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Abstract: In this survey, the issues of urban routing are analyzed, and critical considerations for
smart and cost-effective delivery services are highlighted. Smart cities require intelligent services and
solutions to address their routing issues. This article gives a brief description of current services that
either apply classical methods or services that employ machine learning approaches. Furthermore, a
comparison of the most promising research options in regard to VRP is provided. Finally, an initial
design of a holistic scheme that would optimally combine several tools and approaches to serve the
needs of different users with regard to the VRP is presented.

Keywords: vehicle routing problem; urban routing; smart cities; routing algorithms; machine
learning; multi-objective routing problem; routing services

1. Introduction

One of the most prominent trends of recent years is urbanization, as more and more
people opt to live in large cities. The process of urbanization is associated with both
economic and social development. However, as the urban population continues to increase,
so do the problems that people in large cities face. Consequently, both academia and
industry are seeking to find optimal solutions to urbanization’s problems.

Given this situation, an effort is made towards the aim of the improvement of infras-
tructure, people’s quality of life and sustainability, through the development of smart cities.
The growth of modern smart cities can alleviate various problems faced by large cities’
citizens. One of the most-concerned smart cities challenges is intelligent transportation and
significantly solving the vehicle routing problem.

Both modern societies and smart cities require smart applications and services to
remedy the problem of the last-mile procedure of goods shipped. That need has been gener-
ated from various social, economic, and climate requirements for improving their citizens’
quality of life and reducing wasted fuels, CO1 and CO2 emissions, overall transportation
costs, and traffic congestion.

This paper focuses on the urban vehicle routing problem (VRP) and examines both
classical VRP and its variants and a multi-objective VRP. In addition, several existing
solutions for finding the optimal path through the use of classical routing algorithms are
presented. However, as Machine Learning (ML) technology continues to develop rapidly,
it is increasingly being incorporated as a solution to various existing problems, one of

Analytics 2023, 2, 1–16. https://doi.org/10.3390/analytics2010001 https://www.mdpi.com/journal/analytics

https://doi.org/10.3390/analytics2010001
https://doi.org/10.3390/analytics2010001
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/analytics
https://www.mdpi.com
https://orcid.org/0000-0003-2691-2473
https://orcid.org/0000-0003-0081-2052
https://orcid.org/0000-0002-7981-2700
https://orcid.org/0000-0003-3223-7742
https://orcid.org/0000-0003-2947-486X
https://orcid.org/0000-0001-5431-2454
https://orcid.org/0000-0003-2005-7939
https://doi.org/10.3390/analytics2010001
https://www.mdpi.com/journal/analytics
https://www.mdpi.com/article/10.3390/analytics2010001?type=check_update&version=1


Analytics 2023, 2 2

which is VRP. Thus, it was deemed necessary to review ML-based solutions that find the
optimal route.

The contributions of the present survey are as follows:

• Presentation of the VRP problem and its variants
• Analysis of the state of the art of routing algorithms
• Research upon ML based research efforts that contribute to solving VRP problems

The remainder of this paper is organized as follows: In Section 2, the categorization of
single objective and multiobjective VRPs is presented; Section 3 provides a brief review
of existing routing services; While Section 4 identifies the key points of existing routing
services; In Section 5 a review of routing services incorporating ML techniques is presented;
While Section 6 identifies the key points of existing ML-based routing services; Regarding
the VRP, Section 7 provides an initial design of a holistic scheme to serve the needs of
various users; Finally, Section 8 concludes with the findings of this review.

2. The Vehicle Routing Problem

The VRP is a complex optimization problem, in which there exists a set of clients at
various locations, each one with a shipment need, and a fleet of vehicles, departing from
the central depot that shall optimally satisfy the needs of the clients [1]. The aim of a typical
VRP is to find out the optimal route to minimize the total costs. Furthermore, various factors
affecting route planning, such as vehicle capacity, fuel consumption, traffic congestion, etc.,
have to be considered to accomplish the minimization of the total route costs.

Over the years, various studies have been proposed by researchers for VRPs that focus
on a single objective regarding route planning. The most known and most studied VRP
is the Capacitated Vehicle Routing Problem (CVRP), which focuses on cases where the
vehicle’s capacity is constrained. On the CVRP route finding, only one vehicle visits every
customer a single time; the total client’s requirements should not go beyond the vehicle’s
capacity, and the total cost has to be minimized given all the aforementioned parameters [2].

The client’s need for the delivery process to be accomplished in a restricted time frame
has led to the definition of the Vehicle Routing Problem with Time Windows (VRPTW), in
which the clients should be served by the vehicles, in a certain time window of a day [3].

