
Citation: Reusens, M.; Reusens, M.;

Callens, M.; vanden Broucke, S.;

Baesens, B. Comparison of Different

Modeling Techniques for Flemish

Twitter Sentiment Analysis. Analytics

2022, 1, 117–134. https://doi.org/

10.3390/analytics1020009

Received: 7 June 2022

Accepted: 9 October 2022

Published: 18 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Comparison of Different Modeling Techniques for Flemish
Twitter Sentiment Analysis
Manon Reusens 1,* , Michael Reusens 2 , Marc Callens 2, Seppe vanden Broucke 1,3 and Bart Baesens 1,4

1 Research Centre for Information Systems Engineering (LIRIS), KU Leuven, Naamsestraat 69,
3000 Leuven, Belgium

2 Statistics Flanders, Havenlaan 88 bus 100, 1000 Brussel, Belgium
3 Department of Business Informatics and Operations Management, UGent, Tweekerkenstraat 2,

9000 Ghent, Belgium
4 School of Management, University of Southampton, 2 University Road, Highfield,

Southampton SO17 1BJ, UK
* Correspondence: manon.reusens@kuleuven.be

Abstract: Microblogging websites such as Twitter have caused sentiment analysis research to increase
in popularity over the last several decades. However, most studies focus on the English language,
which leaves other languages underrepresented. Therefore, in this paper, we compare several
modeling techniques for sentiment analysis using a new dataset containing Flemish tweets. The
key contribution of our paper lies in its innovative experimental design: we compared different
preprocessing techniques and vector representations to find the best-performing combination for a
Flemish dataset. We compared models belonging to four different categories: lexicon-based methods,
traditional machine-learning models, neural networks, and attention-based models. We found that
more preprocessing leads to better results, but the best-performing vector representation approach
depends on the model applied. Moreover, an immense gap was observed between the performances
of the lexicon-based approaches and those of the other models. The traditional machine learning
approaches and the neural networks produced similar results, but the attention-based model was
the best-performing technique. Nevertheless, a tradeoff should be made between computational
expenses and performance gains.

Keywords: sentiment analysis; big data; preprocessing; word embeddings; bidirectional LSTM; BERT

1. Introduction

In recent decades, social media has boomed immensely. The total number of social
media users has more than tripled since 2010. More specifically, it is estimated that the
total number of social media users increased from 0.97 billion in 2010 to 4.2 billion, and the
total is expected to increase further in subsequent years. In this social media landscape,
Twitter possesses more than 370 million users, and each day, more than 500 million tweets
are sent out to the world [1]. Therefore, Twitter sits on a substantial amount of data that are
valuable for all kinds of research (for example, sentiment analysis).

Sentiment analysis is the research field that tries to detect people’s sentiments, opinions,
emotions, etc., in a written text [2]. This research field has been widely studied over the last two
decades. The authors of [3] named the year 2001 or so as the start of the large-scale awareness
of the research problems in this field. Some factors that explain the increasing interest in
the research challenges of sentiment analysis are the rise of machine-learning techniques
and datasets that have become available through the increased usage of the Internet. Many
websites where reviews and opinions concerning a certain topic can be written are available.
Therefore, as stated before, social media websites such as Twitter form an excellent source
of input data for sentiment analysis. However, not only social media is prone to this type of
analysis; movie reviews also constitute an excellent data source [4]. Subtasks of sentiment

Analytics 2022, 1, 117–134. https://doi.org/10.3390/analytics1020009 https://www.mdpi.com/journal/analytics

https://doi.org/10.3390/analytics1020009
https://doi.org/10.3390/analytics1020009
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/analytics
https://www.mdpi.com
https://orcid.org/0000-0002-0275-0679
https://orcid.org/0000-0002-9796-2016
https://orcid.org/0000-0002-8781-3906
https://orcid.org/0000-0002-5831-5668
https://doi.org/10.3390/analytics1020009
https://www.mdpi.com/journal/analytics
https://www.mdpi.com/article/10.3390/analytics1020009?type=check_update&version=1

Analytics 2022, 1 118

analysis are, for example, polarity or emotion detection. More recent advances in this research
field focus on aspect-based sentiment analysis [5,6] or conversational sentiment analysis [7].
These are natural language processing tasks where the sentiment of a certain aspect in the text
or consecutive sentences is considered, respectively.

The key contribution of our paper lies in its innovative experimentation: f combining
different existing models and techniques and using them on a Flemish dataset. First, we
applied different preprocessing approaches and vector representations using a carefully
chosen set of sentiment analysis techniques. More specifically, preprocessing techniques
such as stemming and lemmatization were used to check whether more preprocessing
would, as expected, lead to better results. Moreover, we aimed to compare models with
various levels of complexity: lexicon-based methods, traditional machine-learning methods,
neural networks, and attention-based models. As shown in [4], a comparison of the
techniques employed by these various types of models is rare in the literature. Usually,
models trained in benchmark studies belong to the same category; for example, some
deep learning models may be compared with other deep learning models. However,
inspired by [8], where simple models achieved strong performances, we examined whether
a very advanced attention-based model is required for our dataset. In contrast, can simple
techniques also result in decent sentiment analysis performance?

Moreover, we collected a new dataset containing Flemish tweets. Significantly less
research has been conducted regarding sentiment analysis for the Flemish language than for
English. Additionally, most studies researching natural language processing (NLP) in the
Dutch language also involve training on Dutch datasets; however, Flemish, spoken in the
northern part of Belgium, differs significantly from the Dutch spoken in the Netherlands,
especially in an informal setting such as Twitter. The main differences between these two
languages lie in the type of vocabulary used, the usage of different pronouns, and the
integration of words from different languages, which is more pronounced in Flemish than
in Dutch tweets. We refer the reader to Appendix A for examples of tweets in Dutch and
Flemish. Another layer of difficulty is added by the fact that Flemish tweets often contain
multiple languages, most often Flemish, English, and French. Therefore, this paper adds
to the existing literature on sentiment analysis. To the best of our knowledge, a paper has
never compared the above-mentioned techniques of varying complexity in combination
with different preprocessing approaches on a dataset containing Flemish tweets. The
code for this paper can be found at https://github.com/manon-reusens/Comparison-of-
techniques-for-Flemish-Twitter-Sentiment-Analysis.

The paper is structured as follows. First, we discuss recent related work. Next, we
describe the methodology used in this paper. Finally, we show and discuss the results of
the experiments and form an overall conclusion.

2. Related Work
2.1. Benchmark Studies

Many sentiment analysis studies have been conducted. In Table 1, a compact overview
of several recent studies is shown. For a complete overview of the benchmark studies in
sentiment analysis, we would like to refer the reader to literature reviews or tertiary studies
such as [4].

As shown in Table 1, the utilized datasets vary significantly both in language and type
of data contained within them. Many languages have been considered by these different
studies, though English is appears most frequently both in this table and in the literature in
general. Notably, other languages have also been studied; however, the amount of literature
available for English outweighs that for any other language [4]. The table also indicates the
type of input data used for the benchmark analysis. In [8], movie reviews were used, and
the authors of [9] used both movie reviews and hotel reviews as input data. Nevertheless,
the field of sentiment analysis is not limited to the previously listed input sources; any
written text can be used to conduct sentiment analysis.

https://github.com/manon-reusens/Comparison-of-techniques-for-Flemish-Twitter-Sentiment-Analysis
https://github.com/manon-reusens/Comparison-of-techniques-for-Flemish-Twitter-Sentiment-Analysis

Analytics 2022, 1 119

Table 1. Overview of the benchmark sentiment analysis studies.

