclSimi
9. dummypoi = POI location associated with vi
10. Add dummyresidential, dummypoi to D
11. dummyvt = POI location associated with vtrue
12. Add dummyvt to D
13. Add lt to D
14. Return D

The semantic composition of the location set from Algorithm 1, containing both true
and dummy locations, consists of both residential and non-residential locations regardless
of the semantic classification of the real location. This intention ensures that an adversary is
unable to single out the real location by exploiting the background information associated
with a temporal constraint, such as general operating hours for a certain type of POI [27].
The example in Table 2 illustrates the possible residential versus POI semantic composition
of a location set that contains one true location and six (k = 5) dummy locations over a
period of one day, like the example shown in Table 1.

Table 2. Showing the semantic information associated with locations in sample LBS requests.

Location Semantic Type

Time l1 l2 l3 l4 l5 l6

2:20 a.m. Residential Residential ResidentialTrue POI POI POI

4:01 a.m. Residential Residential ResidentialTrue POI POI POI

6:10 a.m. Residential Residential ResidentialTrue POI POI POI

9:15 a.m. Residential Residential ResidentialTrue POI POI POI

11:50 a.m. Residential Residential ResidentialTrue POI POI POI

3:00 p.m. Residential Residential ResidentialTrue POI POI POI

8.00 p.m. Residential Residential ResidentialTrue POI POI POI

11:20p.m. Residential Residential ResidentialTrue POI POI POI
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Our algorithm provides location privacy for the true location at three different tiers as
shown in Figure 1. First, by consistently generating the same number of residential and
POI dummy locations each time, it decreases the chance to single out the real location using
a temporal constraint attack by an adversary. Second, the POI dummies are identified
based on similarity in POI influence related to the true location through the use of Voronoi
polygons. Third, the residential-type dummies are identified based on their parcel similarity
to the parcel outlining the true location using a parcel-based similarity search. Whether
the genuine location is a residential location or a POI, it is arduous for an adversary to
differentiate a particular location as a true location: for any given location set, there are
at least one-half of the locations that are similar to the real location, while the other half
of the locations are similar to each other. The following example, revisiting the scenario
presented in Section 1.2, evaluates how the VSBDG addresses the temporal constraint attack
in that scenario.
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Figure 1. A three-tiered location privacy protection for a location set that contains one legitimate
location and five dummy ones (k = 6).

Table 2 illustrates the semantic information associated with an example location set
containing both true and dummy locations generated and submitted to an LBS server at
various times during a single 24 h period beginning at midnight (12 a.m.) up to 11.59 p.m.
on the same day. Even if an adversary employs a temporal constraint attack similar to the
scenario described in Section 1.2 and identifies all the three POIs as dummies, there are
still two more residential locations to identify and eliminate for the true location. The two
dummy residential locations, being similar in a spatial context to the real one, are generated
using the parcel-based similarity search that is proven to be effective against location ho-
mogeneity attacks and less prone to map-matching attacks [21]. By leveraging Voronoi and
parcel-based similarity searches, the VSBDG algorithm generates a semantically balanced
dummy location set that effectively withstands temporal constraint attack while preserving
the indistinguishability of real locations.

5. Experimental Analysis and Results
5.1. Data Collection and Preprocessing

In the empirical study, we test land parcels [28] and POI datasets [29] for spatial
analysis and generation of dummy locations. These datasets are gleaned for the Richmond
County (Staten Island) in the state of New York, the USA. We run the geoprocessing toolkit
in ArcGIS Pro [30] to extract county-level parcel and POI data from statewide New York
datasets and for the rest of the analysis in this section. The parcels dataset is comprised
of parcel features that are stored as polygon features, and the POI dataset contains POIs
that are point features, as shown in Figure 2a. The total number of land parcels and POI
datasets of the Richmond County (Staten Island) are 123,849 and 1288, respectively [31].
As stated in Section 3.2, the Voronoi polygons are generated for 1288 POI locations during
preprocessing and referred to within the proposed algorithm as candidate set V.
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Figure 2. (a) Land parcels and POI locations within the Richmond County (Staten Island) over-
laid on imagery basemap [32] (b) Voronoi polygons and their associated POIs within a section of
Richmond County.