The vehicle’s fuel emissions are a significant concern in many research fields, includ-
ing VRP. Thus, the Fuel Consumption Vehicle Routing Problem (FCVRP) focuses on the
minimization of the overall vehicle consumption and emission in the planning of a route [4].
The green VRP variant is focused on including both the minimum distance and the CO2
emission in route planning [5].

Another factor that can decrease the overall costs of logistic companies, and therefore
the costs of the delivery process is the design of the supply chain network in a better way.
This process consists of a better establishment of the depots’ locations and a better firmness
of serving clients from the depots leading to the Location Routing Problem (LRP) [6].
Furthermore, a similar problem with the LRP is the Inventory Routing Problem (IRP), which
emphasizes the minimization of distribution costs without affecting the client’s stock [7].
Lastly, the combination of LRP and IRP led to the implementation of Combined Location
Routing and Inventory Problem (CLRIP) which minimize the overall costs by assigning
the depots’ locations, arranging vehicles route planning, and defining the inventory policy
based on the client’s needs [8].

However, in the reality, optimal route planning is not comprised of only one objec-
tive/factor but of combinations of those. Thus, the research community focused on the
Multiobjective Routing Problems, which consider partial objectives/factors to generate the
optimal route. An expansion of CVRP is Multiobjective Capacitated Vehicle Routing Prob-
lem (MOCVRP), in which two or three objectives are usually considered, such as distance,
transportation time, or the number of the fleet of vehicles, to find the optimal route [9]. The
Green Capacitated Vehicle Routing Problem (GCVRP) is classified in the same subcategory.
The GCVRP focuses on green transportation by including the reduction of hazardous
particles such as greenhouse gases, CO2, etc., and fuel consumption in a route [10,11]. The
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Multiobjective Vehicle Routing Problem with Time Windows (MOVRPTW) is a dilatation
of VRPTW which takes into account the various aspects of the multiobjective problem
of time window delivery [12]. Furthermore, the multiobjective extension of LRP is the
Multiobjective Location Routing Problem (MOLRP) that considers at least transportation
costs, lateness, and the number of vehicles combined with maximization of clients’ service
quality [13,14]. Moreover, it should be noted that more VRPs have been proposed in the
scientific literature. However, this review studies the most known and common VRPs, the
categorization of which is depicted in Figure 1.

Figure 1. Categorization of the referred single-objective and multiobjective VRPs.

The VRP and its more complex variations are constantly being studied by the research
community as more variants are emerging in recent years. Additional information can be
read in the following works: [15–18].

3. Exploration of Existing Routing Services

Several routing services have been presented over the years regards in order to address
the VRP in smart cities. The present section reviews in chronological order various smart
routing services in urban environments that have already been proposed and implemented.

The authors in [19] considered the employment of GAs to the basic VRP, in which
customers are served from a single point. Vehicles are subject to a weight limit and, in some
cases, to a distance limit, while only one vehicle is allowed to supply each customer.
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Berger and Barkaoui propose a hybrid GA solving the VRPTW [20]. The proposed
algorithm involves the simultaneous evolution of two solutions’ populations that face
separate objectives with a relaxed time constraint. The first population evolves the solutions,
to minimize the total travel distance, while the second population aims to minimize the
transgression of the time constraint.

The authors in [21] proposed a meta-heuristic ant colony procedure for solving the
DVRP. Initially, a working day is divided into time slots. Then, a sequence of static routing
problems is generated for the vehicles. Finally, the meta-heuristic ant colony algorithm is
used to solve the problem. A series of tests showed that the proposed method outperformed
others for both artificial and real problems.

The proposed work in [22] includes a dynamic route evaluation model so that vehicles
respond to changing traffic information, a modified Dijkstra algorithm to find out the
shortest routes in real-time, and finally, an improved evolutionary algorithm to search for
the best routes in a dynamic network. The proposed approach has been evaluated through
simulations and is effective in finding the best vehicle routes in real-time when customer
nodes and network information are dynamically changing.

A novel hybrid GA for vehicle routing is proposed in [23]. The proposed solution finds
the optimal path for the VRP, while simultaneously considering the vehicles’ heterogeneity,
dual routes, and multiple depots.

In [24] a hybrid approach that combines a GA with the Dijkstra algorithm to solve a
dynamic multi-objective problem is proposed. The proposed algorithm finds the solution
simultaneously for three objective functions: route length, travel time, and ease of driving.
In order to apply a GA to a traffic system, the authors use Dijkstra’s algorithm to calcu-
late the initial population of high-quality paths. On the initial population, the proposed
approach applies a GA algorithm to generate the subsequent routes’ generations.

Ho et al. [25] developed two hybrid genetic algorithms for routing and scheduling
deliveries in supply chain cases, dealing with the multi-depot VRP (MDVRP). The first
hybrid genetic algorithm randomly generates the initial solutions, while the second hybrid
genetic algorithm applies heuristics to generate the initial solutions.