So
ur

ce

La
ng

ua
ge

So
ci

al
M

ed
ia

D
at

a

Se
nt

im
en

t

Le
xi

co
n-

B
as

ed
M

et
ho

ds

Tr
ad

it
io

na
lM

ac
hi

ne
Le

ar
ni

ng
M

od
el

s

N
eu

ra
lN

et
w

or
ks

A
tt

en
ti

on
-B

as
ed

M
od

el
s

[8] English 7 Polarity (Binary) X X X X
[10] Greek X Polarity (Ternary) 7 X X X
[11] Saudi X Emotions 7 X 7 7

[9] Persian 7 Polarity (Binary) 7 X X 7

[12] English X Polarity (Quinary) X 7 X X
[13] Arabic X Emotions 7 X X 7

[14] English X Polarity (Ternary) 7 7 X X
Our Study Flemish X Polarity (Ternary) X X X X

A detected sentiment can be expressed as a polarity or an emotion. Polarity can be
either binary (positive or negative) or ternary (positive, neutral, or negative). However,
one study [12] shown in Table 1 also detected polarity with quinary target variables; a scale
ranging from very negative to very positive was used. This is what the authors of [15] refer
to as the assignment of the degrees of positivity or negativity in polarity analysis. This is
also a very interesting field; however, as the target variable in this paper is ternary, it is out
of the scope of this study. For the categorizations of emotions performed by [11,13], we
would like to refer the reader to the original papers.

The last four columns in Table 1 show the types of models used in the various studies.
We categorized them into lexicon-based methods, traditional machine-learning models,
neural networks, and attention-based models. A lexicon-based method is a model that
uses a lexicon or dictionary to detect sentiments. This lexicon is specifically created for
sentiment analysis. Traditional machine-learning techniques include logistic regression,
naive Bayes, and random forest. These techniques are widely used for several tasks and
have existed for a long time. The next category is neural networks. This category contains
several different models, such as feedforward neural networks (FFNNs), convolutional
neural networks (CNNs), recurrent neural networks (RNNs), and long short-term memory
(LSTM). Finally, attention-based models are approaches that, as implied by their name, use
attention, such as transformers. Table 1 clearly shows that studies that benchmark models
in all four distinct categories are rare. Only one of the selected benchmark studies [8] did
this, yet not for social media data. More often, the tested models fall within one or two
of the described categories. These results are in line with what the authors of [4] found
in their tertiary study on sentiment analysis. They showed a clear overview of common
approaches in this research field. Note, however, that as attention-based models are fairly
newly adopted models, they were not included in their study.

For all studies mentioned in Table 1 where an attention-based model was included,
this model consistently outperformed the other models. However, in our opinion, one
important nuance should be noted. For example, in [8], a simple logistic regression model
achieved high performance that was similar to that of a bidirectional encoder represen-
tation from a transformer (BERT) model. More specifically, the accuracy of the logistic
regression model was 89.42%, and the BERT reached an accuracy of 92.31%. Even though
the authors mentioned this, they neglected to stress this finding. This could suggest that for
a simple problem such as sentiment analysis, the use of attention-based models might be
too advanced, especially with binary predictions. Our hypothesis is also supported by [2].
In this book, Liu stated the following: In general, sentiment analysis is a semantic analysis
problem, but it is highly focused and confined because a sentiment analysis system does not need
to fully understand each sentence or document; it only needs to comprehend some aspects of it, for

Analytics 2022, 1 120

example, positive and negative opinions and their targets (Liu 2015, p. 15). Moreover, in [4],
the authors mentioned that traditional machine-learning models often perform similarly
to deep learning methods, and sometimes even outperform them. The authors of [15],
however, contradicted this hypothesis. They stated that these traditional machine-learning
models work well when given a large amount of input text. According to them, the models
are not able to handle sentiment analysis at the sentence level. As tweets have a character
limit, this might cause a performance decrease. After finding these conflicting views, we
wanted to check which hypothesis applies to our dataset containing Flemish tweets.

2.2. Multilingual Sentiment Analysis

Besides studies researching one specific language, multilingual sentiment analysis
has been studied. In [16], its authors classified this task into two categories: cross-lingual
sentiment classification and multilingual sentiment classification. The first aims at training
a model for a language for which no data are available. The goal of the second category is
to train a model that performs well on average for all languages. In [17], its authors provide
an overview of different ways to tackle both categories. Often, lexicon-based methods are
used, sometimes including translating the words to one language. In other cases, such
as [18], classifiers are trained on corpora of different languages to create one multilingual
model. As far as we know, every input was written in one language, and thus not a mixture
of languages. More recently, the authors of [19] proposed BabelSenticNet as a solution to
easily generate SenticNet for various languages. This model was construction through
statistical machine translation and over-mapping for increased robustness. It provides the
polarity of words in 40 languages.

2.3. Preprocessing

In addition to the different modeling choices described above, several decisions have
to be made regarding preprocessing. Many different possibilities exist, some of which are
language-specific. Table 2 represents the most common preprocessing techniques used by
the benchmark studies mentioned in Table 1.

Table 2. Overview of the utilized preprocessing methods.

So
ur

ce

Pu
nc

tu
at

io
n

R
ep

ea
te

d
Le

tt
er

s

U
R

Ls

N
um

be
rs

@

C
ap

it
al

Le
tt

er
s

St
op

W
or

ds

Em
ot

ic
on

s

[8] X 7 7 7 X X X X 7

[10] 7 7 X 7 X X X 7 X
[12] 7 7 7 X 7 7 7 7 7

[9] 7 X 7 7 7 7 7 7 7

[11] X X X X X X 7 X X
[13] 7 X 7 X 7 7 7 X X
[14] 7 X X X X X X 7 X
Our Study: Textified 7 7 X 7 7 7 7 7 X
Our Study: Stemmed X 7 X 7 X X X X X
Our Study: Lemmatized X 7 X 7 X X X X X

Table 2 must be interpreted as follows. The columns represent the changes made to
the input text; for example, a checkmark in punctuation refers to a change in punctuation
compared to that of the original text. This can be either a modification or removal of
the respective variable. As previously stated, this table contains the most frequently
utilized techniques and is therefore incomplete. Other approaches include changing Arabic
diacritics, changing can’t to cannot, removing accents, etc. These techniques are often
language-specific and were therefore not included in our study. Another remark that must

Analytics 2022, 1 121

be made is that in [13], special characters were also removed. However, it was not specified
what these ‘special characters’ included. Therefore, we do not indicate the removal of
punctuation, #, or @ in the table.

The last three rows represent the preprocessing performed in our study. A detailed
explanation is given in Section 3.2. In short, three preprocessing approaches were used in
this study, and in addition to the methods described in the table, stemming and lemmatiza-
tion were used in the second and third approaches, respectively. It is interesting to note
that in [8], lemmatization was used, and in [9], stemming was performed. As seen, we also
never removed repeated letters or numbers, since the authors of [20] concluded that both
of these methods do not significantly affect performance.

