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Abstract: The area of multimedia information retrieval (MMIR) faces two major challenges: the
enormously growing number of multimedia objects (i.e., images, videos, audio, and text files),
and the fast increasing level of detail of these objects (e.g., the number of pixels in images). Both
challenges lead to a high demand of scalability, semantic representations, and explainability of
MMIR processes. Smart MMIR solves these challenges by employing graph codes as an indexing
structure, attaching semantic annotations for explainability, and employing application profiling
for scaling, which results in human-understandable, expressive, and interoperable MMIR. The
mathematical foundation, the modeling, implementation detail, and experimental results are shown
in this paper, which confirm that Smart MMIR improves MMIR in the area of efficiency, effectiveness,
and human understandability.

Keywords: indexing; retrieval; explainability; semantic; multimedia; feature graph; graph code;
information retrieval

1. Introduction and Motivation

Multimedia is everywhere. This describes the current state of the art of information and
digital media representation in everyone’s daily life. All of us are living in a world where
digital media (i.e., multimedia objects, such as images, video, text, audio) communicate
and represent information of any kind, at any time, for any topic, and any target group.
Remarkable statistics from social media [1] outline that every single minute, as of April
2022, 66,000 photos are shared on Instagram, 500 h of video are uploaded to YouTube,
2,430,000 snaps are shared on Snapchat, 1,700,000 elements of multimedia content are
posted on Facebook, and 231,400,000 e-mails with media are sent. These large volumes are
constantly increasing, which, of course, leads to challenges for the underlying infrastructure
and information retrieval systems. In addition, all these digital media objects continue
evolving and, for example, also constantly increase their level of detail (i.e., the amount of
transported information), as well. Current smartphones, such as the Xiaomi 12T Pro, have
camera sensors with 200 megapixel producing images with an enhanced level of detail.
The greater the level of detail that a multimedia object has, the more information can be
stored, which needs to be maintained, indexed, visualized, distributed, and also retrieved.

In this paper, we summarize previous work from an application perspective and pro-
vide solutions for the open challenges of each problem area. The resulting challenges for
multimedia information retrieval (MMIR) can be summarized in three major problem areas:
(1) interoperability and integration, (2) scalability, and (3) explainability and expressiveness:

• In the area of interoperability and integration, applications require flexible, configurable,
and exchangeable processing flows which are also distributable through organiza-
tional units or computational instances. This means that the extraction of multimedia
features and their integration can be different depending on an application’s focus.
Furthermore, the increasing number of feature extractors requires a mechanism to
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integrate features from various extractors, detect inconsistencies, and calculate the
relevance of each feature.

• In the area of scalability, the high volume of multimedia objects and their increasing
level of detail needs to be reflected by application architectures for the distribution
of MMIR processing steps. Scalability becomes more important for modern, cloud-
based architectures.

• The increase in interoperability and integration, as well as the improved scalability,
also need to be reflected in the area of explainability and expressiveness. Here, further
user interface (UI) components explaining certain MMIR processing steps are required,
as well as further techniques for content-based validation and optimization.

We use the term “Smart MMIR” to describe systems, algorithms, software, or user
interfaces that provide solutions for these three problem areas. “Smart MMIR” thus de-
scribes expressive, scalable, interoperable, explainable and human understandable MMIR
solutions. In previous work [2–4], we already introduced, defined, and evaluated the core
components, which contribute to Smart MMIR. However, the interoperability of these
components and a corresponding formal model is a foundation for further improvements
in the problem areas, which were mentioned above. In this paper, we formally describe
these improvements, align them with or base them on existing algorithms and methodolo-
gies, discuss implementation details, and give evaluation results, which finally leads to a
platform and model for smart multimedia information retrieval applications.

The structure of this paper follows the problem-solving methodology of Nunamaker et al. [5]
and describes the current state of the art in Section 2, the theory building, i.e., modeling and
design of the proposed solution in Section 3, implementation examples in Section 4, and the
results of the evaluation in Section 5. In each section, the problem areas mentioned above
are addressed in corresponding subsections. Finally, Section 6 summarizes the results.

2. State of the Art and Related Work

In this section, the state of the art and related work for Smart MMIR is summarized.
An overall framework and corresponding research is discussed in Section 2.1. The area of
scalability and distributed MMIR processing is outlined in Section 2.2, and the introduction
of human-understandable semantic annotations is given in Section 2.3.

In the remainder of this paper, we use the following terms to describe various MM
relationships and objects (see also Figure 1):

• Real-world object: the objects that are captured by some MM recording.
• MM content object: a MM representation, typically as a MM file of the real-world scene

or event.
• MM object: an object within a MM content object, e.g., a detected person or an audio

track within a video.
• MM asset: some MM objects might have a value for users or applications, e.g., when a

license is attached or when users mark MM objects as “favorites”.
• MM feature: represents the features of MM objects, MM assets, or MM content objects.

Of course, for each MM content object, various digital formats exist. A comprehensive
overview is given in [6] by the U.S. Library of Congress. For images, these are such formats
as PNG, GIF, JPEG, TIFF, RAW, or BMP. For videos, such standards as MOV, MPG, MP4, or
MXF, exist. Audio objects can be represented by digital formats, such as MP3, WAV, AIFF,
or MIDI, and textual information can be stored in, for example, DOCX, TXT, RTF, XML,
HTML, or JSON files. All these formats have different purposes, prerequisites, properties,
and digital representations of MM features, and many of these formats can be combined to
represent multi-media objects, literally. Working with and integrating all these different
MM content objects is a challenge for MMIR applications.
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Figure 1. Multimedia terms and definitions.

2.1. Integration Area

In our previous and related work [7], we introduced a generic multimedia analysis
framework (GMAF), which provides a flexible plugin architecture for the integration of
plugins for the extraction of MM features of different MM content objects (see Figure 2).

Figure 2. Overview of the generic multimedia analysis framework (GMAF).

The GMAF provides a flexible, extendable API for the integration of plugins, which
encapsulate the extraction of MM features of a certain MM content object type. All plugins
contribute to the detected MM features to a generic data structure, the multimedia feature
graph (MMFG) [2].

However, there are two remaining challenges: (1) Currently, many different plugins
are available for the extraction of MM features. This can lead to contradictions, refinements,
or confirmations of detection results. Hence, a mechanism is required for the integration
or fusion of MM features detected by different GMAF plugins. (2) The GMAF is currently
based on a static configuration. This means, that all MM content objects are processed in
a similar way according their content type. However, many applications need a flexible
definition of processing instructions. Therefore, a flexible and configurable structure is
required to support application-based processing flows.

Another important related work is IVIS4BigData [8], where an architecture for the
visualization of information is presented, which can also serve as an architectural model to
process raw data into structured data, and apply analytic algorithms to it. The correspond-
ing information model in the area of multimedia can be represented by the stratification
model [9], which forms a (optionally time-based) set of different layers that segments the
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contextual data contained in, for example, a video, into multiple layers called strata. By
employing this, feature information of various multimedia layers can also be identified for
a certain point of time, e.g., within a video. Such a model can contribute to the modeling of
processing flows, which is outlined in Section 3.