5.2. Electing Dummy Locations Using VSBDG

This section demonstrates a step-by-step implementation of the VSBDG algorithm for
a sample input true location lt and location size (k = 2). The first steps in the algorithm are
to determine parcel ptrue and Voronoi polygon vtrue outlining a true location, as shown in
Figure 3. The next step is to perform cosine similarity search and find the top m Voronoi
polygons similar to vtrue. The m is calculated as half of the k − 1 value, where k is the
number of dummy locations to be created. This step is to achieve semantic balance to
ensure that, for every POI dummy location, there is a residential dummy location chosen.
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vtrue containing the input true location lt as indicated in steps 1 and 2 of VSBDG (Algorithm 1).

The next step in the algorithm is to determine the top m Voronoi polygons similar to
vtrue from the candidate set V generated during the preprocessing phase. As delineated in
Section 3.3, the search for similar Voronoi polygons is driven by cosine similarity and uses
the attributes’ area, length, and the number of land parcels within the Voronoi polygon
to perform the cosine similarity search. The cosine similarity search is executed for two
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dummy locations (k = 2) and the output for the top one similar Voronoi polygon v1 (m = 1) is
shown in Figure 4. The next steps involve identifying the residential parcel that is the most
similar to the input parcel of the real location ptrue within each of the m similar Voronoi
polygons. Figure 4 shows a residential parcel, prclSim1, that is most identical to ptrue from
all the candidate parcels within v1 identified by the Euclidean similarity search for similar
parcels. A residential dummy location, dummyresidential, is calculated using the centroid of
prclSim1 and the POI location linked with v1 is chosen as the non-residential POI dummy
dummypoi. As explained in the algorithm, Steps 5 to 10 involving parcel similarity search
are repeated for each of the m similar Voronoi polygons identified using cosine similarity
search in the previous step. The POI location dummyvt associated with vtrue is included as
one of the dummies. Thus, two dummies constructed from each of m Voronoi polygon
and one additional dummy, dummyvt, results in total 2m + 1 dummy locations for a given
genuine location ptrue. With 2m + 1 dummy locations evaluating to three dummy locations,
there are a total of four locations (k = 4) including the true location in the location set,
as shown in Figure 5. Figure 5a depicts all the four locations in the context of Voronoi
polygons, and Figure 5b shows only the locations.
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5.3. Results

Physical dispersion of dummy locations in a location set is employed to evaluate the
effectiveness achieved by the location privacy algorithms [7,14]. The physical dispersion is
measured as the minimum distance between any two locations in a location set containing
both true and dummy locations [8]. A location set with a higher physical dispersion
indicates that locations are scattered much farther, implying better location privacy. The
core idea for building a semantically balanced location set is to ensure that, for every
residential location, there exists a POI location—and vice-versa—to reduce the probability
of being identified by adversaries. This goal is achieved through Voronoi polygons by
choosing a set of POI and residential dummy locations from within multiple geographical
areas that are spatially similar to the Voronoi area of real locations.

For a semantically balanced location set to be effective, dummy locations should
not only have a higher physical dispersion within each category but should also have a
physical dispersion that is similar to the other semantic category. To gauge the effectiveness
of the semantically balanced location set generated by VSBDG (Algorithm 1), we bring
forth an algorithm on three input true locations selected using random sampling with
different location set sizes. The VSBDG (True location lt, Location set size k) algorithm is
implemented for three input true locations with location sizes (k) ranging from 4 to 22.
Given each sample input’s true location, 10 location sets containing both true and dummy
locations are generated with sizes ranging from k = 4 to k = 22. For each location set, the
minimum dispersion distance (MDD) is separately calculated for locations in residential
and semantic categories. Table 3 tabulates the physical dispersion of residential locations
for 10 location sets generated for the input legitimate location in three columns—T-RES-1,
T-RES-2, and T-RES-3. Table 4 shows the physical dispersion of POI locations for 10 location
sets generated for input true location in three columns—T-POI-1, T-POI-2, and T-POI-3.
The minimum dispersion distance for each location set is plotted in RStudio [33] against
location set size (k) separately for residential and POI locations, as shown in Figures 6 and 7.

Table 3. Showing physical dispersion of residential locations in a location set of different sizes (k) of
the three input locations.