2.4. Ground Truth and Annotations

Another problem that we briefly discuss is the choice of the ground truth in the dataset.
Usually, human annotators are involved, and their annotations are taken as the ground
truth. However, the specific retrieval processes of these annotations differ immensely across
different benchmark studies. The following paragraph discusses the creation of a ground
truth for the previously considered benchmark studies.

Many of the previously mentioned studies used publicly available datasets for their
analyses [8,13,14,20]. Most other studies used three human annotators that manually
labeled the given datasets [9,10,12]. However, the authors rarely described what happened
when the annotators disagreed. Only in [12] did the authors mention that the annotations
were solely accepted if all three annotators agreed or if two out of three agreed and the
third annotation only differed by one from those of the other annotators (in this study,
five categories were used, with zero representing very negative and five representing very
positive). Otherwise, a fourth annotator was used. One of the analyzed studies collected its
ground-truth sentiments differently than in the previously discussed studies. In [11], a list
was composed of words for each emotional class. This list was then used to categorize the
input tweets into distinct classes.

3. Methodology
3.1. Data

The dataset used in this study was obtained through Statistics Flanders. It contains
47,096 Flemish tweets, which were classified into three categories (negative, neutral, and
positive) by five annotators. Each tweet was annotated by at least one annotator. If a tweet
was annotated by multiple people, we decided to keep the tweet only if all annotators
agreed. The Flemish tweets in this dataset were defined as Dutch tweets that were tweeted
in Belgium. We decided to create our own dataset, since we wanted a dataset containing
Flemish tweets, and not a dataset also containing tweets from the Netherlands. However, it
should be noted that the language of Twitter is often a collection of multiple languages; for
example, English and French were also represented in the dataset. Moreover, the dataset
also contained some French tweets. However, we decided to leave them in as noise, since
the Twitter API also did not detect them. Thus, this makes the dataset representative for
future evaluations. Table 3 shows an overview of the distribution of the tweets in our
dataset. This distribution was obtained by randomly sampling tweets over a period of five
years (2015–2020). By choosing this approach, no specific trending topics would dominate
the dataset. Therefore, this random sample provides a good representation of reality. The
use of SMOTE would be beneficial when dealing with a highly imbalanced dataset, as
shown in [21].

Analytics 2022, 1 122

Table 3. Overview of the dataset.

Category Number of Tweets

Positive 14,572
Negative 14,357
Neutral 18,167

3.2. Preprocessing

For our experiments, we decided to perform three types of preprocessing to compare
the different approaches. We used these different types of preprocessing steps for the
lexicon-based and traditional machine-learning approaches. These different approaches
are illustrated on our GitHub page (https://github.com/manon-reusens/Comparison-of-
techniques-for-Flemish-Twitter-Sentiment-Analysis)

We started by deleting URLs and changing emoticons to words for all tweets. This was
considered the first preprocessing approach, the results of which we call textified. Next, we
went further with the textified tweets to perform the two other preprocessing approaches. We
deleted punctuation, hashtags (#), and at signs (@). Moreover, we changed capital letters to
lowercase letters and deleted all stop words. These steps were the same for both remaining
approaches. However, for one approach, we then used stemming, and for the other approach,
we used lemmatization. The resulting data are said to be stemmed and lemmatized, respectively.
Table 2 concisely summarizes the preprocessing steps performed in the different approaches.
As represented in the table, no preprocessing regarding repeated letters or numbers was
performed. This decision was based on a finding in [20]. In this paper, the influences of different
preprocessing techniques on the performances of different traditional machine-learning models
were checked. As seen in the paper, nearly no difference in performance was noted across the
different models based on the removal of repeated letters when predicting three classes.

Next, we split the preprocessed dataset into training and test sets. Seventy percent of
the dataset was used as the training set, and 30% was included in the test set. Afterward,
the training set was again split into training and validation sets (80% and 20%, respectively).
The validation set was used throughout the different experiments to tune the parameters of
the different models. For both splits, the distribution of the data over the different classes
was respected.

3.3. Models
3.3.1. Lexicon-Based Method

First, we implemented two lexicon-based approaches. This type of model utilizes
a lexicon or dictionary to calculate a score. This score is then deployed to predict the
corresponding sentiment. The first language-specific lexicon-based method we included
is based on the Valence-Aware Dictionary and Sentiment Reasoner (VADER) method.
Since the original VADER model is an English model and we worked with Flemish data,
we used a multilanguage alternative proposed in [22]. The package itself translates the
input text into English via a website. However, the number of requests executed within a
certain timeframe is limited. Therefore, we changed the online translator to the itranslate
package [23]. Once the text was translated to English, the associated score was calculated
based on an English dictionary. The output then determined the probability of the tweet
belonging to one of the three classes: negative, neutral, and positive. To determine the
final output, we took the maximum of these scores. If the highest score was equal among
different classes, we randomly took one of them. As VADER requires the intermediate
step of translation, we also wanted to include another lexicon-based method to create a
representative selection of techniques for this category. Therefore, the second language-
specific lexicon-based method we used implemented was TextBlob. We implemented
TextBlob using [24]. Moreover, recent literature [25–28] suggests that TextBlob should
produce superior results to VADER.

https://github.com/manon-reusens/Comparison-of-techniques-for-Flemish-Twitter-Sentiment-Analysis
https://github.com/manon-reusens/Comparison-of-techniques-for-Flemish-Twitter-Sentiment-Analysis

Analytics 2022, 1 123

These experiments were completed in two steps. First, two different preprocessing
techniques were used, namely, textification and lemmatization. We did not use the stemmed
preprocessing approach in combination with these lexicon-based methods. The reason for
this lies in the effect that stemming has on text. With stemming, the stem of a word is taken
regardless of whether it is a real word. However, lexicon-based methods require existing
words that appear in their dictionaries. Lemmatization, on the other hand, guarantees that
a word will be changed into an existing word. Therefore, only the textification approach
and lemmatization were used. Second, these two preprocessing approaches were used as
inputs for the lexicon-based models as described previously.

3.3.2. Traditional Machine-Learning Models

In Figure 1, an overview of the experiments conducted for the traditional machine-
learning models is shown. On the left, the preprocessing techniques are depicted. For an
explanation, we refer the reader to Section 3.2. After preprocessing, the sentences were
transformed into vector representations. We used three types of vector representations:
term-frequency inverse document-frequency (TFIDF), Word2Vec, and FastText. The tuned
hyperparameters for each of these approaches are shown in Table 4.

Logis�c Regression

Naive Bayes

XGBoost

Random Forest

TFIDF

Word2Vec

FastText

Tex��ed

Stemmed

Lemma�zed

Preprocessing Vector Representa ons Models

Figure 1. Overview of experiments for the traditional machine-learning models.

Table 4. Hyperparameters tuned for each vector representation approach.

Vector
Representation

Tuned
Hyperparameters

Values

TFIDF max_features
n-gram range

1000, 2000, 3000, 4000, 5000, 6000, 8000, 10,000, 12,000
(1, 1), (1, 2)

Word2Vec

vector_size
window

min_count
sg

alpha

50, 100, 200, 300, 500, 600, 700, 1000
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20
0, 1

0.01, 0.025, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.8, 1

FastText / /

We implemented TFIDF by using [29]. This generated a matrix including TFIDF
features, which was calculated as follows:

Analytics 2022, 1 124

TFIDF(t, d) = TF(t, d)× IDF(t), (1)

where the TF stands for the term frequency, which represents the number of times a term
occurred in a certain document, and the IDF is defined as:

IDF(t) = log
1 + n

(1 + DF(t))
, (2)

where DF stands for the number of documents in which the term was included. Next, the
TFIDF vectors were normalized by the Euclidian norm operation.