2.2. Scalability Area

Due to the increasing level of detail of many MM content objects, the number of
nodes and edges in the corresponding MMFGs increases rapidly. To mitigate this resource
constraint, as a first step, the GMAF is designed to be horizontally scalable, i.e., multiple
GMAF nodes can be arranged for distributed processing (see Figure 3). However, many
graph-based operations have polynomial or even exponential time complexity [10]. As
horizontal scaling does not reduce the complexity as such, further optimizations in terms
of scalability must be made. Hence, in [7], we introduce the concept of graph codes.

Figure 3. Distributed processing in the GMAF.

Graph codes [11] are a 2D projection of a multimedia feature graph on which a set of
metrics can be applied. The mathematical background is outlined in [2] and it is shown
that graph codes are very efficient for the calculation of similarity and other MMIR tasks.
Figure 4 summarizes the most important concepts and shows a feature graph (Figure 4a,b),
the corresponding adjacency matrix (Figure 4c) and the graph code (Figure 4d). Furthermore,
a screenshot of the GMAF application showing a graph code is given in Figure 4e,f.

In the area of graph codes, several definitions have been made [2], which are relevant
for the modeling presented here. Therefore, in the following section, a short summary is
given, providing the formal background:

• Matrix fields of the Graph Codes are denoted by mi,j.
• The row and column descriptions are called feature vocabulary terms f vt and repre-

sented by the set FVT and also called the dictionary dictGC of a graph code.
• The metric MGC = (MF, MFR, MRT) is a metric triple representing the similarity of

Graph Codes on various levels.
• MF is the feature-metric and is based on f vt and defined as MF(GCi, GCj) =

|dict∩ |
|dicti |

.

• MFR is the feature-relationship-metric and represents all possible relationships. It is

defined as MFR(GCi, GCj) =
∑ AM(M∩i,j)−n
|AM(M∩i)|−n , where AM is the adjacency matrix of
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the corresponding graph. MFR represents the ratio between the number of non-zero
edge-representing matrix fields and the overall number of equivalent and intersecting
edge-representing matrix fields of, for example, two graph codes.

• MRT is the relationship-type-metric calculating similar (and not just possible) relation-

ships as MRT(GCi, GCj) =
∑

n,i 6=j
i,j (|M∩i−M∩j |)
|M∩i |−n

Figure 4. Mutimedia features represented as a graph code index (a–d), example of a graph code index
and its matrix visualization for a text document (e,f).

In [2], we outlined an algorithm based on these metrics for the parallel processing of
graph code operations. This algorithm has been implemented in Java, Objective-C (for Apple
devices), and CUDA (for NVIDIA devices) and proves that the parallelization of graph code
operations scales linear instead of polynomial or exponential time for the corresponding
graph-based operations on MMFGs. Experiments [2] show that the theoretical speedup
of these operations only depends on the number of available parallel processing units
and also prove linear time complexity. For the exemplary collections employed in [2], a
speedup of factor 4.000 was measured. Combined with the already presented solution for
horizontal scaling, this is an unseen opportunity for MMIR processing of high volume and
high level-of-detail collections.
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In [3], semantic graph codes (SGC) have been defined containing semantic annotations
with systems such as RDF, RDFS, ontologies, or knowledge organization systems [12–14]
and thus bridges the gap between the technical representation of MMIR features and its
human understandable meaning.

The distributed processing of GMAF instances can be regarded as horizontal scaling,
and the GPU-based optimizations in parallel graph code processing can be regarded as
vertical scaling. However, the current architecture of the GMAF is based on a static
configuration for either vertical or horizontal scaling. As shown in related work [15–17],
various algorithms are in place to support automated and/or application-based scaling
of processes or processing steps. However, to support the integration of both vertical
and horizontal scaling, the corresponding configuration, and also the employment of
autoscaling algorithms, several prerequisites must be met, which are currently not part
of the GMAF. Hence, further modeling and extensions of the framework are required.
This will also affect several graph code-based optimizations for further compression and
relevance calculations.

2.3. Explainability Area

To explain representation or indexing structures in MMIR, extensions for both MMFGs
and graph codes have been made [3], which employ a formal PS-Grammar [18], which takes
annotations of the MMFG or graph code to create sentences in a human-understandable way.
According to [19], a grammar G = (V, T, P, S) for a language L is defined by the tuple of
vocabulary terms V, the list of terminal symbols T, which terminate valid sentences of L,
production rules P, which describe valid combinations of non-terminal symbols and a set
of starting symbols S for sentences of L. In [18], PS-Grammars are employed as a specialized
form to generate language terms by production rules, in which the left side of the rule is
replaced by the right side. If, for example, α → β is a production rule in P, and φ, ρ are
literals in V, then φαρ→ φβρ is a direct replacement.

Particularly, when defining grammars, the set V will contain additional classes to
structure the possible production rules (typically defined as Chomsky rules [19]), e.g.,
classes to describe nominal phrases (NP), verbal phrases (VP), prepositional phrases (PP), or
other word types, such as adjectives (ADJ), and their location in validly produced sen-
tences [18]. In many cases, grammars are designed such that V ∩ T = ∅. As an example,
the sentence, “The hat is above the head”, can be represented by the context-free grammar
Gen = (Ven, Ten, Pen, Sen) for simple English sentences:

• Ven = {Sen, NP, VP, V, N, DET, PR} represents the variables (or non-terminal sym-
bols) of the grammar.

• Ten = {the, hat, is, above, head} is the set of terminal symbols.
• Pen is the set of production rules for this grammar and can be defined as follows:

Pen = {Sen → NP VP, VP→ V PP, NP→ DET N, PP→ PR NP} (1)

In [3], we further showed that not only feature graphs, but also the indexing struc-
tures, such as, for example, graph codes, can be automatically transformed into human-
understandable texts. Based on this, further metrics for semantic graph codes were intro-
duced [4] as follows:

• MDIS is the feature-discrimination-metric describing the discriminative power of a
feature vocabulary term as MDIS( f vti, f vtj) = ∑n

k=0 |m(i, k)| −∑n
k=0 |m(j, k)|

• The TFIDF measure [20] has been adapted, as well to statistically improve the relevance
of MMIR features: ∀vti ∈ SGC, ∀vtj ∈ SGCColl : TFIDF(vti, SGC) = MDIS(vti, vtj) ·
log |SGCColl |

MDIS(vti ,vtj)

• MREL can be defined as the feature-relevance-metric representing the difference of the TFIDF-
measure of two feature vocabulary terms: MREL(vti, vtj) = TFIDF(vti, SGCColl) −
TFIDF(vtj, SGCColl).
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• The introduction of collection wide stop words SGCSTOP leads to further refinement
of the feature vocabulary terms.

• Finally, and with high relevance for this paper, MABT has been defined as the aboutness-
metric for a collection as MABT =

⋃
SGCColl − SGCSTOP.

In [4], we demonstrated that based on these metrics, feature relevant graph codes (FRGC)
can be calculated by measuring the distance of a SGC employing MABT . This facilitates the
calculation of explainable SGC for answering typical MMIR questions:

• “Why is this element in the result list?”: ESGC = FRSGCElement − FRSGCQuery.
• “Why is element A before element B?”: ESGC = FRSGCA − FRSGCB.
• “What is element A?”: ESGCA = ESGC(FRSGCA).

On this basis, already human-understandable explanations of MMIR processing steps
can be calculated. However, the open challenges in the area of integration and scalability
also affect the area of explainability and expressiveness. As solutions for these remaining
challenges might involve additional MMIR processing facilities, the resulting MMIR process
steps become more difficult. Hence, the explanation of such processing steps has also to be
validated and/or enhanced.