Minimum Dispersion Distance—Residential (Meters)

Location Set Size (k) True Location-1 (T-RES-1) True Location-2 (T-RES-2) True Location-3 (T-RES-3)

4 9291.308514 13,685.24076 26,978.01745

6 9291.308514 10,923.37298 11,920.92343

8 9291.308514 2073.75585 11,834.15819

10 9291.308514 2073.75585 6944.580188

12 4076.586856 2073.75585 6944.580188

14 4076.586856 2073.75585 3461.144276

16 3194.775997 2073.75585 3461.144276

18 3101.138163 2073.75585 2069.387356

20 3101.138163 1618.185695 2069.387356

22 3101.138163 1618.185695 2069.387356
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Table 4. Physical dispersion of POI locations in a location set of different sizes (k) for the three
input locations.

Minimum Dispersion Distance—POI (Meters)

Location Set Size (k) True Location-1 (T-POI-1) True Location-2 (T-POI-2) True Location-3 (T-POI-3)

4 10,368.38844 14,322.61609 25,800.26266

6 10,368.38844 8369.51998 12,034.79693

8 10,368.38844 3641.198031 11,580.28315

10 10,368.38844 3641.198031 7445.09195

12 3427.856197 3641.198031 7248.846177

14 3427.856197 3641.198031 3037.160013

16 3427.856197 3641.198031 3037.160013

18 2799.307792 3310.462408 2191.07635

20 2799.307792 3310.462408 2191.07635

22 2799.307792 3310.462408 2191.07635
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The effectiveness of a semantically balanced location set is evaluated by measuring
physical dispersion similarity between residential and POI MDD values at various lo-
cation set sizes, as shown in Tables 3 and 4. For this, the cosine similarity is calculated
between the MDD values of residential and POI categories of each of the three input true
locations separately.

6. Discussions
6.1. Evaluating VSBDG

The MDD of residential locations in the 10 location sets with sizes ranging from 4 to 22
are almost similar and follow a nearly identical trend to that of the MDD of POI locations
in the same 10 location sets. This trend holds true for all the three sample locations plotted
using red, green, and blue colors in Figures 6 and 7. The same is empirically proven by
measuring the cosine similarity between the MDD values of residential locations versus
POI locations in 10 location sets for all three input locations, as shown in Table 5. The PDCS
measures of input locations 1, 2, and 3 are 0.997, 0.994, and 0.99, respectively, with an
average PDCS value of 0.988, indicating a high cosine similarity between the MDD of
residential locations versus the POI locations in the 10 location sets with sizes ranging
from 4 to 22.

Table 5. Cosine similarity is measured between residential and POI semantic categories for the three
input true locations.

Input True Location Vectors Measured Physical Dispersion Cosine Similarity (PDCS)

1 T-RES-1 and T-POI-1 0.9966669

2 T-RES-2 and T-POI-2 0.9641056

3 T-RES-3 and T-POI-3 0.9993439

The high average PDCS value of 0.988 between the MDD values of residential and POI
locations indicates the effectiveness of the VSBDG algorithm in generating a semantically
balanced location set. This high cosine similarity between the two semantic categories also
demonstrates a strong semantic balance between the semantic categories that is consistent
even at higher values of k. This result also unveils that VSBDG is capable of achieving a
scalable semantic balance even at high values of k by equally creating efficient dummy
locations, despite an increase in the size of the location set (k). This finding further confirms
that our proposed algorithm is adroit at originating dummy locations that are consistent
with their resistance to temporal constraint attacks despite the increase in the size of the
location set k.

Without a high physical dispersion, the dummy locations are prone to location dis-
tribution attacks [18] where, in this case, an adversary can target locations from a specific
semantic category. The adversary employs techniques such as clustering for eliminating
dummies to identify either true locations or the neighborhood area of the true location.
The latter would pose a much higher risk in a case where the real location is residential
since the adversary infers a significant volume of background information by knowing the
neighborhood area associated with clusters where a residential user resides [34]. The aver-
age MDD of residential locations for all the 10 location sets for each input location shown
in Table 3 is 5861.894 m. The average MDD of POI locations for all the 10 location sets for
each input location listed in Table 4 is 6258.046 m. These high MDD values within each
semantic category demonstrate that the locations within each category are scattered farther
apart, indicating optimized location privacy.
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6.2. Comparison with the Existing Dummy Approaches