In [30], the authors stated that TFIDF cannot fully grasp the semantic meanings of
short texts, such as tweets. Therefore, we also added other approaches. We applied [31]
for the implementation of Word2Vec. Pretrained Word2Vec models are available in many
different languages. However, it is also possible to self-train the model. We used both
approaches. The hyperparameters tuned for the self-trained model are listed in Table 4. For
the pretrained model, no hyperparameters have to be tuned. Word2Vec is an algorithm
that can either be trained by a skip-gram or by a continuous bag-of-words (CBOW) model.
Subsequently, it learns the vector representations of words and syntactic and semantic–
word relationships. The vectors encode patterns and linguistic regularities. These can often
be expressed linearly—for example, vec(Queen) − vec(Woman) + vec(Man) = vec(King).
Note that Word2Vec models are vector representations for words. However, we wanted a
representation for an entire tweet. In [30], different techniques utilizing Word2Vec were
suggested to represent sentences. One of the well-performing methods for tweets was to
take the mean of the word embeddings in a tweet. Inspired by this study, we took the
average of all the word representations in a sentence as the final vector representation for
the corresponding tweet.

We used [32] for our pretrained Word2Vec embeddings. Most pretrained models are
trained on written formal text, such as Wikipedia. In contrast, the word embeddings we
used were trained on social media messages, posts from blogs, news, and fora. These
pretrained embeddings were well-suited for our analysis, since our input sentences were
tweets, which entailed very informal language and a different vocabulary than that of
formal written texts. Note that for Word2Vec, only the textification and lemmatization
preprocessing approaches were used because of the inability of stemming to guarantee
existing words as outputs.

One downside of Word2Vec is that it does not try to find a corresponding vector
for unknown words (i.e., it is out of vocabulary). Instead, here in our analysis, it merely
generated a null vector. However, because of this disadvantage, we also decided to compare
the results to those obtained when using FastText for vector representations. While taking
the morphology of a word into account, this approach still tries to compute a suitable
vector representation [33]. We only used pretrained word embeddings, and therefore, no
hyperparameters needed to be tuned. Note that for the FastText word embeddings [34],
only the textification and lemmatization preprocessing approaches were used, as above.

Next, these vector representations were used as inputs for the traditional machine-
learning models. As depicted in Figure 1, four approaches were used: logistic regression,
naive Bayes, extreme gradient boosting (XGBoost), and random forest. For brevity, we
would like to refer the reader to [29] for more detailed explanations of logistic regression,
naive Bayes, and random forest; and to [35] for XGBoost. For naive Bayes, we used
two variants: multinomial naive Bayes and Bernoulli naive Bayes. In [36], the authors
showed that both methods work comparably well for binary classification. Therefore, we
tried out both methods for this multiclass classification task. Table 5 shows the different
hyperparameters tuned for each of the models. As shown, no hyperparameters were tuned
for naive Bayes, since we decided to use smoothing.

Analytics 2022, 1 125

Table 5. Hyperparameters tuned for each traditional machine-learning model.

Machine Learning Model Tuned
Hyperparameters

Values

Logistic Regression C (regularizer) 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

Naive Bayes / /

XGBoost
max_depth

learning_rate
n_estimators

1–10
0.01, 0.05, 0.1, 0.2, 0.5, 0.8, 1,1.2, 1.5

10, 50, 80, 100, 120, 150

Random Forest n_estimators
max_features

10, 50, 100, 150, 200
sqrt, log2

3.3.3. Neural Networks

The category of neural networks was represented by a bidirectional LSTM. The LSTM
is an architecture that was first proposed in [37]. It was suggested as an improvement
over RNNs to mitigate the vanishing and exploding gradient problems that could occur
with this model. Moreover, an LSTM network includes an input gate, a forget gate, and
an output gate. Due to this forget gate, an LSTM network can control what information is
retained over a longer period of time and what information is forgotten [38].

An LSTM network, like an RNN, reads a sentence from left to right. That way, it can
take the previous information in the sentence into account. However, such a network is not
yet able to grasp the full meaning of a sentence, since it does not know the information that
is still coming. One step in the right direction for letting LSTM understand context involves
utilizing a bidirectional LSTM network. This model reads the input from left to right in one
layer and from right to left in the other layer. This model was used in our study.

The tuned hyperparameters were the kernel, recurrent, bias, and activity regularizer
(all tuned with the following values: 1 × 10−2, 1 × 10−3, 1 × 10−4, 1 × 10−5 and recurrent
dropout parameters (both tuned by: 0.1, 0.2, 0.3). The input data were first one-hot
encoded through a tokenizer, and afterward, the sequences were padded [39,40]. Our
model architecture is represented in Figure 2. The padded tweets were used as inputs
for the embedding layer. This layer then changed each input into a vector of length 256.
This vector was then used as the input for the bidirectional LSTM layer. We used one
hidden layer in our bidirectional LSTM model. This decision was based on the relative
simplicity of the classification problem and the fact that the majority of the benchmark
studies implemented bidirectional LSTMs with one hidden layer. The number of hidden
nodes in the bidirectional LSTM model was 12. We experimented with different numbers of
hidden nodes in this layer; however, we found that more hidden nodes generated similar
results. Finally, the outputs of both the forward and the backward LSTM were concatenated
and used as input for a final dense layer with three output nodes and a softmax activation
function. This resulted in the probability of the given tweet belonging to each of the
classes. The model was compiled through a categorical cross-entropy loss function, and we
modified the learning rate as follows. Starting from a learning rate of 1 × 10−4, we kept it
constant for 10 epochs, and then we let it exponentially decrease until it reached 1 × 10−5.
This was subsequently used as the learning rate for the following epochs. We let our model
train for 1000 epochs and executed early stopping when the accuracy on the validation
set did not improve for 30 epochs. The model with the best accuracy on the validation set
was saved.

Analytics 2022, 1 126

Embedding Layer

LSTM LSTM LSTM LSTM

LSTMLSTMLSTMLSTM
...

...

Dense Output Layer

concatenate

h0

h0
hn+1

hn+1

Figure 2. Architecture of our bidirectional LSTM.

3.3.4. Attention-Based Model

For our study, we also trained an attention-based model. We specified a separate
category for these types of models. The previous category, therefore, only included neural
networks without attention. Our attention-based model was implemented by using [41].
This model is a wrapper function for the RobBERT model, a language-specific pretrained
attention-based model built on RobBERTa [42]. RobBERTa is, in turn, an improved version
of BERT [43]. We now explain these models in more detail.

BERT uses attention and is composed of multiple encoders. The model is usually
trained in two steps. First, a pretraining step is executed, where enormous amounts of data
are used to train the model in an unsupervised manner. This training procedure consists
of two tasks, masked language modeling and next sentence prediction, and is intended
for the model to obtain a grasp of the given language. Next, the model is fine-tuned on a
task-specific dataset [44]. As stated, RobBERTa is an improved version of BERT that has
some modifications, e.g., utilizing dynamic masking instead of static masking [43]. This
model architecture was used in [42] and pretrained on Dutch datasets to create RobBERT.