2.4. Related Work

In the area of integration, fusion, or enrichment of MMIR features [21], several algorithms
and techniques have been proposed. Related work also aims at solutions for individual
multimedia object types. Exemplary here, an effective content-based image retrieval technique
for image visuals representation based on the bag-of-visual-words model [22] will be outlined
briefly. In their paper, the authors discuss image feature fusion based on two very common
feature detection algorithms: the SURF (speeded-up robust feature) and the FREAK (fast
retina keypoint) algorithms. They train a machine learning model for each algorithm and
fuse the detected features according to the bag-of-visual-words model by applying both
SURF and FREAK algorithms.

In learning specific and general realm feature representations for image fusion [23], another
approach for the fusion of multimedia features is presented. Input images are represented
in various transformed formats; each image is processed with specific feature detection
algorithms, and finally the detected features are fused into a single model. The authors
show that the fusion of images increases the MMIR results.

Instead of fusing features from representations of the same image, the fusion of
features from images and texts has also been a focus of research. Particularly in the area of
social media, this combination can lead to an increase in effectiveness in retrieval. In object-
aware multimodal named entity recognition in social media posts with adversarial learning [24],
the authors introduce an approach that feeds features from text-named entities [25] and
detected image features into a machine learning network. This work provides strong
evidence that the fusion of various MMIR features from different sources increases the
overall effectiveness by 3–8% depending on the underlying problem domain.

As a last candidate, the paper Discovering Multirelational Structure in Social Media
Streams [26] should be mentioned. The authors of this paper highlight that information
relevant for topic clusters (e.g., social, travel, and project) is enriched during the time, and
thus more and more refines the existing information (i.e., feature) basis. This clustering
also increases the semantic information of detected features, as ambiguous content can be
easier aligned with topic domains.

Further articles related to this work are learning rich semantics from news video archives
by style analysis [27], where news videos in particular are semantically enriched according
to production elements (e.g., weather icons and tickers), or Beyond search: Event-driven sum-
marization for web videos [28], which illustrates an automated shot detection and overview
for web videos, or semantics and feature discovery via confidence-based ensemble [29], where
machine learning approaches are also employed for the detection of features with a focus
on semantics. In temporal event clustering for digital photo collections [30], another approach
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similar to the timeline enrichment for images is presented, while content and concept indexing
for high-dimensional multimedia data [31] introduces additional dimensions (e.g., time and
topic) similar to [26]. All of this related work basically shows that the fusion of MMIR
features provides a potentially significant benefit for retrieval. However, they provide no
general or unifying solution or framework for the fusion of any multimedia object type in
general, and they all utilize existing algorithms and hence are stuck with the existing level
of detail.

2.5. Summary and Remaining Challenges

In this section, we outlined various components that already address general MMIR
topics in the problem areas. In the integration area, the GMAF framework provides facili-
ties and existing MM Feature extraction mechanisms to integrate MM content objects of
different types and to store their MM features in a MMFG. In the area of scalability, graph
codes as a 2D transformation of MMFGs show significant speedup due to parallelization
and are employed to formally model a set of metrics, which can be also applied in the
area of explainability to introduce semantics and human-understandable text generation
to graph codes and MMFGs. However, to fulfill the definitions of “Smart MMIR”, some
challenges remain open:

• In the integration area, the GMAF provides a good and flexible solution. However, this
solution is currently quite static and the processing of each MM content object is done
individually. Although collection-based metrics are available, there is no harmonizing
or integrating mechanism between various MM feature-extracting plugins. A more
intelligent and semantic approach is required.

• In the area of scalability, significant achievements have been made. However, for
real-world applications, a flexible approach for the combination of both horizontal
and vertical scaling is required to intelligently support different application types.

• The current human-understandable representation of MMFGs and graph codes in
the area of explainability is text based. However, in multimedia applications, other
visualization techniques must be employed, particularly as both MMFGs and graph
codes can become extensive.

A solution for these open challenges is now given in the next section.

3. Modeling and Design

As outlined in Section 1, Smart MMIR is interoperable, scalable, expressive, human-
understandable and explainable. In this section, we introduce two new concepts that
contribute to Smart MMIR: the soundness, which is a discrete parameter describing the
consistency of an information set, and processing flows, which are a means for scaling,
distributing, and integrating Smart MMIR with other applications. This section contains
five subsections and a summary. First, the soundness is introduced in Section 3.1, then the
concept of processing flows is described in Section 3.2. The following three subsections are
employed to model the effects of soundness and processing flows in the areas of integration
(Section 3.2), scalability (Section 3.3), and explainability (Section 3.4).

The modeling here follows the user-centered system design approach by Norman and
Draper [32], which places the user in the center of conceptual modeling. This further means
that the presented solution directly generates a benefit for users of the application. In the
context of this paper, this means that the starting point for the modeling is a use case and
thus a typical scenario that users may be confronted with. The approach further implies that
such a scenario can be selected as a test case within a cognitive walk-through experiment,
where users work with the application and the results are measured. Finally, this approach
guarantees that any modeling produces a benefit for the users of an application.

3.1. Soundness

In many MMIR applications, it is important to decide if the information extracted from
a certain MMIR object is sound. This means it is consistent, fits together, robust, describes
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the MMIR object correctly, and thus also indicates the quality of information. Figure 5
shows two exemplary social media posts, where a description and an image are employed
to provide some information to users. If the description fits to the image, such a post can
be regarded as being sound. If not, the soundness indicates some mismatch or contradiction
in the information. However, for users, it may be hard to distinguish between sound and
not-sound MIR assets.

Figure 5. Exemplary social media post with information, that is not sound (a) and sound (b).

For such a scenario, we introduce the soundness MSND as a discrete value that can
be calculated based on FRGCs and the graph code metrics MRT and MFR as the fraction of
similar relationship types and possible relationship types between given feature vocabulary
terms. For the calculation of MSND, feature relevant semantic graph codes are employed,
as they already represent standardized semantic identifiers and only contain the relevant
features for an application. Furthermore, for the calculation of MSND, only the intersecting
parameters of MMIR assets are used. If no common elements are in two FRSGCs, a
calculation of MSND is not possible:

MSND(FRSGC1, FRSGC2) =
|MRT(FRSGC1, FRSGC2)|
|MFR(FRSGC1, FRSGC2)|

, (2)

For the above example, this means that the images of FRSGC will contain the vocabu-
lary term “flower”, while the textual description either contains this vocabulary term or
does not. Therefore, MFR would have the value 1 for one common relationship, while MRT
would have either value 1 or 0. Of course, real examples not only contain single values, and
hence, in Section 5 (evaluation), further examples are given. It may be noted that a typical
MMFG can contain tens of thousands of nodes and even more relationships. The calculation
of FRSGCs compresses this information but still leaves an average of 500 vocabulary terms
for a typical element of a MMIR collection. This means that the MSND will provide a
fine-grained classifier for a MMIR asset. It is important to highlight that FRSGCs are still
explainable and that the grammar introduced in Section 2.3 is still applicable. However,
due to the compression of FRSGCs, now shorter and much more precise information can
be presented to the users.