Recall that, to the best of our knowledge, this study is the first of its kind that introduces
temporal constraint attacks, which is tackled by the VSBDG algorithm. Because of the
novelty of VSBDG, it is not feasible to conduct a direct comparison of our results with
relatable results produced by the other state-of-the-art dummy generation approaches.
Nevertheless, we perform a comparison between VSBDG and the other state-of-the-art
solutions by summarizing their handling of known location privacy vulnerabilities and
features. Table 6 compares the handling of three location privacy attacks by VSBDG and
the other existing state-of-the-art dummy algorithms in general. Our proposed VSBDG
approach successfully handles all the three vulnerabilities listed in Table 6.

Table 6. A comparison of the proposed (VSB) and the existing dummy approaches based on how
various vulnerabilities are addressed.

Vulnerability VSBDG COSA [21] k-LPP [14] VLBS [16] DLSS [13] V-Cir/V-grid [11] DLIP [17]

Location homogeneity
attack 4 4 4 4p X X X

Map-matching attack 4p 4p X X X X X

Temporal constraint
attack 4 X X X X X X

4—Addresses 4p—Partially addresses X—Fails to address.

The VSBDG algorithm utilizes the parcel-based similarity search from COSA [21]
to seek dummy locations from parcels that are spatially similar to the parcel of an input
location. Both VSBDG and COSA [21] are built on real-world geospatial datasets and
leverage spatial context for dummy identification. This idea not only helps to generate
dummy locations that are resistant to location homogeneity attacks but also makes them
less prone to map-matching attacks [21]. The k-LPP [14], VLBS [16], and DLIP [17] address
location homogeneity attacks through dummy generation based on semantic diversity.
The other three approaches [11,13] neither use spatial context nor semantic diversity,
making them prone to location homogeneity attacks. Further approaches [9,11,13,14,16]
do not consider the spatial context in dummy generation, making them prone to map-
matching attacks. To our knowledge, the VSBDG is the only framework that is capable of
addressing temporal constraint attacks by using that semantically balanced location set.
Table 7 provides a comparison of general features between VSBDG and the other existing
dummy approaches. Overall, the VSBDG algorithm not only addresses all the three location
privacy attacks (Table 6) but also offers the key benefits (Table 7) when compared to the
existing dummy approaches.

Table 7. A comparison of benefits addressed by the proposed (VSB) and the existing
dummy approaches.

Key Benefits VSBDG COSA [21] k-LPP [14] VLBS [16] DLSS [13] V-Cir/V-grid [11] Random [9]

Physical dispersion semantic
similarity for larger k values 4 X X X X X X

Do not use location query probability 4 4 4 4 X X 4

Use spatial context in
dummy identification process 4 4 X X X X X

Do not submit proxy instead of
true location to LBS server 4 4 4 4 X 4 4

Built on real-world geospatial dataset(s) 4 4 X X X X X

4—YES; X—NO.
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The potential applications of VSBDG include location privacy scenarios where a
semantic category is inherently different from the other semantic categories, and one
example is residential locations. In the case of residential locations, the VSBDG algorithm
is leveraged to protect the real locations of a user whose locations belong to a residence.
The smart devices located in a residential location are also potential candidates for location
privacy protection offered by VSBDG.

7. Conclusions

Locations are unique and may differ in characteristics from locations of the other
semantic types. One such case is residential locations that are unique and different in
temporal constraints from locations of the POI semantic types. A dummy generation
approach ought to address these intrinsic differences by constructing robust dummies
that are expected to effectively conceal true locations and secure their privacy. In this
paper, we identified and explored a new type of attack called a temporal constraint attack,
in which an adversary exploits differences in temporal constraints between locations of
different semantic types to eliminate dummy locations and single out real locations. We
demonstrated how residential locations are susceptible to temporal constraint attacks when
an adversary possesses historical request data on dummies submitted for a residential
location. The existing techniques, including the ones that are built based on semantic
diversity, are prone to temporal constraint attacks because the difference in temporal
constraints of a semantic category such as residential location is not taken into account.
The key takeaways from this study are summarized below.

• We proposed a novel VSBDG algorithm, which is conducive to generating dummies
that can keep temporal constraint attacks at bay.