Regarding the inputs for our model, we only used the Textified approach. We did
this because in the model used, a language-specific tokenizer was already included. We
used the pretrained RobBERT model and further fine-tuned it by first training the last layer
of the model and the classification head. In this way, the model became familiar with the
Twitter language represented in the dataset. Finally, we trained the classification head once
more, while keeping all other parameters frozen. We also experimented with other training
settings, but we obtained similar results.

3.4. Performance Measures

Four different performance measures were used in our study: accuracy, macro F1-score
(this approach takes the mean of the metrics calculated for each label), macro precision,
and macro recall.

4. Results

We now separately discuss the results obtained by each type of underlying model.
Then, we combine the best results of each type and compare the best models across the
different types.

4.1. Lexicon-Based Method

In Table 6, the results are shown for the two lexicon-based models. Both models were
trained on the textified and lemmatized (preprocessed) sentences, indicated in the table
with T and L, respectively. This table shows that for both lexicon-based methods, the
lemmatized sentences outperformed the textified sentences in terms of all performance

Analytics 2022, 1 127

measures, except for precision. Moreover, the table indicates that the performance of
TextBlob surpassed that of VADER in all measures, except for precision. However, note
that with accuracies of approximately 40%, all models scored relatively poorly.

Table 6. Lexicon-based methods’ results.

Model Accuracy Macro
F1-Measure

Macro
Precision Macro Recall

VADER T 0.4067 0.2516 0.5584 0.3586
L 0.4283 0.3215 0.5198 0.387

TextBlob T 0.4241 0.3190 0.4899 0.3838
L 0.4328 0.3234 0.5482 0.3921

4.2. Traditional Machine-Learning Models

As we used an extensive set of traditional machine learning algorithms, we give only
a summary of the most remarkable findings and refer the reader to Appendix B for the
details regarding all the experiments.

In general, we can conclude that for all models, the self-trained Word2Vec data were
substantially worse than the other vector representations, except for XGBoost. For this
ensemble method, this particular vector representation resulted in a similar performance
as with TFIDF. Moreover, using TFIDF to get vector representations showed the most
consistent performance for all different traditional machine-learning models. With four
of the used models, it was the best-performing approach. Only for XGBoost did using
pretrained Word2Vec for vector representations result in higher performance. The naive
Bayes models observably did not work well with word embeddings (pretrained or self-
trained). Both methods led to approximately 10% performance decreases compared to that
of TFIDF. The other models achieved good performances when applying Word2Vec, and
most of the time, these results were superior than when using FastText as the embedding
method. Furthermore, when zooming in on the different preprocessing approaches, more
preprocessing seems to lead to better results. Only in a few cases was the opposite observed,
namely, for both naive Bayes models combined with the self-trained Word2Vec approach
and for the pretrained word embeddings in combination with multinomial naive Bayes.
Nevertheless, these performance differences were relatively small.

In Table 7, a comparison between the best-performing models among all the traditional
machine-learning models is given. In terms of all performance measures, the logistic
regression performed best. However, all traditional machine-learning models had similar
performances. The difference from the logistic regression was always around or less
than 0.5%.

Table 7. Results of the best traditional machine-learning models.

Model Accuracy Macro F1-Measure Macro Precision Macro Recall

Logistic Regression 0.6091 0.6030 0.6114 0.6012

Multinomial naive
Bayes 0.6041 0.5957 0.6084 0.5956

Bernoulli naive Bayes 0.6037 0.5976 0.6021 0.5968

XGBoost 0.6030 0.5938 0.6022 0.5942

Random Forest 0.6012 0.5928 0.6053 0.5908

4.3. Neural Networks

The results of the bidirectional LSTM model are shown in Table 8. For this model, all
performance measures were close to 60%. In Section 5, this is discussed further, and the
results are compared with those of the other models.

Analytics 2022, 1 128

Table 8. Results of the bidirectional LSTM and attention-based model.

Model Accuracy Macro F1-Measure Macro Precision Macro Recall

Bidirectional LSTM 0.6053 0.5985 0.6024 0.5986

Fine-tuned RobBERT 0.6559 0.6507 0.6537 0.6507

4.4. Attention-Based Model

Finally, the attention-based model is represented in Table 8. Approximately 65% was
achieved in terms of all performance measures. This model is also discussed further in the
next section.

5. Discussion

A summary of the best models by category is shown in Table 9. Among the lexicon-
based methods, TextBlob employing the Lemmatized preprocessing approach yielded the
best results in terms of accuracy, recall, and the F1-score, as depicted in Table 6. Therefore,
we used this model to represent the lexicon-based approaches in our comparative analysis
among the different categories. Regarding the traditional machine-learning models, we
included the logistic regression model with TFIDF employing the Lemmatized preprocess-
ing approach. The neural networks and attention-based models are represented by the
bidirectional LSTM and fine-tuned BERT models, respectively. Table 9 shows three groups
of models in terms of performance. First, TextBlob undoubtedly performed substantially
worse than the other models. Second, it is noticeable that the fine-tuned RobBERT model
outperformed all other models. Finally, the bidirectional LSTM and logistic regression
achieved similar performances. Moreover, the traditional machine-learning model per-
formed slightly better than the bidirectional LSTM model, even after extensively tuning
the hyperparameters of this model. More advanced tuning is required to try and produce
a better performance with this model; however, despite tuning being a very laborious
task, it still does not guarantee that the model will then outperform logistic regression.
Therefore, it is worth asking whether this possible slight performance increase justifies
the extra computational power. Consequently, we conclude that the performance of the
logistic regression model, which is a simpler model than the bidirectional LSTM model, was
already relatively high and approached the performance of these very advanced models.

Table 9. Overview of the performance of the best model in each category.

Model Accuracy Macro F1-Measure Macro Precision Macro Recall

TextBlob 0.4328 0.3234 0.5482 0.3921

Logistic Regression 0.6091 0.6030 0.6114 0.6012

Bidirectional LSTM 0.6053 0.5985 0.6024 0.5986

Fine-tuned RobBERT 0.6559 0.6507 0.6537 0.6507

The fine-tuned RobBERT model definitely outperformed all other models trained in
this study. However, this model is so complex that a tradeoff should be made between
performance and computational power. Not only should the computational expenses
incurred during training be considered in this tradeoff, but the model’s maintenance
required when deploying it for specific applications should also be considered. Therefore, it
is not necessarily always the best model to use. When considering these additional aspects,
logistic regression might be preferred over the advanced models, despite its possibly
poorer performance.

We would also like to shed some more light on the performances of the different
preprocessing techniques and the vector representations. First, when comparing the prepro-
cessing techniques in lights of the different models (VADER, TextBlob, logistic regression,
multinomial naive Bayes, Bernoulli naive Bayes, XGBoost, and random forest), more pre-

Analytics 2022, 1 129

processing often led to better performance. However, as discussed previously, this was
not always the case; e.g., take the Bernoulli or multinomial naive Bayes model employing
self-trained Word2Vec vector representations. Moreover, more preprocessing only yielded
a relatively small increase in performance which was not as pronounced as expected.
Furthermore, we can look at the comparison between the stemming and lemmatization
approaches. For the logistic regression, multinomial naive Bayes, and random forest mod-
els, we can see that lemmatization outperformed stemming. However, the Bernoulli naive
Bayes and XGBoost models produced the opposite result. Still, the difference in these
performance measures was not large for any of the models. Therefore, we can conclude
that they achieved similar performance.