A method to reduce industrial costs and the unfavorable impacts of fleet management
in a Hub and Spoke transmission network is given out in the paper [26]. The distribution
of goods in large cities may be best addressed by the time-dependent problem of pick-up
and delivery and the time window models. The aforementioned parameters led to the
development of a dynamic version of an algorithm that analyzes how daytime traffic con-
gestion affected road traffic. An adaptable heuristic solution is suggested, which has been
verified using actual data from third-party logistics service providers in the transportation
industry. By significantly decreasing air pollution, noise pollution, and traffic jams, the
heuristic algorithm demonstrates its capability to diminish route time and trip distance,
while significantly increasing the level of service beyond the community’s necessity.

Moreover, a new approach of the ant colony algorithm to solve the VRP is presented
in [27]. The main feature of this method is the hybridization of the solution construction
mechanism of the ant colony algorithm, and the combination with a scatter search.

The authors in [28] observed that most car drivers use routing paths based on the
shortest distance between the starting and ending points. However, the shortest distance
route may differ from the shortest time route. For that reason, they used the ant colony
algorithm and combined it with traffic data, correctly predicting both the travel times and
the fastest routes, through avoiding future traffic jams.

A modified A* algorithm was proposed to calculate and generate an automatic optimal
path [29]. The proposed modified algorithm is able to avoid repeatedly searching in invalid
areas, which makes it efficient and accurate in finding the feasible path in unknown environ-
ments.

In [30] a Tabu search algorithm was implemented to solve the VRPTW, in which the
constraints of the vehicle’s capacity and time window for each customer must be taken
into account. The proposed algorithm was applied to real-world conditions for identify-
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ing the optimal delivery routes for a transportation company. The experiments resulted
in the minimization of the transportation cost while the time constraint requirements
were satisfied.

An improved ant colony algorithm for solving the PVRPTW is proposed in [31].
In this problem, the scheduling period extends over several days and each customer
must be served within a specific time window. Firstly, the information for different days
is stored in a multidimensional array and then two cross-over functions improve the
algorithm’s performance.

In [32] the proposed ant colony algorithm is used for the time windows-dependent
routing problem (TDVRPTW). In this problem, a fleet of vehicles has to deliver goods to a
set of customers, where the customers’ time interval constraints should be respected and
the travel time between two points depends on the departure time.

Another modified Tabu search algorithm for the VRP is proposed in [33]. After the
comparison of the proposed algorithm to other algorithms, the adoption of the Tabu search
shows that the proposed solution is more stable, fast, and with high calculation efficiency,
both for small and for large-scale problems.

Billhardt et al. [34] introduced a dynamic cyber fleet management system. The pro-
posed technology seeks to increase the productivity, safety, and autonomy of drivers and
vehicles. The first layer of the system’s architecture is made up of vehicles, the second
layer of fleet coordination modules, and the third layer of components for monitoring, task
management, global fleet control, etc.

An efficient and flexible framework for dynamic waste management and collection
is presented in the paper [35]. The presented framework’s design consists of the physical
infrastructure, including smartphones and smart bins, a middleware layer, with dynamic
routing models and OpenIoT, and the physical infrastructure, among municipality stake-
holders and smart waste trucks. Furthermore, the authors examined the dedicated trucks
model, detour model, minimum distance model, and reassignment model. While the CPU’s
elapsed time, collected load, distance, routing time, response time, and fuel quantity char-
acteristics were used to determine the performance of these four aforementioned models.

In [36], a team chose to use the Bellman–Ford algorithm to solve the problem of the
energy efficiency of electric vehicles. First, a model that represents electric vehicles is
implemented, and then a Bellman–Ford search is applied to the model to find the most
energy-efficient path.

In the SOUL project, information and communication technology are applied to the
local food supply chain, such as the e-grocery supply chain [37]. The project’s architecture
is made up of a central unit, a traffic handler service, a data broker layer, various hosted
services, and third-party services, enabling technologies, sensors and other external data
sources, and mobile devices. The aim of the proposed work is to enhance the efficiency
and effectiveness of e-grocery activity in urban areas by incorporating a decision support
system and a mobile application.

A fleet management service solution for enhancing mobility and safety in urban areas
is presented in [38], and it offers both fleet control and fleet monitoring. Information about
a vehicle’s mobility, including fuel usage, geolocation, speed, and CO2 vehicle’s emissions
level, is provided via the fleet monitoring service. While in order to minimize the distance
between the vehicles and reduce traffic shockwaves, the service of fleet control delivers
various information about the moving objects, such as the absolute position, velocity,
and acceleration.