• The VSBDG algorithm is capable of handling both location homogeneity attacks and
map-matching attacks for two reasons. 1. POI influence in a spatial area is modeled
using Voronoi polygons and leverages cosine similarity search to find areas within
a city that has similar POI influence. 2. The parcel-based similarity search [21] is
adopted to construct dummy locations within each Voronoi polygon from parcels that
are spatially similar to a legitimate location’s parcel.

• Our findings show a high average MDD of 5861.894 m and 6258.046 m for residential
and POI locations, respectively, entailing that the locations are distributed further
apart indicating optimized location privacy.

• The results unfold an average PDCS of 0.988 between the MDD values of residential
and POI locations in location sets with sizes ranging from 4 to 22, thereby demon-
strating a strong and scalable semantic balance within an output location set of the
VSBDG algorithm, suggesting good location privacy protection against a temporal
constraint attack.

The temporal constraint attack model discussed in this study, accompanied by the
proposed VSBDG algorithm, is specific to snapshot LBS scenarios involving a single real
location. On the other hand, a continuous LBS request involves a trajectory with a series of
locations [3]; hence, the temporal constraint attack in a continuous LBS scenario should
be explored in a future study. Since this investigation is the first study that addresses the
concerns of temporal constraint attacks, this work will pave the way for further research
into the applicability of temporal constraint attacks under new scenarios and potential
ground-breaking solutions addressing the temporal constraint attacks.

Author Contributions: Conceptualization, A.T. and X.Q.; Methodology, A.T. and X.Q. Formal analy-
sis, A.T.; Investigation, A.T.; Visualization, A.T.; Writing—original draft, A.T.; Writing—review and
editing, A.T. and X.Q.; Supervision, X.Q. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.



Analytics 2023, 2 263

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sun, G.; Chang, V.; Ramachandran, M.; Sun, Z.; Li, G.; Yu, H.; Liao, D. Efficient location privacy algorithm for Internet of Things

(IoT) services and applications. J. Netw. Comput. Appl. 2017, 89, 3–13. [CrossRef]
2. Liu, B.; Zhou, W.; Zhu, T.; Gao, L.; Xiang, Y. Location privacy and its applications: A systematic study. IEEE Access 2018, 6,

17606–17624. [CrossRef]
3. Jiang, H.; Li, J.; Zhao, P.; Zeng, F.; Xiao, Z.; Iyengar, A. Location Privacy-preserving Mechanisms in Location-based Services:

A Comprehensive Survey. ACM Comput. Surv. 2021, 54, 1–36. [CrossRef]
4. Xu, X.; Chen, H.; Xie, L. A Location Privacy Preservation Method Based on Dummy Locations in Internet of Vehicles. Appl. Sci.

2021, 11, 4594. [CrossRef]
5. Schirmer, P.M.; van Eggermond, M.A.; Axhausen, K.W. The Role of Location in Residential Location Choice Models: A Review of

Literature. J. Transp. Land Use 2014, 7, 3–21. Available online: http://www.jstor.org/stable/26202678 (accessed on 1 January
2023). [CrossRef]

6. Kounadi, O.; Lampoltshammer, T.J.; Leitner, M.; Heistracher, T. Accuracy and privacy aspects in free online reverse geocoding
services. Cartogr. Geogr. Inf. Sci. 2013, 40, 140–153. [CrossRef]

7. Chen, S.H.; Shen, H. Semantic-Aware Dummy Selection for Location Privacy Preservation. In Proceedings of the 2016 IEEE
Trustcom/BigDataSE/ISPA, Tianjin, China, 23–26 August 2016; pp. 752–759.

8. Zhang, S.; Li, M.; Liang, W.; Sandor, V.K.A.; Li, X. A Survey of Dummy-Based Location Privacy Protection Techniques for
Location-Based Services. Sensors 2022, 22, 6141. [CrossRef] [PubMed]

9. Kido, H.; Yanagisawa, Y.; Satoh, T. Protection of Location Privacy Using Dummies for Location-Based Services. In Proceedings of
the International Conference on Data Engineering Workshops, Tokyo, Japan, 3–4 April 2005. [CrossRef]

10. Lu, H.; Jensen, C.S.; Yiu, M.L. PAD: Privacy-Area Aware, Dummy-Based Location Privacy in Mobile Services. In Proceedings
of the Seventh ACM International Workshop on Data Engineering for Wireless and Mobile Access, Vancouver, BC, Canada,
13 June 2008.