Second, when looking at the different vector representations, it is notable that TFIDF
consistently performed well for all models. The other models, however, exhibited more
performance variations. Unsurprisingly, the self-trained vector representations were often
outperformed by the pretrained representations. Regarding Word2Vec and FastText, the
results showed that most of the time, FastText performed slightly worse than Word2Vec.
Various explanations could possibly describe this phenomenon. First, this result may have
been caused by the training data used to make both pretrained models. As stated, the
pretrained Word2Vec embeddings used different sources, including social media data. The
FastText approach, on the other hand, used Wikipedia and Common Crawl as training data.
Common Crawl is a nonprofit company that crawls the web and then makes the obtained
data publicly available [34]. It is possible that because our Word2Vec embeddings put
more stress on the informal language, these models performed better than those utilizing
FastText. Second, it is also possible that Word2Vec might have achieved better performance
because it always used zero vectors for unknown words. This would contradict our earlier
assumption. The reason for adding FastText was that this model still tried to produce
reasonable word vectors for unknown words, whereas Word2Vec only used null vectors.

Moreover, some threats to validity have to be discussed. Flemish is grammatically
similar to English, and no different letters are used. However, Flemish sometimes uses
accents on letters; therefore, we did not remove them during preprocessing. Nevertheless,
the main threat to validity is the fact that Flemish tweets often contain multiple languages.
When using TFIDF, this does not cause a real issue. However, when one uses word
embeddings trained on corpora written in standard Dutch, this will cause problems. That
could also explain why TFIDF consistently worked well for all models and pretrained word
embeddings sometimes had some difficulties. In future research, we want to zoom in on
this and try to mitigate this threat further by using multilingual word embeddings. Other
language-specific preprocessing techniques can be looked into further too. Additionally, a
more in-depth analysis of the models’ confidence can be conducted for certain predictions,
as this might greatly affect further generalization on new datasets. Other interesting
research opportunities lie in the combination of this research field with anomaly detection.
When looking more in-depth at the different phenomena in the dataset, anomaly detection
could be used to further clean the dataset and ensure that only the Flemish phenomena
are incorporated into the dataset. Moreover, the combination of preprocessing steps
with neural networks and the effects of these steps on the performance of the models
would be interesting research to explore future. Finally, further research into the usage of
dimensionality reduction techniques can be done.

6. Conclusions

The availability of opinionated texts on microblogging websites such as Twitter has
significantly increased over the last few decades. Consequently, numerous studies have
been conducted in the field of sentiment analysis. However, most research focuses on
the English language. In this study, we compared a variety of models on a new dataset
containing Flemish tweets. The novelty of our study lies in its unique experimental
design: we combined several models with different preprocessing techniques and utilized
various vector representations on a new Flemish dataset. More specifically, we compared

Analytics 2022, 1 130

lexicon-based methods, traditional machine learning approaches, neural networks, and
an attention-based model. In terms of preprocessing, we studied the effects of different
preprocessing methods. Finally, regarding vector representations, TFIDF, Word2Vec, and
FastText were used.

In terms of preprocessing, we concluded that generally, more preprocessing led to
better results, as expected. Moreover, when comparing stemming and lemmatization, the
best approach depended on the underlying traditional machine-learning model. For logistic
regression, multinomial naive Bayes, and random forest, lemmatization was preferable; in
contrast, Bernoulli naive Bayes and XGBoost models performed best in combination with
the stemming preprocessing method. However, despite this slight performance difference,
both approaches led to similar results. In terms of vector representations, we noticed
that TFIDF performed well in combination with every model. Only XGBoost preferred
pretrained Word2Vec vector representations. Moreover, the naive Bayes models did not
work well with Word2Vec or FastText word embeddings.

Finally, we conclude that the lexicon-based method did not work well at all; it only
performed slightly better than a random model. The other models, however, did result
in good performance. Different traditional machine learning approaches yielded similar
results. In terms of accuracy and precision, the logistic regression model utilizing TFIDF
after Lemmatized preprocessing was preferred. The LSTM approach produced similar, and
in this case slightly worse, results than those of the best-performing traditional machine-
learning models. The attention-based model undoubtedly outperformed all other models,
providing an accuracy increase of more than 4% over that of the second-best model (logistic
regression). Nevertheless, the attention-based model is very computationally expensive
both during training and in terms of maintenance. While a logistic regression model takes
minutes to train, a BERT-based model needs hours. Therefore, we do not conclude that the
attention-based method is recommended for every application. The simpler models, such
as the logistic regression, produced only slightly lower results. Therefore, before deploying
this attention-based model, a tradeoff must be made between computational expenses and
performance gains.

Author Contributions: The authors’ contributions were as follows: M.R. (Manon Reusens) did the
conceptualization, methodology, programming, formal analysis, writing, and visualization. M.R.
(Michael Reusens) did the conceptualization, methodology, resources, and review. M.C. contributed
through the resources and review. S.v.B. helped this study through conceptualization, review, and su-
pervision. Finally, B.B. contributed through conceptualization, methodology, review, and supervision.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Statistics Flanders research cooperation agreement on
Data Science for Official Statistics.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The funders were involved in the study. However, since there was no personal
gain or gain for Statistics Flanders, the authors declare no conflict of interest.

Appendix A

In Table A1, some Dutch and Flemish tweets gathered through the Twitter API are
shown. The main differences are that Dutch tweets follow the standard Dutch language
more : ‘je’ and ‘jou’ (you) are used in Dutch, whereas ‘ge’ and ‘gij’ are used in Flemish.
Moreover, the type of vocabulary used is also different. On top of that, English words occur
often in Flemish, as shown in the examples.

Analytics 2022, 1 131

Table A1. Examples of Dutch and Flemish Tweets.

Dutch Tweet Flemish Tweet

Zonder trapleuningen weer boven komen is
nog niet zo makkelijk als je wel mocht

denken.

Ge kunt dus maar tot afl 16 kijken en HET
EINDIGT NET ME NE CLIFFHANGER EN ‘K

KAN DA NI AAN #D5R
Is dat bij jou het geval, en denk je dat je het

zelf wel aankunt?
Vampire diaries opnieuw bingwatchen i

luvvvvvvvv it
Ik verheug me al op de cijfers eind 2019.... Geiren matje geiren

Appendix B

Tables A2–A6 show the results of all the experiments conducted using logistic re-
gression, multinomial naive Bayes, Bernoulli naive Bayes, XGBoost, and random forest,
respectively. The textification, stemming, and lemmatization preprocessing approaches are
abbreviated to T, S, and L, respectively.

Table A2. Logistic regression results.

Model Accuracy Macro
F1-Measure

Macro
Precision Macro Recall

TFIDF
T 0.6009 0.5943 0.6024 0.5926
S 0.6038 0.5968 0.6067 0.5950
L 0.6091 0.6030 0.6114 0.6012

Word2Vec
(self-trained)

T 0.5326 0.5071 0.5272 0.5161
L 0.5458 0.5313 0.5451 0.5329

Word2Vec
(pretrained)

T 0.5608 0.5493 0.5611 0.5500
L 0.5901 0.5827 0.5900 0.5814

FastText
(pretrained)

T 0.5657 0.5509 0.5632 0.5534
L 0.5705 0.5601 0.5719 0.56

Table A3. Multinomial naive Bayes results.