The modified Bellman–Ford algorithm proposed in [39], deals with the multi-route
single-vehicle capacity problem (mt-CCSVRP). In this problem, a single vehicle can make
consecutive trips to serve a group of locations by minimizing the sum of arrival times.

PreGo system [40] was implemented to offer real-time tailored routing service in urban
environments. PreGo’s solution suggests routes that may be customized to the preferences
of a particular user are non-objective before the beginning of the route and are flexible to
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changes in the roads’ conditions. Additionally, the PreGo system was subjected to a detailed
experimental evaluation utilizing both real and generated data to validate its performance.

For the VRP with discrete deliveries and pickups, in which customer demands are
discrete in terms of lots (or orders), the team in [41] used the Tabu search algorithm. The pro-
posed algorithm avoids unnecessary travel expenses. The experimental results showed that
the proposed algorithm is a more efficient solution than the existing literature algorithms.

The authors in paper [42] try to find out the optimum solution for the shortest path in
multi-point delivery problems, that can be used by drivers and autonomous vehicles. First,
a graph representing the roads is created, and then Dijkstra’s algorithm is used to find the
shortest path from the starting point to all the points that should be served. Then, starting
from the nearest point which is now considered the new starting point, the proposed
solution tries to find the shortest path to the remaining points.

An IoT system to guide emergency vehicles to the least congested route, avoiding
traffic jams in a smart city is proposed in [43]. Sensors are the main real-time data source of
the system’s architecture, while a data fusion technique based on fuzzy logic is used.

The authors in [44], considered two sub-models with the objective of minimizing the
total transportation costs and maximizing the recycled revenue from municipal solid waste
management. The first sub-model uses the VRP to route the waste fleet management to the
separation facilities. The second sub-model was implemented to allocate resources from
separation facilities to total recovery units or landfills.

An IoT-based food supply chain network that effectively locates and monitors food
quality within a supply chain, and finds the source of a contaminated food product is
presented in [45]. Moreover, a dynamic vehicle routing using the bee colony algorithm to
minimize both the travel and execution time during the transportation is proposed.

4. Identifying Key Points of the Existing Routing Services

The inspection of the previously mentioned routing services led to a set of features
that may be used to assess the offered solutions and to directly compare those. Table 1
presents a coherent summary of whether each solution takes into account each one of the
identified main features. The black dots in Table 1 indicate whether a feature applies to the
service. These features are the following:

• Time window: The requirement for delivery to happen under specific timing restrictions
• Fleet management: The management of a number of vehicles and the optimization of

the utilization of those.
• Transportation cost: The combined economic cost of a route that consists of fuel cost,

vehicle maintenance cost, and human labour cost.
• Traffic handler: Taking into account traffic conditions for optimizing the route planning.
• Travel time/distance: Minimising the route time and distance.
• Green routing: Minimising the exhaust emissions.
• Vehicle capacity: Take into consideration the capacity of a vehicle or fleet of vehicles

for optimizing route planning.

Moreover, Table 1 shows the integration of the features in studied research routing ap-
proaches. The basic approach that is common throughout almost all cases is travel time/distance
optimization. The main objective of VRP is identifying the fastest/shortest routes. It has to be
noted though that there are cases where the proposed systems ignore this parameter and focus
on other objectives, such as transportation costs [19,20,22–31,33–37,39,40,42–45].

The second most evident feature is transportation costs. In a simplistic approach, this
metric can be assessed as directly connected to the travel distance. The actual transportation
cost depends heavily on travel distance but is also related to other parameters such as the
altitude variance along a route, the fuel type of the vehicle or the maintenance plan for the
fleet. According to the problem set-up, it may be required to take into account one of the
two aforementioned features or both. A route planning solution has to combine both and
allow the user to set his preferences [20,21,27,29,30,33–35,37,38,41,42,44,45].
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Table 1. Routing Services Features Comparison Table.

Project Time
Window

Green
Routing

Vehicle
Capacity

Fleet
Management

Transportation
Costs

Traffic
Handler

Travel
Time/Distance

Baker & Ayechew [19] ◦ ◦ • ◦ ◦ ◦ •
Berger & Barkaoui [20] • ◦ ◦ ◦ • ◦ •
Montemanni et al. [21] ◦ ◦ • • • ◦ ◦

Wang et al. [22] • ◦ ◦ ◦ ◦ • •
Jeon et al. [23] ◦ ◦ • • ◦ ◦ •

Kanoh & Kenta [24] ◦ ◦ ◦ ◦ ◦ • •
Ho et al. [25] ◦ ◦ • • ◦ ◦ •

Falsini et al. [26] • • • • ◦ • •
Zhang & Tang [27] ◦ ◦ • ◦ • ◦ •
Tatomir et al. [28] ◦ ◦ ◦ ◦ ◦ • •