The introduction of soundness is particularly relevant for MMIR assets that consist
of multiple individual assets, such as documents with, for example, embedded pictures,
social media posts with images, videos, texts, comments, likes, medical information with
MRT images and doctor’s letters, or various connected information of the same multimedia
scene on any other application area because in such a setup the individual elements that
contribute to the information of the combined MMIR asset can contradict or confirm each
other and thus produce a higher value for MSND. However, also, when applications deal
with individual MMIR assets, MSND can be an important metric. In previous work, we
already introduced the aboutness MABT , which describes a common knowledge of a MMIR
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collection by calculating the most relevant feature vocabulary terms and the most common
relations between them. If, for example, a medical application collects values for blood
pressure, MABT would represent the typical range of such values. If a new asset is added to
the collection, MSND can be calculated based on MABT and, as such, indicate the deviation
of a certain value from the current state of knowledge within the collection. This leads to
numerous application scenarios. Finally, if the definition of truth within an application
is given, e.g., because information about laws or scientifically approved texts is fed to
an MMIR system, MSND indicates whether an MMIR asset complies with this set of true
information.

MSND can be represented as a discrete value. This means that, based on this value,
thresholds and pre-defined decisions can be introduced. For example, if MSND of a social
media post is lower than 0.5, the post can be regarded as fake news. Such decisions can lead
to a more flexible way of processing MMIR information. However, to define such processing
flows, some further extensions to existing MMIR solutions must be made. This is outlined
in the next subsection based on the generic multimedia analysis framework (GMAF).

3.2. Processing Flows, Integration Area

As shown in Section 2.1, the GMAF already contains a structure to attach plugins
for the extraction of MM features. It has also been shown that various plugins exist that
can contribute features to the same MM content object type. For example, if an image is
processed by different object detection algorithms, each of these algorithms might detect
different or similar objects. However, if, for example, an algorithm is optimized for the
detection of fruit, a tennis ball might be considered as being an orange. If an algorithm
is trained for the detection of cars, the MM feature term “Jaguar” might have a different
meaning than the “Jaguar” detected by an algorithm optimized for animals. Experiments in
related work [7] show that, depending on the employed MM feature extraction algorithms,
contradictions can exist.

This kind of integration has to be defined by an additional user type, an expert user.
Hence, following the user-centered system design approach, an additional use case is
introduced (see Figure 6). This use case describes the expert tasks for the definition of
processing flows. These tasks are typically performed in a preparatory step. It must be noted
that also this preparatory step directly influences the MMIR processing steps and also has
to remain explainable.

Figure 6. Expert use case for feature fusion and processing flow configuration.

Contradictions, as well as confirmations, should not occur occasionally, but in a
planned and user-definable way. Users typically want to construct processing flows and
define how the results of various processing plugins should be combined (see examples in
Figure 7).
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Figure 7. User-definable processing flows.

In addition to already existing plugins, two components are introduced: (1) a feature
fusion facility and (2) the general concept of processing flows. Feature fusion is based on
MMFGs and takes one or more MMFGs as an input. The result of such a feature fusion is a
single MMFG, which contains combined or optimized elements. The decisions of which
elements are moved from the source MMFGs to the resulting MMFG, which elements
are deleted, re-weighted, renamed, or even added, are subject to a feature fusion strategy.
According to the open design and architecture of the GMAF, these strategies should also be
exchangeable and interoperable. Figure 8 shows these newly introduced building blocks in
the GMAF architecture.

Figure 8. Feature fusion and plugin chain facilities in the GMAF.

Formally speaking, a feature fusion can be denoted as a function

f f (MMFG1, MMFG2, . . . , MMFGx)→ MMFGResult (3)
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which activates a node-based function fopt, based on the set of nodes of all MMFGs N in
a collection with x elements to calculate the resulting (i.e., fused) set of MMFG nodes M
based on its node’s properties:

N = nj ∈ MMFGi ⇔ i < x (4)

fopt(N)→ M (5)

This means that for all nodes of the input MMFGs, fopt produces output nodes for the
resulting MMFG. Of course, fopt is the function, where algorithmic optimizations, such as
reasoning, inferencing, fusion, unioning, and weighting, are represented.

Furthermore, a plugin chain element is introduced (see also Figure 8), which is able
to construct a list of processing plugins, feature fusion elements, and any combination of
these to support GMAF processing in terms of the above-mentioned processing flows.

From a design perspective, processing flows are an adaptation of the multimedia strati-
fication model [9], as each processing flow can be regarded as a representation of a particular
MM content type. Following this model, the layering of processing flows can be particularly
relevant, when content is real “multi”-media, e.g., embedded audio, video, image objects
in other multimedia objects. Formally, and according to Figure 6, such a processing flow
PF can be constructed by a source location definition SLD, a processing type definition PTD,
several feature extraction definitions FED, a number of feature fusion definitions FFD, and a
target location definition TLD:

PF = {SLD, PTD, FED∗, FFD∗, TLD} (6)

The introduced GMAF plugin chain element is designed to accept such processing flow
definitions and thus provides further flexibility and interoperability, as well as smarter
application profiling in the area of integration.

3.3. Scalability Area

As already shown in Section 2.2, feature relevant graph codes represent a compressed
form of graph codes, based on their relevance within the overall collection. Compression
is very important for graph code processing, as it leads to even better processing times
due to fewer available vocabulary terms. Additionally, the above-introduced feature fusion
strategies can lead to a compression of the underlying MMFG. However, there is one
important difference: feature fusion determines what is “right”, while FRGC represents
what is “relevant” based on the collection’s content. Both mechanisms require re-processing
when new content is added to a collection. Unfortunately, such re-processing of a collection
may be very expensive, as any existing MMFG and any already calculated and optimized
FRGC may have to be re-calculated.

A simple example illustrates this: as shown in previous work [3], the GMAF is able
to detect new MM features by comparing a new MM asset to similar assets with older
timestamps. In medical applications, this can be employed to detect deviations, tumors,
or general changes in a patient’s medical data. This can also be employed to detect the
“new watch” a user is wearing in a photo that was added recently to the collection. If this is
detected, the MM Feature “new watch” is added to the corresponding MMFG and graph
code. However, at some point of time, this “new watch” might become an “old watch” and
be replaced by another “new watch”. When this happens, the whole collection (or at least
the part of the collection containing the “new watch” graph codes) needs to be re-processed.

The same applies to the general calculation of FRSGCs, as the underlying TFIDF
algorithm employs thresholds to determine which features are relevant or irrelevant for
a collection. If, for example, we have a collection of thousands of football pictures, a
single picture with a tennis ball might be considered to be irrelevant within the collection.
However, if users upload millions of tennis pictures, the relevance of the football ones might
decrease, and the irrelevant first tennis ball might gain relevance instead. Additionally,
here, re-processing is required.
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Furthermore, it has to be considered that the GMAF processing is typically distributed
both horizontally and vertically. Vertical distribution is responsible for parallelization
employing GPU processing; horizontal distribution can be employed to distribute the
collection based on MM content object type or processing facilities. For example, all videos
could be stored at a GMAF node, where specialized video decoding hardware is located.
However, in any case, such distributed collections and processing need to be reflected
also in the feature relevance metric MREL, as each individual node needs the information of
the overall collection’s MREL to calculate FRGCs and thus, to process MMIR, including
explainability.