Model Accuracy Macro
F1-Measure

Macro
Precision Macro Recall

TFIDF
T 0.6037 0.5954 0.6069 0.5951
S 0.6003 0.5918 0.6041 0.5915
L 0.6041 0.5957 0.6084 0.5956

Word2Vec
(self-trained)

T 0.5063 0.4569 0.5004 0.4862
L 0.4614 0.3653 0.4956 0.4339

Word2Vec
(pretrained)

T 0.4673 0.3727 0.4985 0.4362
L 0.4569 0.3563 0.5164 0.4197

FastText
(pretrained)

T 0.4217 0.2793 0.3091 0.3761
L 0.3873 0.1896 0.3813 0.3351

Analytics 2022, 1 132

Table A4. Bernoulli naive Bayes results.

Model Accuracy Macro
F1-Measure

Macro
Precision Macro Recall

TFIDF
T 0.5998 0.5932 0.5985 0.5925
S 0.6037 0.5976 0.6021 0.5968
L 0.5994 0.5926 0.5996 0.5931

Word2Vec
(self-trained)

T 0.5155 0.494 0.5046 0.5043
L 0.4939 0.4703 0.4856 0.4818

Word2Vec
(pretrained)

T 0.4981 0.4741 0.4929 0.4894
L 0.5292 0.5168 0.5241 0.5225

FastText
(pretrained)

T 0.4946 0.4576 0.4882 0.482
L 0.5228 0.5061 0.5185 0.5141

Table A5. XGBoost results.

Model Accuracy Macro
F1-Measure

Macro
Precision Macro Recall

TFIDF
T 0.5816 0.5717 0.5854 0.5699
S 0.5871 0.5769 0.5954 0.5747
L 0.5852 0.5763 0.5816 0.5778

Word2Vec
(self-trained)

T 0.5805 0.5699 0.5751 0.5727
L 0.5884 0.5797 0.5868 0.5813

Word2Vec
(pretrained)

T 0.5831 0.5738 0.5773 0.5753
L 0.6030 0.5938 0.6022 0.5942

FastText
(pretrained)

T 0.5889 0.5773 0.5844 0.5790
L 0.5916 0.5827 0.5888 0.5826

Table A6. Random forest results.

Model Accuracy Macro
F1-Measure

Macro
Precision Macro Recall

TFIDF
T 0.6003 0.5905 0.6053 0.5888
S 0.5992 0.5905 0.6038 0.5887
L 0.6012 0.5928 0.6053 0.5908

Word2Vec
(self-trained)

T 0.5576 0.5358 0.5488 0.5451
L 0.5594 0.5772 0.5637 0.5761

Word2Vec
(pretrained)

T 0.5659 0.5495 0.5601 0.5544
L 0.5828 0.5678 0.5837 0.5701

FastText
(pretrained)

T 0.5544 0.5294 0.5494 0.5386
L 0.5678 0.5486 0.5685 0.5528

References
1. Lambert, S. Number of Social Media Users in 2022/2023: Demographics & Predictions. 2022. Available online: https://

financesonline.com/number-of-social-media-users (accessed on 13 October 2022).
2. Liu, B. Sentiment Analysis: Mining Opinions, Sentiments, and Emotions; Cambridge University Press: Cambridge, UK, 2015.

[CrossRef]
3. Pang, B.; Lee, L. Opinion mining and sentiment analysis. Found.Trends Inf. Retr. 2007, 2, 1–135. [CrossRef]
4. Ligthart, A.; Catal, C.; Tekinerdogan, B. Systematic reviews in sentiment analysis: A tertiary study. Artif. Intell. Rev. 2021, 54,

4997–5053. [CrossRef]
5. Zhao, Z.; Tang, M.; Tang, W.; Wang, C.; Chen, X. Graph convolutional network with multiple weight mechanisms for aspect-based

sentiment analysis. Neurocomputing 2022, 500, 124–134. [CrossRef]
6. Žunić, A.; Corcoran, P.; Spasić, I. Aspect-based sentiment analysis with graph convolution over syntactic dependencies. Artif.

Intell. Med. 2021, 119, 102138. [CrossRef]

https://financesonline.com/number-of-social-media-users
https://financesonline.com/number-of-social-media-users
http://doi.org/10.1017/CBO9781139084789
http://dx.doi.org/10.1561/1500000011
http://dx.doi.org/10.1007/s10462-021-09973-3
http://dx.doi.org/10.1016/j.neucom.2022.05.045
http://dx.doi.org/10.1016/j.artmed.2021.102138

Analytics 2022, 1 133

7. Li, W.; Shao, W.; Ji, S.; Cambria, E. BiERU: Bidirectional emotional recurrent unit for conversational sentiment analysis. Neurocom-
puting 2022, 467, 73–82. [CrossRef]

8. Alaparthi, S.; Mishra, M. Bert: A sentiment analysis odyssey. J. Mark. Anal. 2021, 9, 118–126. [CrossRef]
9. Dashtipour, K.; Gogate, M.; Adeel, A.; Larijani, H.; Hussain, A. Sentiment Analysis of Persian Movie Reviews Using Deep

Learning. Entropy 2021, 23, 596. [CrossRef]
10. Alexandridis, G.; Varlamis, I.; Korovesis, K.; Caridakis, G.; Tsantilas, P. A survey on sentiment analysis and opinion mining in

greek social media. Information 2021, 12, 331. [CrossRef]
11. AlFutamani, A.A.; Al-Baity, H.H. Emotional analysis of arabic saudi dialect tweets using a supervised learning approach. Intell.

Autom. Soft Comput. 2021, 29, 89–109. [CrossRef]
12. Fiok, K.; Karwowski, W.; Gutierrez, E.; Wilamowski, M. Analysis of sentiment in tweets addressed to a single domainspecific

twitter account: Comparison of model performance and explainability of predictions. Expert Syst. Appl. 2021, 186, 115771.
[CrossRef]

13. Khalil, E.A.H.; El Houby, E.M.; Mohamed, H.K. Deep learning for emotion analysis in arabic tweets. J. Big Data 2021, 8, 1–15.
[CrossRef]

14. Roy, A.; Ojha, M. Twitter sentiment analysis using deep learning models. In Proceedings of the 2020 IEEE 17th India Council International
Conference (INDICON), New Delhi, India, 10–13 December 2020; pp. 1–6. [CrossRef]

15. Cambria, E.; Das, D.; Bandyopadhyay, S.; Feraco, A. Affective Computing and Sentiment Analysis. In A Practical Guide to
Sentiment Analysis; Springer: Cham, Switzerland, 2017; pp. 1–10.