Yao et al. [29] ◦ ◦ ◦ ◦ • ◦ •
Cheeneebash & Nadal [30] • ◦ • • • ◦ •

Yu & Zhong [31] • ◦ • ◦ ◦ ◦ •
Balsiciro et al. [32] • ◦ • • ◦ • ◦

Jia et al. [33] ◦ ◦ • ◦ • ◦ •
Billhardt et al. [34] ◦ ◦ ◦ • • ◦ •

Anagnostopoulos et al. [35] ◦ • ◦ • • • •
Abousleiman &
Rawashdeh [36] ◦ • ◦ ◦ ◦ ◦ •

Tadei et al.[37] • • ◦ • • • •
Natale et al. [38] ◦ • ◦ • • • ◦
Rivera et al. [39] ◦ ◦ • ◦ ◦ ◦ •

Hendawi et al. [40] ◦ ◦ ◦ ◦ ◦ • •
Qiu et al. [41] ◦ ◦ • • • ◦ ◦

Adnan & Abdulmuhsin [42] ◦ ◦ ◦ ◦ • ◦ •
Rout et al. [43] ◦ • ◦ ◦ ◦ • •

Akbarpour et al. [44] ◦ ◦ • • • ◦ •
Nagarajan et al. [45] ◦ ◦ ◦ ◦ • ◦ •

An interesting case is the integration of the fleet management feature. More than half
of the proposed solutions do not take into account fleet management and are restricted to
solving the problem of route planning either with a single vehicle or under a simplistic
approach that the iteration of optimal route planning with a single vehicle for a pool
of orders and a number of vehicles can efficiently solve the problem. In practice, route
planning with more than one vehicle provides flexibility and can facilitate better locality
of batched orders or better management of time off the road for each vehicle. As in a
real-world set-up, it is not common to have a single vehicle; the discussed approaches that
take into account more than one vehicle and do proper fleet management are favorable and
more efficient [21,23,25,26,30,32,34,35,41,44].

Another important feature that seems not to receive significant attention is the time
window feature. When the routes refer to products that impose specific timing restrictions,
either for preserving their quality or because the delivery time is critical for the application.
Only seven of the discussed services take the timing window into account and this for
sure presents a limitation in the current state of the art. Along with that, an interesting
feature that can facilitate more efficient route planning, especially in urban environments,
is taking into account traffic information and that is present in approximately half of the
proposed solutions. Another popular feature for route planning is taking into account the
environmental footprint of the routes. The number of the solutions that actually do that is
limited [20,22,26,30–32,37].

Furthermore, considering the table below, it appears that several studies [19,21,23,25–
27,30–33,39,41,44] incorporate the feature of vehicle capacity into their provided VRP
services. Vehicle capacity is a feature that affects the planning of the optimal route quite
a lot, as the lack of vehicle capacity can cause many modifications to the route, execution
time, delivery time, route costs, etc., of the optimal path. However, although several of the
studies [26,30–32,41] include both time window and vehicle capacity features, the majority
of them find the optimal route by including only one of the two features, and not both of
them concurrently.
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5. A Review of Routing Services Incorporating ML Techniques

In addition to the traditional routing services proposed in the scientific literature
over the past years, new services incorporating new technologies are being constantly
presented. ML is the most popular technology used in addition to conventional algorithms,
to improve the performance of the aforementioned algorithms. In the following paragraphs,
an overview of routing solutions that integrate ML is provided.

The objective of work [46] is to solve the CVRP using ML-based techniques. The
authors proposed the “Learn to Improve” (L2I), a learning-based solution for CVRP that
excels Operation Research (OR) algorithms in terms of solving speed. Specifically, the
authors demonstrated a learning-based algorithm for the CVRP, proposing a framework
capable of splitting heuristic operators into two different groups to accelerate the operation
and concentrate Reinforcement Learning (RL) on those identified as improvement operators.
Lastly, they presented an ensemble technique in which RL rules are taught simultaneously,
yielding improved outcomes at the same computational cost.

The authors of work [47] constructed a database of optimum solutions for sampled
events and characteristics. The aforementioned database is utilized for training ML models
capable of predicting features of optimum solutions for unobserved cases and creating
branching scores responsible for assessment, a process that resembles the behavior of an
expert. This generates a new form of the VRPTW, namely Sampled Vehicle Routing Problem
with Time Windows (SVRPTW). Experiments indicated that the technique described above
surpasses conventional algorithms in terms of both the number of nodes handled during
the query and the runtime required.