11. Niu, B.; Zhang, Z.; Li, X.; Li, H. Privacy-Area Aware Dummy Generation Algorithms for Location-Based Services. In Proceedings
of the IEEE International Conference on Communications (ICC), Sydney, Australia, 10–14 June 2014; pp. 957–962. [CrossRef]

12. Niu, B.; Li, Q.; Zhu, X.; Cao, G.; Li, H. Achieving k-Anonymity in Privacy-Aware Location-BASED services. In Proceedings of
the IEEE INFOCOM 2014—IEEE Conference on Computer Communications, Toronto, ON, Canada, 27 April–2 May 2014; pp.
754–762. [CrossRef]

13. Nisha, N.; Natgunanathan, I.; Xiang, Y. An enhanced location scattering based privacy protection scheme. IEEE Access 2022, 10,
21250–21263. [CrossRef]

14. Zhang, Y.; Zhang, Q.; Li, Z.; Yan, Y.; Zhang, M. A k-anonymous Location Privacy Protection Method of Dummy Based on
Geographical Semantics. Int. J. Netw. Secur. 2019, 21, 937–946.

15. Anamala, B.M.; Subramanian, S. Dispersed dummy selection approach for location-based services to preempt user-profiling.
Concurr. Comput. Pract. Exp. 2021, 33, e6361. [CrossRef]

16. Shi, X.; Zhang, J.; Gong, Y. A Dummy Location Generation Algorithm Based on the Semantic Quantification of Location.
In Proceedings of the IEEE International Conference Artificial Intelligence and Computer Applications (ICAICA), Dalian, China,
28–30 June 2021; pp. 172–176. [CrossRef]

17. Zhang, A.; Li, X. Research on privacy protection of dummy location interference for Location-Based Service location. Int. J. Distrib.
Sens. Netw. 2022, 18, 15501329221125111. [CrossRef]

18. Wernke, M.; Skvortsov, P.; Dürr, F.; Rothermel, K. A classification of location privacy attacks and approaches. Pers. Ubiquit.
Comput. 2014, 18, 163–175. [CrossRef]

19. Alyousef, A.; Srinivasan, K.; Alrahhal, M.S.; Alshammari, M.; AL-Akhras, M. Preserving Location Privacy in the IoT against
Advanced Attacks using Deep Learning. Int. J. Adv. Comput. Sci. Appl. 2022, 13, 416–427. [CrossRef]

20. Jagarlapudi, H.N.S.S.; Lim, S.; Chae, J.; Choi, G.S.; Pu, C. Drone Helps Privacy: Sky Caching Assisted k-Anonymity in Spatial
Querying. IEEE Syst. J. 2022, 16, 6360–6370. [CrossRef]

21. Tadakaluru, A. Context Optimized and Spatial Aware Dummy Locations Generation Framework for Location Privacy. J. Geovis.
Spat. Anal. 2022, 6, 27. [CrossRef]

22. Parmar, D.; Rao, U.P. Dummy Generation-Based Privacy Preservation for Location-Based Services. In Proceedings of the 21st
International Conference on Distributed Computing and Networking (ICDCN 2020), New York, NY, USA, 4–7 January 2020.

23. Kalnis, P.; Ghinita, G.; Mouratidis, K.; Papadias, D. Preventing location-based identity inference in anonymous spatial queries.
IEEE Trans. Knowl. Data Eng. 2007, 19, 1719–1733. [CrossRef]

24. Zandbergen, P.A. A comparison of address point, parcel and street geocoding techniques. Comput. Environ. Urban Syst. 2008, 32,
214–232. [CrossRef]

25. Evans, D.G.; Jones, S.M. Detecting Voronoi (area-of-influence) polygons. Math. Geol. 1987, 19, 523–537. [CrossRef]
26. Van Dongen, S.; Enright, A.J. Metric distances derived from cosine similarity and Pearson and Spearman correlations. arXiv 2012,

arXiv:1208.3145.