Hence, in the following, the calculation of MREL is modified. Assuming that the overall
collection of semantic graph codes SGCColl is distributed among n GMAF nodes, each of
these nodes has its own individual subset of SGCColl :

∀k ∈ n : SGCColl =
n⋃
k

SGCCollk (7)

To indicate on which nodes re-processing is required, MREL is calculated both on the
feature vocabulary terms of SGCColl and SGCCollk . This means that a node’s individual
collection’s relevance is compared to the overall collection’s relevance. If MM assets are
added to the collection that are similar to the existing ones, neither the individual nor the
overall MREL is going to change. If different MM assets are added to a distinct GMAF
node, this might—of course—affect this single node but not automatically all other nodes
of the collection. The reprocessing indicator RI for a particular GMAF node k can thus be
defined as

∀vti, vtj ∈ SGCColl ,

∀vtm, vtn ∈ SGCCollk :

vti = vtm ∧ vtj = vtn ⇒ RIk = MREL(vti, vtj)−MREL(vtm, vtn) (8)

If RIk is greater than zero (or a certain threshold), the GMAF node k needs re-
processing. Otherwise, its relevance values are still valid. A further result of these modifi-
cation, re-processing will also affect MABT , which is based on MREL. This means that the
topic area of a collection can automatically change from time to time. As explainable graph
codes are based on FRGCs, the results of the calculation of human-understandable texts
will also change, when MABT , and MREL change automatically.

Furthermore, it must be noted that on this basis, the calculation of MSND can also be
completed in an efficient manner, as all prerequisites for this calculation can be fulfilled in
advance. Once, for example, MABT is calculated for a collection, for each further element,
MSND can be calculated in a single step. Based on the introduced processing flow, also
specialized hardware can be employed for the calculation of, for example, graph codes by
parallel processing, and hence improve the overall application performance. Hence, this
modification leads to smarter MMIR processing and scalability.

3.4. Explainability Area

Until now, human-understandable texts have been calculated for the explanation of
MMIR processing steps and results. However, written text in many cases lacks expres-
siveness. The adage “a picture is worth a thousand words” is a good example that visual
expression is regarded as more appropriate in particular areas and, for sure, in the area of
multimedia. Hence, further visualizations of ESGCs, ESMMFGs, and the corresponding
calculations of typical MMIR questions (see Section 2.3) are required. As an example for
such a visualization, a wireframe of a smart query refinement user interface is shown in
Figure 9.
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Figure 9. Visualization of query refinement based on relevance feedback.

Furthermore, the just-introduced enhancements in the area of integration and scala-
bility also affect explainability. For example, the definitions of soundness, processing flows
and feature fusion produces important information that potentially need to be explained
to users. soundness, for example, provides relevant information about the correctness or
integrity of a certain MMIR asset. If users upload an additional element to their MMIR
collection, deviations can be detected automatically, and a detailed explanation as to why
this element deviates from another or from the rest of the collection can be presented to the
users. Depending on the definition of processing flows, the MMIR results can be completely
different through applications, which may lead to confusion when the same MMIR objects
are viewed by users in different applications. Hence, these steps also have to be included
in the expressiveness and explainability of Smart MMIR. However, this topic will remain
the subject of future work, as in the context of this paper, the important foundation for this
research is introduced in the other research areas.

Basically, the introduced concepts already provide a solid foundation for the modeling
of further UI elements to visualize expressiveness. However, such a refinement and
feedback function should be available for any MM content object type. This means that
query refinement has to be available for image-based queries, text-based queries, audio-
based queries, video-based queries, and mixed multimedia-based queries. Hence, in our
modeling, we also employ a generic architecture here, which supports these use cases in a
general way (see Section 4).

3.5. Summary

In this section, we introduce a number of extensions and refinements of the existing
state of the art to make existing MMIR smarter. Particularly, in the area of integration, the
definitions of soundness, feature fusion strategies and processing flows empower applica-
tions to utilize smarter workflows and a semantically correct calculation of MM features.
The adaptation of the graph code metrics MABT and MREL for distributed and heterogeneous
collections, including the calculation of a reprocessing indicator, supports highly efficient
scaling of MMIR processing. Finally, we give an example of a more expressive visualization
of MMIR processes in the area of explainability. All these points contribute to Smart MMIR.

To show and prove that the modeling here can be implemented, in the next section, a
brief overview of our prototypical proof-of-concept (POC) implementation is given.

4. Implementation

In this section, a short overview of selected components of the POC implementation
is presented. The full implementation of the GMAF and the corresponding concepts,
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including those presented in this paper, is available at GitHub [33]. In this section, for
each problem area, one selected implementation example is given. Section 4.1 contains
information about the integration area presenting a feature fusion plugin, Section 4.2 shows
the distribution of collections in the area of scalability, and Section 4.3 demonstrates the
implementation of visual query refinement and relevance feedback.

4.1. Integration Area

In the implementation area, we introduce a new structure in the GMAF, the feature
fusion strategy. A corresponding Java interface is added to the framework as shown in
Listing 1:

Listing 1. The introduced interface for Feature Fusion Strategies
1 public i n t e r f a c e FeatureFus ionStra tegy {
2 public void optimize (MMFG mmfg, Vector <MMFG> c o l l e c t i o n ) ;
3 }

Based on this interface, various strategies were implemented. To outline the simplicity
with which new strategies can be added to this structure, Listing 2 shows an example for a
UnionFeatureFusion, which calculates the union of a given set of MMFGs according to the
above-mentioned structure.

Listing 2. The union feature fusion strategy
1 public c l a s s UnionFeatureFusion implements FeatureFus ionStra tegy {
2 public void optimize (MMFG mmfg, Vector <MMFG> c o l l e c t i o n ) {
3 for (MMFG m : c o l l e c t i o n ) {
4 for (Node n : m. getNodes ( ) ) {
5 i f (mmfg . getNodesByTerm ( n . getName ( ) ) != null ) {
6 mmfg . addNode ( n ) ;
7 }
8 }
9 }

10 }
11 }

Feature fusion is made a core component of the GMAF processing, which now also is
extended to provide processing flows. These can be represented by an XML file, which is
passed to the GMAF processing of a distinct MM content object. An exemplary description
of such a processing flow in XML is shown in Listing 3.

Listing 3. Definition of a processing flow
1 <process −flow name=" ImageImport " extens ion=" * . jpg " i sGenera l=" f a l s e ">
2 <plugin − d e f i n i t i o n name=" plugin1 " c l a s s =" de . swa . img . google . GoogleVision "/>
3 <plugin − d e f i n i t i o n name=" plugin2 " c l a s s =" de . swa . img . yolo . F r u i t D e t e c t o r "/>
4 <plugin − d e f i n i t i o n name=" plugin3 " c l a s s =" de . swa . img . amazon . FaceDetect ion "/>
5
6 <fusion − d e f i n i t i o n name=" merge1 " c l a s s =" de . swa . f e a t u r e . UnionFeatureFusion "/>
7 <fusion − d e f i n i t i o n name=" merge2 " c l a s s =" de . swa . f e a t u r e . RelevanceOptimizer "/>
8
9 <export − d e f i n i t i o n name="mpeg7" c l a s s =" de . swa . exporter . Mpeg7Converter "/>