The authors of study [48] suggested Deep Policy Dynamic Programming (DPDP),
which intends to combine the benefits of established neural heuristics and DP techniques.
DPDP prioritizes and restricts the DP state space based on a policy established from a
deep neural network trained to estimate edges based on sample solutions. Three differ-
ent variations of routing problems were utilized and tested. First, the original traveling
salesman problem (TSP), then the simplest routing problem regarding vehicles, the VRP,
and finally, a variation of the classical TSP, the TSP with time windows (TSPTW). The
experiments demonstrated that the performance of the algorithms was greatly enhanced;
thus, the algorithms were capable of outperforming several other known solutions.

Study [49] aims to address the Electric Vehicle Routing Problem with Chance Con-
straints (EVRP-CC) and partial recharging. The authors presented a strategy that consists
of two independent phases. The first determines the pathways between all nodes to be
visited, while the second determines the optimal sequence of the trip to reduce energy use
and arrange to charge the vehicle as required. In the second phase, the algorithm identifies
the least energy-intensive routes that begin and end at the depot, stopping at all customers
and charging stations as needed. Customers, charging stations, and depots are considered
to be positioned at junctions as nodes in the road network. All of the aforementioned
employ an author-developed probabilistic Bayesian ML model. In conclusion, the trials
conducted in the city of Gothenburg, along with several realistic simulations, reveal a high
degree of accuracy for the energy forecast, as well as energy improvements and increased
route dependability. More specifically, according to the results of the experiments, no total
consumption fell beyond the prediction’s 95% confidence zone. Furthermore, it was feasible
to save up to 19.5% of energy on the ten itineraries without charging, with an average
of 10.6%.

The authors of study [50], attempt to address the multi-objective VRP with stochas-
tic demand (MO-VRPSD), one of the more complex variants of the VRP. There are two
significant obstacles associated with the aforementioned issue; first, the unpredictability
of client needs; and second, the possibility of conflicting purposes. To address the afore-
mentioned challenges, the authors provide a decision tree-based ML model to solve the
MO-VRPSD, which helps in producing suitable populations based on the information
gained from previous search processes and significantly decreases the number of iterations.
In addition, they provided a double input about the MO-VRPSD’s primary difficulties.
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First, they presented a novel way to encode and decode the route and chromosome so that
it can successfully manage route failure, and then they utilized a robust multi-objective
optimization algorithm to cope with the competing objectives in the MO-VRPSD. Their
strategy is assessed using modified Solomon VRP benchmark cases. The experimental
findings demonstrate that the suggested evolution model is capable of locating solutions
with a better Pareto front and outperforming previous evolutionary methods.

Work [51] provides a solution to the Energy Minimizing Vehicle Routing Challenge
(EMVRP), a problem that focuses on locating routes of vehicles that consume the lowest
amount of energy when servicing a collection of cities or clients. The authors offer an
implementation of a genetic algorithm that is augmented by ML approaches to tweak its
parameters in a subsequent phase. The strategy under discussion is the application of
k-means clustering, which demonstrated that the identification of distinct data clusters has
a substantial influence on enhancing the effectiveness of the utilized genetic algorithm.

In the paper [52], the authors suggested a revolutionary extensive neighborhood search
(LNS) architecture for routing-related problems that uses learnt heuristics to generate new
outcomes. The learning process is based on a deep neural network with an attention
mechanism and was created specifically for integration into an LNS search environment.
The described system, NLNS, is an extension to LNS that discovers and deploys repair
operators for VRP instances using a guided heuristic search. The authors examined the
technique with respect to CVRP and the Split Delivery VRP (SDVRP). Considering CVRP
instances featuring approximately 297 customers, the proposed method outperforms an
LNS that employs simply handmade heuristics plus a well-known heuristic algorithm from
the literature by a large margin. In addition, for the CVRP and the SDVRP, the authors
demonstrated that the aforementioned technique outperforms current ML approaches
and methods.

The authors of study [53] provide an end-to-end framework for employing RL to solve
the VRP. In this method, a single policy model is trained to propose optimal solutions
for a diverse variety of issue situations of comparable size by detecting reward signals
and according to feasibility restrictions. The authors evaluated a parameterized stochastic
policy, and by using a policy gradient method to maximize its parameters, the trained
model generates the solution as a series of successive actions in real-time without requiring
re-training for each new issue occurrence. Regarding the CVRP, the suggested method
beats traditional heuristics and Google’s OR-tools on moderate instances with equivalent
computation time in terms of solution quality. In addition, the authors explored the effect of
separated shipments on the reliability of the solution and demonstrated how the approach
under consideration can deal with delivery problems. Lastly, the aforementioned paradigm
may be used for various variations of the VRP.

Authors in [54] presented a framework based upon a value-function-based DRL
scheme that uses a combinatorial action space, where the action selection issue is explicitly
described as a mixed-integer optimization problem. As an illustration, they applied this
paradigm to the CVRP. In each instance, an action is characterized as the creation of a
single route, and a basic policy iteration method is used to develop a deterministic policy.
According to the authors, the suggested methodology is competitive with existing RL
approaches and accomplishes similar performance when compared with state-of-the-art
OR methods on medium-sized standard library instances.