http://doi.org/10.1016/j.jnca.2016.10.011
http://doi.org/10.1109/ACCESS.2018.2822260
http://doi.org/10.1145/3423165
http://doi.org/10.3390/app11104594
http://www.jstor.org/stable/26202678
http://doi.org/10.5198/jtlu.v7i2.740
http://doi.org/10.1080/15230406.2013.777138
http://doi.org/10.3390/s22166141
http://www.ncbi.nlm.nih.gov/pubmed/36015901
http://doi.org/10.1109/ICDE.2005.269
http://doi.org/10.1109/ICC.2014.6883443
http://doi.org/10.1109/INFOCOM.2014.6848002
http://doi.org/10.1109/ACCESS.2022.3152770
http://doi.org/10.1002/cpe.6361
http://doi.org/10.1109/ICAICA52286.2021.9497903
http://doi.org/10.1177/15501329221125111
http://doi.org/10.1007/s00779-012-0633-z
http://doi.org/10.14569/IJACSA.2022.0130152
http://doi.org/10.1109/JSYST.2022.3171211
http://doi.org/10.1007/s41651-022-00121-1
http://doi.org/10.1109/TKDE.2007.190662
http://doi.org/10.1016/j.compenvurbsys.2007.11.006
http://doi.org/10.1007/BF00896918


Analytics 2023, 2 264

27. Zhang, C.; Liang, H.; Wang, K.; Sun, J. Personalized Trip Recommendation with Poi Availability and Uncertain Traveling Time.
In Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, Melbourne, Australia,
18–23 October 2014; pp. 911–920. [CrossRef]

28. NYC OpenData. Department of Finance Digital Tax Map. 2022. Available online: https://data.cityofnewyork.us/Housing-
Development/Department-of-Finance-Digital-Tax-Map/smk3-tmxj (accessed on 1 September 2022).

29. NYC OpenData. Points of Interest. 2022. Available online: https://data.cityofnewyork.us/City-Government/Points-Of-Interest/
rxuy-2muj (accessed on 16 November 2022).

30. Esri Inc. ArcGIS Pro, version 2.8.2; Esri Inc: Redlands, CA, USA, 2021.
31. GIS.NY.GOV. NYS Civil Boundaries. 2022. Available online: https://gis.ny.gov/gisdata/inventories/details.cfm?DSID=927

(accessed on 1 September 2022).
32. Esri Inc. World Imagery. Available online: https://www.arcgis.com/home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9

(accessed on 1 September 2022).
33. RStudio Team. RStudio: Integrated Development Environment for R; RStudio: Boston, MA, USA, 2021; Available online:

http://www.rstudio.com/ (accessed on 18 December 2022).
34. Shokri, R.; Theodorakopoulos, G.; Le Boudec, J.Y.; Hubaux, J.P. Quantifying Location Privacy. In Proceedings of the 2011 IEEE

Symposium on Security and Privacy, Oakland, CA, USA, 22–25 May 2011; pp. 247–262. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1145/2806416.2806558
https://data.cityofnewyork.us/Housing-Development/Department-of-Finance-Digital-Tax-Map/smk3-tmxj
https://data.cityofnewyork.us/Housing-Development/Department-of-Finance-Digital-Tax-Map/smk3-tmxj
https://data.cityofnewyork.us/City-Government/Points-Of-Interest/rxuy-2muj
https://data.cityofnewyork.us/City-Government/Points-Of-Interest/rxuy-2muj
https://gis.ny.gov/gisdata/inventories/details.cfm?DSID=927
https://www.arcgis.com/home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9
http://www.rstudio.com/
http://doi.org/10.1109/SP.2011.18

	Introduction 
	Background 
	Temporal Constraint Attack 
	Problem Statement 
	Major Contributions 

	Related Work 
	Proposed Methodology 
	Relationship between Geographic Location, Address, and Land Parcel 
	Modeling POI Influence Using Voronoi Polygons 
	Cosine Similarity between Voronoi Polygons 
	Parcel-based Similarity Search 

	Voronoi-Based Semantically Balanced Dummy Generation (VSBDG) 
	Experimental Analysis and Results 
	Data Collection and Preprocessing 
	Electing Dummy Locations Using VSBDG 
	Results 

	Discussions 
	Evaluating VSBDG 
	Comparison with the Existing Dummy Approaches 

	Conclusions 
	References