10 <export − d e f i n i t i o n name=" xml " c l a s s =" de . swa . exporter . XMLFlattener "/>
11 <export − d e f i n i t i o n name=" graphml " c l a s s =" de . swa . exporter . GraphMLFlattener "/>
12
13 <resource − d e f i n i t i o n name=" upload−d ir " type=" f o l d e r " l o c a t i o n =" temp/upload "/>
14 <resource − d e f i n i t i o n name=" t a r g e t −di r " type=" f o l d e r " l o c a t i o n =" temp/ t a r g e t "/>
15 <resource − d e f i n i t i o n name=" export −d i r " type=" f o l d e r " l o c a t i o n =" temp/export "/>
16 <resource − d e f i n i t i o n name=" facebook " type=" u r l " l o c a t i o n =" h t t p : //www. . . . "/>
17
18 <param name=" plugin1 . lod " value=" 2 "/>
19 <param name=" plugin2 . output " value=" temp "/>
20
21 <flow −source name=" upload−di r "/>
22 <mmfg processor=" plugin1 , plugin2 , plugin3 "/>
23 <fus ion processor=" merge1 "/>
24
25 <export t a r g e t =" export −di r " exporter="mpeg7"/>
26 <export t a r g e t =" c o l l e c t i o n "/>
27 </process −flow>
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In lines 2–11, the definition of the required resources for the described processing flow
is given. For example, in line 2, a GoogleVision plugin is defined, which internally follows
the GMAF plugin structure and is made accessible within the processing flow by the name
plugin1. Resource definitions in lines 13–16 can be employed to describe infrastructure
settings. Each of the processing components can receive additional parameters (see Lines
18 and 19), which are then passed via Java Reflection to the specified component. Finally,
in Lines 21–26, the actual processing flow is defined by a sequential list of actions. In this
case, the flow looks for new images in the upload-dir folder, processes these with plugin1,
plugin2 and plugin3 and applies a feature fusion with merge1 before finally exporting the
result in the mpeg7 format to the collection.

4.2. Scalability Area

In the area of scalability, the structure of the GMAF is extended to fully support
distributed processing. The component responsible for this is a CollectionProcessor, which
represents both horizontal and vertical distribution (see Figure 10).

Figure 10. Collection processor structure for the distribution of collections and processing.

With these introduced structures, also the overall setup of GMAF installations has to
be changed. As collections can now be distributed, each collection needs to have one (or
more) master nodes, which represent the knowledge about the distributed components.
Hence, when logging on to the GMAF, users must specify which master node they want to
connect to.

4.3. Explainability Area

Finally, in the area of visualization and explainability, a prototypical implementation
of relevance feedback and query refinement has been added to the framework, which
allows users to mark sections of MM Objects as being generically relevant or irrelevant.
Each such mark internally is processed as a separate graph code and correspondingly added
or subtracted from the query. Figure 11 shows a screenshot of the implemented solution.

In Figure 11, for each result element, a set of check boxes is added, which give the
users the opportunity to mark a complete asset as being “relevant”, “irrelevant” or “neutral”
according to the current query. Furthermore, even the subsections of the content of a
selected query can be marked by drawing bounding boxes (for images) or highlighting text
with different colors to indicate which passages or sections are relevant or irrelevant. This
highly improves the overall effectiveness of the MMIR process, as users are now able to
interactively and visually refine their queries. Further details of this approach are given in
Section 5.
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Figure 11. Snippet of the UI for query refinement and relevance feedback.

Furthermore, the expressiveness of the GMAF is improved by adding complex com-
parison functions, which explain why an MM asset is in a result list, what the difference is
between two selected MM assets, and what MM features are contained in an MM object
from an MMIR perspective. An example of this is shown in Section 5.

For the processing of reasoning and inferencing, the Apache Jena project [34] is inte-
grated with the GMAF, which comes with various APIs to define rules and to calculate
inferences. As the Jena project is able to import RDFS and RDF files, the integration of the
MMFG-RDFS-datastructure is implemented employing the RDF and RDFS export formats
of the GMAF. The result of this integration is that the GMAF framework can now calculate
inferences and conflicts based on its own semantic model by passing RDF to Jena, letting
Jena calculate the consistency and inferences of the model and thus define the default logics
and the corresponding set of facts F and hypotheses D. The code snippet in Listing 4
shows the exemplary steps to validate a model and to show conflicts.

Listing 4. Use of the explainability-feature of the GMAF.
1 / / G e n e r a t e t h e r e l e v a n t GraphCode
2 Vector <GraphCode> gcs =
3 MMFGCollection . g e t I n s t a n c e ( ) . getAllGC ( ) ;
4 GraphCode relevantGC = TFIDF . calculateRelevantGC ( gcs ) ;
5 RDFExporter . export ( relevantGC , " mmfgDataExport . rdf " ) ;
6
7 / / I n i t i a l i z e Apache J e n a
8 Model schema = RDFDataMgr . loadModel ( "mmfgSchema . rdf " ) ;
9 Model data = RDFDataMgr . loadModel ( " mmfgDataExport . rdf " ) ;

10 InfModel infmodel = ModelFactory . createRDFSModel ( schema , data ) ;
11
12 / / V a l i d a t e C o l l e c t i o n
13 Val id i tyReport v a l i d i t y = infmodel . v a l i d a t e ( ) ;
14 i f ( v a l i d i t y . i s V a l i d ( ) ) {
15 / / e v e r y t h i n g f i n e
16 }
17 e lse {
18 / / C o n f l i c t s
19 for ( Val id i tyReport . Report r : v a l i d i t y . getReports ( ) ) {
20 System . out . p r i n t l n ( r ) ;
21 / / p r o c e s s t h e c o n f l i c t
22 }
23 }

The example in Listing 4 shows that Jena is employed as a calculation engine for
inferencing and reasoning based on the GMAF and MMFG representations (Lines 8–10).
All relevant MMFG information is exported to a mmfgDataExport.rdf file in RDF format
(Line 5), which is then loaded into Jena (Line 9). Then, the inferencing model can be
calculated (Line 10) and a validity report can be generated (Lines 13–23).

4.4. Summary

The exemplary implementations of the POC presented in this section show that the
proposed approach can actually be implemented and that both integration and scalability
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as well as explainability of the GMAF can be extended to become smarter. In the next
section, an evaluation of this POC is presented.

5. Evaluation

In this section, details of the evaluation of the POC are discussed. Additionally,
following the structure of the previous sections, for each of the problem areas, selected
experiments are presented, which outline the overall improvement of MMIR by employing
Smart MMIR approaches. First, an evaluation of the integrability of the Smart MMIR
components is given in Section 5.2. Then, experiments in the area of scalability are presented
in Section 5.3, and finally, in Section 5.4 results in the area of explainability are presented.

5.1. Soundness

The introduction of soundness provides additional insight and further expressiveness
to users, which can be regarded as a major improvement of explainability in MMIR appli-
cations. Hence, in the following discussion, further experiments and the corresponding
results are shown, which demonstrate the benefits of MSND in various application areas.

The detetection of security-relevant traffic scenes is one major task in the area of
automotive and autonomous driving. The introduction of soundness can contribute to this task
by comparing the actual traffic scene to expected or uncritical and secure traffic scenes.
One major advantage of this is that the calculation of soundness falls down to simple matrix
operations, which can be performed extremely fast, even in real time, which is highly
important in the area of autonomous driving. In the following experiment, we investigated
if and how soundness can be employed to approve, if the behavior of cyclists can be regarded
as safe, or if a higher risk for injuries has to be expected in the case of an accident. Therefore,
we took legal texts as sound input, which define the recommendations for safe cycling (such
as wearing a helmet) and created a graph code GCSa f e of this text. Then, a set of images was
processed with the GMAF to also calculate the corresponding graph codes GCi. The images
were taken from Adobe Stock [35] (see Figure 12).