In order to solve one of the most common problems encountered in the field of trans-
portation and supply chain delivery, the CVRP, a research team used a recursive approach
of the k-means clustering algorithm along with the Dijkstra shortest path algorithm [55].
The proposed solution divides into parts the CVRP to find the optimal route. Firstly, it takes
into account the capacity of the fleet of vehicles to optimize the total route’s capacity; then
the k-means algorithm, considering the travel time, distance travel, and vehicles’ capacity,
is implemented; in the next step, the optimal capacity of vehicles is ensured; while in the
last step, the Dijkstra’s algorithm finds the shortest route for the fleet of vehicles.
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6. Identifying Key Points of the ML-Based Routing Services

While employing ML algorithms in the context of solving the different variations
of the VRP, is an expected approach the existing state of the art is not at a level that can
significantly change the developed systems and services. The main conclusions that can be
made upon the analysis of existing literature (depicted in Table 2) are as follows:

• Limited number of research papers: Scientific community tends to employ ML tech-
niques to solve (or solve more efficiently) any existing problem, and this results in
a huge volume of papers (of mixed quality level) in multiple domains that offer
ML-based solutions. Our findings regarding the ML solutions for VRP problems are
limited in number, and this indicates that either the problems are efficiently solved
with other approaches or that the employment of ML algorithms for such problems is
not sufficiently effective (e.g., because of the form of the VRP).

• Fragmentation with regards to parameters of the problem to be solved: The ana-
lyzed research efforts tend to take into account different criteria when applying the
ML algorithms to the VRP problem. Vehicle capacity parameter is present in approxi-
mately half of the approaches, while the rest tend to prioritize differently from each
other upon the objectives of the route planning.

• Insufficient justification on the selection of ML algorithms: On average the efforts
analyzed tend to insufficiently explain what ML algorithms are used and the rationale
behind that. In some works this is straightforward (e.g., stating that a specific algo-
rithm is used to solve a well-defined problem), but in the rest, the ML approach is not
well explained and the contribution of each paper is not clearly defined.

• Comparison with traditional approaches: While using ML for VRPs sounds promis-
ing, it has to be justified by concrete results and through the comparison of those to the
results of existing alternatives. In the majority of the works presented in the previous
section, such a comparison is missing. This may be due to either authors neglecting
this task but also due to the fact that such a comparison requires a lot of effort, in order
to equally test the different approaches, under identical test parameters (e.g., same
routes, same traffic load, etc.)

Table 2. ML-based Routing Services Features Comparison Table.

Project Time Window Green Routing Vehicle Capacity Multi Objective ML Techniques

Lu et al. [46] ◦ ◦ • ◦ Reinforcement Learning
Furian et al. [47] • ◦ ◦ ◦ ML algorithms
Kool et al. [48] • ◦ ◦ ◦ ML algorithms
Basso et al. [49] ◦ • ◦ ◦ Bayesian ML model
Niu et al. [50] ◦ ◦ ◦ • Decision Tree

Cooray & Thashika [51] ◦ • ◦ ◦ k-means clustering
Hottung & Kevin [52] ◦ ◦ • ◦ ML algorithms

Nazari et al. [53] ◦ ◦ • ◦ Reinforcement Learning
Delarue et al. [54] ◦ ◦ • ◦ Reinforcement Learning

Moussa [55] ◦ ◦ • ◦ k-means clustering

In general, we can conclude that while ML adoption in the VRP domain seems to be an
interesting approach, the current state of the art is not at a satisfactory level. A combination
of reasons that relate to both the practical difficulties of the domain and the complexity of
the problem has made difficult the offering of an effective and robust ML service that could
replace the traditional solutions to the variations of the VRP.

7. An Efficient Solution Regarding the VRP

On the basis of the aforementioned discoveries, we initiated the design of a framework
capable of delivering an efficient solution for the VRP and its variants, including the CVRP
and the GVRP. The proposed system considers all the stages of the logistics workflow,
from the initial order placement through the delivery of the goods to the client. Initially,
the set of delivery points is processed, and batches of close geographical locations of the
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delivery addresses are created dynamically by utilizing ML models. Subsequently, an
ensemble scheme of various genetic algorithms is used to identify the optimal route for
each one of those batches. Regarding the optimal route, the vehicles start from the same
starting point, make exactly one stop at each client, and finally, return to the starting
point. The aforementioned procedure considers the overall COx emissions, and the total
distance travelled.