16. Chan, J.Y.L.; Bea, K.T.; Leow, S.M.H.; Phoong, S.W.; Cheng, W.K. State of the art: A review of sentiment analysis based on
sequential transfer learning. Artif. Intell. Rev. 2022, 1–32. [CrossRef]

17. Lo, S.L.; Cambria, E.; Chiong, R.; Cornforth, D. Multilingual sentiment analysis: From formal to informal and scarce resource
languages. Artif. Intell. Rev. 2017, 48, 499–527. [CrossRef]

18. Boiy, E.; Moens, M.F. A machine learning approach to sentiment analysis in multilingual Web texts. Inf. Retr. 2009, 12, 526–558.
[CrossRef]

19. Vilares, D.; Peng, H.; Satapathy, R.; Cambria, E. BabelSenticNet: A commonsense reasoning framework for multilingual sentiment
analysis. In Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence (SSCI), Bengaluru, India, 18–21
November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1292–1298.

20. Zhao, J.; Gui, X. Comparison research on text pre-processing methods on twitter sentiment analysis. IEEE Access 2017, 5, 2870–2879.
21. Rupapara, V.; Rustam, F.; Shahzad, H.F.; Mehmood, A.; Ashraf, I.; Choi, G.S. Impact of SMOTE on imbalanced text features for

toxic comments classification using RVVC model. IEEE Access 2021, 9, 78621–78634. [CrossRef]
22. Hutto, C.; Gilbert, E. Vader: A parsimonious rule-based model for sentiment analysis of social media text. Proc. Int. AAAI Conf.

Web Soc. Media 2014, 8, 216–225.
23. Ffreemt. Itranslate. 2021. Available online: https://github.com/ffreemt/google-stranslate (accessed on 7 June 2022).
24. Loria, S. textblob Documentation. Release 0.15, 2. 2018. Available online: https://textblob.readthedocs.io/en/dev/ (accessed on

7 June 2022).
25. Mujahid, M.; Lee, E.; Rustam, F.; Washington, P.B.; Ullah, S.; Reshi, A.A.; Ashraf, I. Sentiment analysis and topic modeling on

tweets about online education during COVID-19. Appl. Sci. 2021, 11, 8438. [CrossRef]
26. Rupapara, V.; Rustam, F.; Amaar, A.; Washington, P.B.; Lee, E.; Ashraf, I. Deepfake tweets classification using stacked Bi-LSTM

and words embedding. Peerj Comput. Sci. 2021, 7, e745. [CrossRef]
27. Saad, E.; Din, S.; Jamil, R.; Rustam, F.; Mehmood, A.; Ashraf, I.; Choi, G.S. Determining the efficiency of drugs under special

conditions from users’ reviews on healthcare web forums. IEEE Access 2021, 9, 85721–85737. [CrossRef]
28. Aslam, N.; Rustam, F.; Lee, E.; Washington, P.B.; Ashraf, I. Sentiment Analysis and Emotion Detection on Cryptocurrency Related

Tweets Using Ensemble LSTM-GRU Model. IEEE Access 2022, 10, 39313–39324. [CrossRef]
29. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al.

Scikit-learn: Machine learning in Python. J. Mach. Res. 2011, 12, 2825–2830.
30. De Boom, C.; Van Canneyt, S.; Demeester, T.; Dhoedt, B. Representation learning for very short texts using weighted word

embedding aggregation. Pattern Recognit. Lett. 2016, 80, 150–156. [CrossRef]
31. Rehurek, R.; Sojka, P. Gensim–Python Framework for Vector Space Modelling; NLP Centre, Faculty of Informatics, Masaryk University:

Brno, Czech Republic, 2011; Volume 3.
32. Coosto. Dutch word2vec Model. 2018. Available online: https://github.com/coosto/dutch-word-embeddings (accessed on 7

June 2022).
33. Bojanowski, P.; Grave, E.; Joulin, A.; Mikolov, T. Enriching word vectors with subword information. arXiv 2017, arXiv:1607.04606.
34. Grave, E.; Bojanowski, P.; Gupta, P.; Joulin, A.; Mikolov, T. Learning word vectors for 157 languages. In Proceedings of the

International Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan, 7–12 May 2018.
35. Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining KDD ’16, San Francisco, CA, USA, 13–17 August 2016; ACM: New York,
NY, USA, 2016; pp. 785–794. [CrossRef]

http://dx.doi.org/10.1016/j.neucom.2021.09.057
http://dx.doi.org/10.1057/s41270-021-00109-8
http://dx.doi.org/10.3390/e23050596
http://dx.doi.org/10.3390/info12080331
http://dx.doi.org/10.32604/iasc.2021.016555
http://dx.doi.org/10.1016/j.eswa.2021.115771
http://dx.doi.org/10.1186/s40537-021-00523-w
http://dx.doi.org/10.1109/INDICON49873.2020.9342279
http://dx.doi.org/10.1007/s10462-022-10183-8
http://dx.doi.org/10.1007/s10462-016-9508-4
http://dx.doi.org/10.1007/s10791-008-9070-z
http://dx.doi.org/10.1109/ACCESS.2021.3083638
https://github.com/ffreemt/ google-stranslate
https://textblob.readthedocs.io/en/dev/
http://dx.doi.org/10.3390/app11188438
http://dx.doi.org/10.7717/peerj-cs.745
http://dx.doi.org/10.1109/ACCESS.2021.3088838
http://dx.doi.org/10.1109/ACCESS.2022.3165621
http://dx.doi.org/10.1016/j.patrec.2016.06.012
https://github.com/coosto/ dutch-word-embeddings
http://dx.doi.org/10.1145/2939672.2939785

Analytics 2022, 1 134

36. Singh, G.; Kumar, B.; Gaur, L.; Tyagi, A. Comparison between multinomial and bernoulli naive bayes for text classification. In
Proceedings of the 2019 International Conference on Automation, Computational and Technology Management (ICACTM),
London, UK, 24–26 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 593–596.

37. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
38. Goodfellow, I.J.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. Available online: http:

//www.deeplearningbook.org (accessed on 7 June 2022).
39. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems. Software Available from tensorflow.org. 2015. Available online:
https://www.tensorflow.org/ (accessed on 7 June 2022).

40. Chollet, F. Keras. 2015. Available online: https://github.com/fchollet/keras (accessed on 7 June 2022).
41. Radix. Vlaams Twitter Sentiment Model. 2021. Available online: https://github.com/vsa-datascience/vlaams-twitter-sentiment-

model (accessed on 7 June 2022).
42. Delobelle, P.; Winters, T.; Berendt, B. Robbert: A dutch robertabased language model. arXiv 2020, arXiv:2001.06286.
43. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. Roberta: A robustly

optimized bert pretraining approach. arXiv 2019, arXiv:1907.11692.
44. Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. Bert: Pretraining of deep bidirectional transformers for language understanding.

arXiv 2019, arXiv:1810.04805.

http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https:// www.tensorflow.org/
https://github.com/fchollet/keras
https://github.com/ vsa-datascience/vlaams-twitter-sentiment-model
https://github.com/ vsa-datascience/vlaams-twitter-sentiment-model

	Introduction
	Related Work
	Benchmark Studies
	Multilingual Sentiment Analysis
	Preprocessing
	Ground Truth and Annotations

	Methodology
	Data
	Preprocessing
	Models
	Lexicon-Based Method
	Traditional Machine-Learning Models
	Neural Networks
	Attention-Based Model

	Performance Measures

	Results
	Lexicon-Based Method
	Traditional Machine-Learning Models
	Neural Networks
	Attention-Based Model

	Discussion
	Conclusions
	Appendix A
	Appendix B
	References