Figure 12. Calculation of soundness in the area of traffic security.

GCSa f e contained vocabulary terms and relationships that, for example, described
that wearing a helmet is safe, the handling of smartphones during driving is not safe,
etc. In total, GCSa f e had 132 vocabulary terms and the corresponding relationships. For
this experiment, we did not use the intersection of GCSa f e and GCi, as this would lead to
a loss of relevant safeness parameters. Instead, we decided to leave all 132 vocabulary
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terms and relationships as input for the calculation of soundness. In total, 250 images were
processed in this way. The results show that no image fully complies to all vocabulary
terms and relationships and thus provide a perfectly sound result. This was, of course,
expected, as legal texts and the corresponding transformation into graph codes as well as the
object detection algorithms employed within the GMAF produced slightly different levels
of features. Even after a semantic analysis based on SGCs, there was no perfectly sound
result. However, the experiment shows that most images of the chosen dataset produce a
soundness of MSND = 0.7–0.8 (see example images shown in Figure 12a). Some images show
a significantly lower value as shown in Figure 12b with MSND = 0.53 and Figure 12c with
MSND = 0.62. A visual examination shows that images with lower MSND values contain
indicators for safety violations, such as not wearing a helmet or dealing with a smartphone
during cycling.

Another area where soundness can support MMIR processes is the area of news and fake
news. As a underlying dataset, we selected the text archive of the Washington Post [36],
which is also part of the reference datasets of the TREC conference [37] and contains about
750,000 articles in machine readable JSON-format (see Figure 13a). These articles were
processed into graph codes (see Figure 13b).

Figure 13. Washington Post article (a) and the corresponding graph code (b).

Based on these prerequisites, we conducted two experiments. First, the soundness
between two articles in the same topic area is calculated. Second, the soundness parameter is
employed to determine contradicting documents within the same topic area. In both cases,
it is required to work on articles within a similar topic. It does not make sense to compare
sports articles with international politics. As a starting point, we selected an article that has
also been employed during the TREC 2021 conference about “Coyotes in Maryland” (see
Figure 14).

Figure 14. Sample article chosen as a topic for the calculation of soundness.
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Based on this starting point, different datasets were selected for both experiments,
and MSND was calculated for the base article and the elements in the datasets. For the first
experiment, a similarity search (based on MF) was performed to define the dataset. For the
second experiment, a search for recommendations (i.e., somehow related articles) based on
MFR was performed to define the dataset. The expectation is that similar articles would
mostly be sound, while in the recommendations, also contradicting elements can be found.
In this manner, we selected 25 documents for each experiment, the results of which are
shown in Table 1.

Table 1. Soundness calculation based on the Washington Post dataset.

Doc-Id MF MSND Doc-Id MFR MSND

c23f5d3face1 1.0 1.0 c23f5d3face1 1.0 1.0

9736d04fc8e4 0.9987393 0.93 e7278db80d86 0.9987393 0.82
a83e627dc120 0.99747854 0.88 a83e627dc120 0.99747854 0.82
7f2f110c6265 0.99621785 0.91 7f2f110c6265 0.99621785 0.79
e7eb4319b8bc 0.99495715 0.89 7b9eba0f87d6 0.9924357 0.81
0034bb576eee 0.9936964 0.85 14b64f3d453f 0.991175 0.86

. . . . . . . . . . . . . . . . . .
0047d15a24e0 0.96974283 0.94 d43a3ca733b4 0.9621785 0.91
a3ce76ec4751 0.9684821 0.88 d068924b49 0.96091783 0.88

fake news 0.9623122 0.64 fake news 0.93221342 0.59

In the first row of Table 1, the input document (see Figure 14) with Doc-Id
“c23f5d3face1” is processed and—of course—achieves the highest possible value for simi-
larity, recommendation and soundness. In the remainder of Table 1, the other documents
of the 25 selected items and the corresponding processing values are shown. The last row
in the table with Doc-Id “fake news” contains an article that was re-written based on the
original text (see Figure 14) with the narrative “As birds have moved into the area other
animals such as coyotes have been driven out. This can lead to the downturn of the number
of other animals killed by the birds. While birds are natural predators, which get rid of
coyotes, they also have an impact by attacking people and their pets”. So basically, the
terms “coyote, bird, other animals” were switched to produce a fake news article.

The results for soundness in this experiment show that soundness is independent from
similarity or recommendations. Furthermore, it shows that it can be employed for fake
news detection, as the value for manually produced fake articles is significantly lower than
the values for the other articles. We assume that the combination of all Graph Code metrics
and MSND will deliver the best fake detection results. This will be further elaborated as
part of future work. However, even this experiment shows that MSND can provide a highly
relevant measure. Furthermore, it is important to highlight that the calculation of MSND
falls down to simple matrix operations, which can be processed easily, efficiently, and even
in parallel. This will be shown in the experiments in Section 5.3. Additionally, a further
compression in terms of feature fusion can be an additional means to compress the graph
codes for processing. This is now shown in the next section.

5.2. Integration Area

In the area of integration, relevance calculations can be performed by employing
feature fusion strategies. To show the improvement of feature fusion, a qualitative experiment
was conducted, where the resulting graph codes of images are compared. Figure 15 shows
two graph code for the same image. In Figure 15a) the normal graph code is shown, while in
Figure 15b), a feature fusion plugin is applied, which removes irrelevant features according
to the collection’s content. In this experiment, the collection contains 200 photos of a photo
shoot with the same person, same background, same clothing, etc. However only in few
photos, the person in the picture presented a coffee cup.
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Figure 15. Feature fusion for relevance calculation. (a) shows a regular Graph Code, (b) shows the
calculated Feature Relevant Graph Code.

This experiment clearly shows the improvement of feature fusion and relevance
calculations. When considering that the graph code in Figure 15b) now contains exactly the
subset of MM features, that is actually relevant for the collection, this becomes a very Smart
MMIR solution. Of course, when looking for a “coffee cup”, the image would have been
found also without Smart MMIR. However, when asking questions, such as “why is this
image relevant?” or “what is the most important information on this image?”, Smart MMIR
can produce answers immediately. This is also further evaluated in the area of scalability
and presented in the next subsection.

5.3. Scalability Area

In the area of scalability, several quantitative experiments were conducted to further
refine and detail the set of experiments already shown in [2]. Figure 16 shows the cor-
responding results. The details of this extended evaluation are given in Tables 2 and 3
based on the number of input images c, the number of calculated MMFG nodes n, the
corresponding edge number e, the Neo4J runtime with p = 3 (i.e., that Neo4J compares up
to three links between nodes for similarity). The Java and iPad column shows the runtime
of the corresponding GMAF implementation. The evaluation of scalability is shown in
Table 4 based on n nodes, i GMAF instances, the number a of multimedia objects per
instance, and the runtime t for the execution of the experiment. Furthermore, in Table 5,
the overall runtime based on the number of physical servers for horizontal scaling nHSC
and the number of instances per physical sever iHSC is evaluated. Finally, Table 6 shows
the parallelization (i.e., vertical scaling) based on CPU and GPU implementations of the
graph code algorithms.