To evaluate the system in each and every stage of its development, real data were
collected from orders which took place in the city of Lamia, Greece. In the following
paragraphs, important experimental findings obtained during the early stages of the
development of the suggested solution are reported. In the experiments conducted, 200
real-world routes (originating from 9 different starting points) followed by logistics vendors
were used.

7.1. Experimental Results Regarding the Initial Stage of System’s Development

Regarding the initial stage of development, the first observations made were related
to the percentage of routes that were successfully handled by the system, as well as the
percentage of routes deemed more efficient in terms of distance travelled when compared
to actual data.

Initial simulations showed that the proposed ensemble scheme was able to handle
successfully (identify a route that complies with the VRP restrictions) the 74% of the routes,
as displayed in Figure 2.

Figure 2. Successful rate in regard to the display of the route from the proposed system.

Out of the routes that were successfully handled, 86% were deemed to be a better route
recommendation in terms of total distance travelled, whereas only 14% of the displayed
routes were unable to locate a more efficient solution. Figure 3 shows the percentage of the
routes which achieved a more efficient route.
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Figure 3. Successful rate in regard to the display of the optimal route from the proposed system.

The results indicate that the ensemble scheme must be fine-tuned or enhanced by
additionally employing ML algorithms in order to appropriately present a route, even if it
is not the ideal one based on the data entered into the system. The final stage is to evaluate
the data regarding total journey time and distance to determine when the system presents
the optimal route and what occurs when it fails to do so.

7.2. Evaluation of the Routes Displayed by the System

For each starting point, a number of routes are included in the real-world data. Figure 4
depicts the minimum (orange) and maximum (blue) distance deviation values for the whole
set of routes from each starting point for the proposed system. In comparison to the real
conditions of Starting Point 5, a variance of 8517 meters emerges in this set of routes.

Figure 4. Minimum and maximum time deviation of the displayed routes.

Similarly, in regard to the total time, Figure 5 depicts, with respect to the total time
travelled, the minimum (orange) and maximum (blue) time deviations in the set of all routes
from each beginning point, based on the proposed system, versus the actual conditions
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of a route. On a number of instances, the system requires a longer period of time to
deliver orders than actual data. This is not a major concern, as our primary focus is on the
GVRP variant, for which the total distance and total COx emissions must be decreased.
Nevertheless, as stated previously, the system is still in its early stages of development, so
the scheme could be improved to achieve even faster time travel.

Figure 5. Minimum and maximum distance deviation of the displayed routes.

The results regarding the maximum and minimum time and distance deviations
indicate that the system is capable of finding almost every time a better route in regards
to the total distance travelled, and when it fails to do so, it displays a route with a similar
distance to the routes which correspond to the real-world data. Contrariwise, the system
displays routes in which the time travel required for the order demands a higher amount of
time for the delivery. This could be explained due to the mechanism which is in charge of
displaying an estimation of the required time calculated with many factors such as traffic
and weather conditions. Additionally, the system with respect to road safety regulations
always calculates the time respecting the speed limit and traffic lights.

8. Discussion

In the present survey, we have provided a concise introduction to the VRP and its
variants and thoroughly discussed the proposed route planning algorithms. An analysis of
the most prevalent routing difficulties and the corresponding parameters that have to be
taken into account has also been conducted. The routing algorithms proposed have been
compared on the basis of the scope under which they provide solutions to the VRP and a
systematic overview of the current state of the art has been attempted. Additionally, some
of the most well-explored multiobjective problems were discussed.

Extending this analysis we opted for identifying the research efforts in the literature
that focus on applying ML methods to solve variants of the VRP or parts of it. Existing in-
telligent routing systems for urban areas and routing systems that incorporate ML methods
in order to enhance the performance of the classical routing algorithms have been assessed.
The results were not of the expected robustness and quality.

On the basis of these discoveries, we presented a holistic scheme that would optimally
combine different tools and approaches to provide a modular configurable solution that
would serve the needs of different users with regard to the VRP.
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GCVRP Green Capacitated Vehicle Routing Problem
IRP Inventory Routing Problem
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LRP Location Routing Problem
MDVRP Multi-Depot Vehicle Routing Problem
ML Machine Learning
MO-VRPSD Multi-Objective Vehicle Routing Problem with Stochastic Demand
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MOLRP Multiobjective Location Routing Problem
MOVRPTW Multiobjective Vehicle Routing Problem with Time Windows
mt-CCSVRP multi-route Single Vehicle Capacity Problem
OR Operation Research
RL Reinforcement Learning
SVRPTW Sampled Vehicle Routing Problem with Time Windows
TDVRPTW Time Windows-Dependent Routing Problem
TSP Travelling Salesman Problem
TSPTW Travelling Salesman Problem with Time Windows
VRP Vehicle Routing Problem
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