Analytics 2023, 2 219

Table 2. Scalability with the Flickr30K dataset.

c n e N(p = 3) Java

10 326 1591 8 ms 9 ms
20 634 3218 33 ms 18 ms
30 885 4843 62 ms 40 ms
40 1100 5140 196 ms 42 ms
50 1384 7512 272 ms 48 ms
60 1521 9979 380 ms 51 ms
70 1792 1231 533 ms 54 ms
80 1986 1482 786 ms 54 ms
90 2208 1705 1044 ms 58 ms
100 2479 1823 1262 ms 60 ms

Table 3. Scalability with the DIV2K dataset.

c n e N(p = 4) N(p = 5) Java iPad

10 558 3273 65 ms 1027 ms 10 ms 10 ms
20 870 5420 430 ms 4688 ms 18 ms 12 ms
30 1119 7799 1686 ms 44,217 ms 26 ms 14 ms
40 1415 10,501 3303 ms 63,705 ms 35 ms 15 ms
50 1692 12,994 3495 ms 75,845 ms 39 ms 15 ms
60 2023 16,078 4643 ms - 39 ms 18 ms
70 2427 19,776 - - 39 ms 17 ms

Table 4. Scalability, initial run on a single server with n GMAF instances.

n i a t

1 1 720,000 635
1 2 360,000 320
1 3 240,000 214
1 4 180,000 164
1 5 144,000 129
1 6 120,000 110
1 7 102,000 96
1 8 90,000 81
1 9 80,000 75
1 10 72,000 73
1 11 65,000 71
1 12 60,000 68
1 13 55,000 67
1 14 51,000 66
1 15 48,000 65
1 16 45,000 65

Table 5. Scalability of nodes with 8 GMAF instances each.

nHSC iHSC a t

1 8 90,000 81
2 8 45,000 41
3 8 30,000 29
4 8 22,500 22
5 8 18,000 17
6 8 15,000 14
7 8 12,850 12
8 8 11,250 11
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Table 6. Scalability, runtime measures (milliseconds) of vertical scaling on GPUs including ramp-up
and ramp-down phases.

Processing Step CPU (Single Thread) Apple Metal (M1) Nvidia Cuda GTX Nvidia Cuda 2x RTX

Ramp Up 27 2.430 3.015 2.130
Search 1 2.327 103 327 98
Search 2 2.406 107 342 102
Search 3 2.388 98 339 98

Ramp Down 625 792 1.210 723

Total 7.773 3.530 5.233 3.151

Figure 16. Results in the area of scalability.

In Figure 16a, a comparison of the runtime of a similarity search based on graphs (blue)
and graph codes (red) is shown. For the graph calculations, a standard Neo4J database [38]
was employed and the calculated MMFGs were inserted. On GMAF side, a standard Java
implementation of the above-mentioned metrics was employed for this comparison. The
experiment was executed on the same machine. The results of this experiment clearly
prove that graph codes have a better scaling (linear vs. polynomic or exponential) than
graph-based algorithms. In this experiment, a speedup of factor 20 was achieved; however,
the switch to linear complexity is, of course, even more important than the numbers.

Figure 16b shows the results of a runtime measuring of a horizontal distribution of
GMAF instances, which perform graph code based operations. This also shows that the
overall runtime of a query processing can be reduced significantly by adding additional
nodes to a GMAF setup. The optimal number of nodes for this particular experiment is
between 8 and 10, and leads to an improvement of the overall processing time by a factor
of 8.01 (8 nodes with processing time of 81 s vs. 1 node with processing time of 635 s). For
this experiment, huge collections containing 750,000 elements were employed to obtain
reliable results of the possible speedup.

Figure 16c shows both the result values and a diagram of an experiment for ver-
tical scaling on different hardware. In particular, here, the CUDA implementation for
NVIDIA GPUs was evaluated. This experiment showed that significant improvement
can be achieved also within a single GMAF instance by enabling parallel processing. In
this example, a speedup of factor 40 was measured, which is only limited by the number
of parallel processing units on the GPU. If, theoretically, the whole collection fits into
the GPU memory, any MMIR processing can be performed in a single step, producing
results immediately.
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Depending on the application, these three scaling methods can be flexibly combined
and integrated with each other. If these experiments are combined, the overall processing
time can be reduced by factor 20× 8× 40 = 6.400. This means that when the previous
processing of a MMIR request takes, for example, 6.400 s (i.e., one hour and 45 min), the
same request can be resolved with Smart MMIR in a single second.

5.4. Explainability Area

For the area of explainability, various cognitive-walkthrough-based experiments were
conducted to evaluate how Smart MMIR can improve the overall MMIR experience for
users. As stated in the modeling section, further research is planned in this area. Therefore,
the following experiments are mostly designed to confirm that the changes in the areas of
integration and scalability do not affect the existing solution. Therefore, in this subsection,
two examples of these experiments are shown.

Figure 11 already showed the user interface for query refinement. On the right
side, sections of a specific image were marked as “relevant” (green bounding box) and
“irrelevant” (red bounding box). The results of this refined query are shown in the center of
this screenshot and demonstrate that, due to this refinement, now only white (or at least
white-ish) dogs remain in the result list, and black dogs were removed automatically. In
a second experiment, the textual visualization of MMIR processing steps was evaluated.
Figure 17 shows how the results of a GMAF search can now be explained automatically by
comparing them to the query and applying the introduced metrics.

Figure 17. Visualization of ranking and comparison information.

5.5. Summary

Summarizing this evaluation section, it can be stated that Smart MMIR improves
existing MMIR solutions in all problem areas. The experiments show an increase in integra-
bility, significant performance optimizations, and also UI components that provide more
expressiveness and explainability for the users. Particularly, the introduction of soundness
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and the corresponding capabilities of SMART MMIR in various application areas, can
improve existing solutions and applications. Therefore, the results of these experiments
support the overall assumption that Smart MMIR can provide benefits in all areas of MMIR.

6. Summary and Conclusions

In this paper we introduced, defined, and evaluated our definition of the term “Smart
MMIR” and showed how Smart MMIR differs from standard MMIR. Based on previous
work, Smart MMIR can be achieved by adding further modeling, formal calculations,
and functional extensions to standard MMIR processes, components and processing steps.
Smart MMIR improves MMIR in the following areas:

• Interoperability and integration: the integration of processing flows and feature
fusion provides significant benefit for the interoperability with other applications,
the adaptation of solutions for distinct application areas, and the exchangeability of
algorithms for further refinements of MMFGs and graph codes.

• Scalability: the improvements in the area of scalability are enormous. Both vertical
and horizontal scaling provide a significant speedup of the overall processing time
and their combination offers opportunities to increase the Smart MMIR experience
for users.

• Explainability and expressiveness: in addition to the already existing generation of
human understandable texts based on ESMMFG and ESGC, further MMIR expressive-
ness is introduced to provide and visualize insight into MMIR processing steps.

All these areas are important for any modern MMIR application, algorithm, compo-
nent, user interface, or framework. The Smart MMIR improvements can either be adapted
for other solutions or integrated via the GMAF API to enrich applications with Smart
MMIR mechanisms and algorithms.

Furthermore, Smart MMIR offers great opportunities for further research in the areas
of feature fusion, reasoning and inferencing, feature extraction, and feature detection.
Therefore, Smart MMIR can be regarded as an important and relevant base technology in
the area of multimedia information retrieval.
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