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Abstract: Since the outbreak of the coronavirus disease pandemic (COVID-19) at the end of 2019,
many scientific groups have been working towards solutions to forecast outbreaks. Accurate forecasts
of future waves could mitigate the devastating effects of the virus. They would allow healthcare
organizations and governments to alter public intervention, allocate healthcare resources accordingly,
and raise public awareness. Many forecasting models have been introduced, harnessing different
underlying mechanisms and data sources. This paper provides a systematic review of forecasting
models that utilize internet search information. The success of these forecasting models provides a
strong support for the big-data insight of public online search behavior as an alternative signal to the
traditional surveillance system and mechanistic compartmental models.
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1. Introduction

Coronavirus disease 2019 (COVID-19), a contagious disease caused by the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), has quickly spread worldwide and
caused more than 630 million reported cases and 6.6 million reported deaths [1]. Since
the initial outbreak, many variants of COVID-19 have emerged (alpha, delta, omicron,
etc.), leading to drastic surges in confirmed cases, hospital admissions, and deaths, which
have severely threatened the healthcare systems and resources [2,3]. Given the continu-
ous developments of COVID-19 variants and variant-led infections, understanding the
pandemic progression and disease dynamics is more urgent than ever. At the same time,
accurate forecasts of the future disease progressions would assist efficient healthcare and
financial resource allocation, as well as timely implementation of intervention policies [4].
Accurate and robust predictions will also help prepare against upcoming new variants and
subsequent waves. Meanwhile, accurate predictions heavily depend on the underlying
forecasting techniques and modeling efforts that efficiently assess the situations of the past,
and thereby enable better predictions about the future. Among the weekly forecast reports
compiled by the U.S. Centers for Disease Control and Prevention (CDC) [5], contributed to
by various research groups and individuals around the globe, the prevailing COVID-19
forecasting approaches are based on machine learning techniques [6–8] and mechanistic
models [9–11]. Meanwhile, data collected from various platforms, serving as inputs to the
forecasting techniques, are also crucial in forecasting.

In particular, internet-based big data could be a valuable complementary data source to
monitor disease progression, and directly integrate with traditional surveillance approaches
and disease modeling efforts, shown by numerous studies in the past decades [12–19]. For
instance, Google Flu Trend (GFT) [15], a digital disease surveillance system operated by
Google that utilizes selected Google search queries’ volume to estimate the future influenza-
like illnesses (ILI) activities for more than 25 countries, was one of the first few studies that
demonstrated public search behaviors’ potential in complementing traditional forecasting
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analysis. More recently, many studies have improvised and improved upon GFT and
provided more robust and accurate real-time influenza activity estimates around the world,
including machine learning models [13,20,21], statistical methods [12,16,18,22], compart-
mental models [23,24], etc. Many studies have also exploited public search behaviors to
track other infectious diseases, such as dengue [17], HIV/AIDS [25], etc.

In this study, we present a systematic review and analysis of the forecasting efforts in
the literature that focuses on harnessing public search behaviors through internet search
data. To the best knowledge of the authors, there is currently no systematic review article
that focuses on methods utilizing online search information for COVID-19 forecasting.
Therefore, this study aims to summarize the extended application of internet search data
to enable future research studies to reciprocate and contribute to the field of COVID-19
forecasting and infectious disease tracking more efficiently. Accurate and robust forecasting
performances shown in the considered studies here demonstrate the predictive power of
internet search data, and its potential in serving as early warning signals for subsequent
COVID-19 waves.

This review study is organized as follows. Section 2 briefly introduces various existing
COVID-19 forecasting models, as well as other related literature considered in this review
study. Section 2 also briefly explains the selection criteria for the research studies included
in this paper. Section 3 illustrates the data sources of internet search data, and other data
used alongside the online search data. Section 4 demonstrates various models that exploit
internet search data in the recent publications to model the spread of COVID-19 in various
regions of the globe, as well as the evaluation procedure for results comparison. Section 5
summarizes the forecasting results and evaluations conducted by the selected research
studies. Finally, in Sections 6 and 7, a discussion and conclusion of the entire review study
are presented.

2. Related Studies
2.1. COVID-19 Forecasting Models and Related Literature

As COVID-19 prediction has attracted increasing interest from researchers, many
prediction approaches have been proposed from various perspectives. There are two
general infectious disease modeling directions: the mechanistic approach and the data-
driven approach. Mechanistic models mathematically formulate the disease dynamics by
dividing the population of interest into different compartments, such as susceptible, infec-
tious, and recovered/removed, and model each compartment with ordinary differential
equations [26]. The majority of mechanistic models used are based on the susceptible–
exposed–infectious–recovered–deceased model (SEIRD) [27] and its variants. For instance,
Yang et al. [28] propose a modified SEIR model by introducing population move-in and
move-out parameters. He et al. [29] further split the infectious population into infectious
with and without interventions, which indicates different contagious rates and recovery
rates under various interventions implemented. The mechanistic approach can be effec-
tive for longer horizon predictions and disease dynamic understandings but might be
inadequate for detecting sudden changes and subsequent outbreaks (due to COVID-19
variants) [30].

The data-driven approach treats COVID-19 prediction as a time series prediction
task, using available historical data and dynamic social behaviors. These models are
typically built upon statistical frameworks [31–33] and recent advances in machine learn-
ing [34,35] and deep learning algorithms [35–37]. For example, Kumar et al. [31] modeled
the evolution of the COVID-19 outbreak, and performed prediction using autoregres-
sive integrated moving average (ARIMA) and prophet time series forecasting models.
Papastefanopoulos et al. [34] compared six different time series approaches using two pub-
licly available datasets, showing that machine learning methods can accurately estimate
the infectious rates in the future, given the data of actual testing for a small portion of the
population. Er et al. [37] proposed a transformer-based method, a deep data-driven ma-
chine learning model adapted from natural language processing applications, to generate
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2-week-ahead COVID-19 death forecasts for all U.S. counties, utilizing COVID-19-related
cases, deaths, and community mobility trends.

Although many research studies focus on the aforementioned categories of approaches,
this paper mainly focuses on another category of COVID prediction, which utilizes external
sources of data to assist in more accurate predictions.

The correlation between online search data (such as Google Trends [38], Baidu [39],
Twitter [40], etc.) and the COVID-19 trends has been investigated and analyzed in many
different countries and regions, including specific studies in China [39], Europe [41],
Canada [42], Italy [43], and the U.S. [44]. However, these articles focused on analyz-
ing correlations and conducting longitudinal analysis of online search behaviors in various
regions in the world, by considering generic COVID-19-related and symptom-related
queries. None of them examined in detail the importance of the search queries with a
carefully designed large-scale data-driven query identification process or attempted to
forecast COVID-19 incidences and future outbreaks by incorporating the aforementioned
prediction techniques. While the majority of the existing studies proclaim the potential pre-
dictive power of internet search data in COVID-19 forecasting through the corresponding
correlation analyses, only a few have built prediction models [45–53] to fully utilize and
demonstrate the predictive power of internet search data. This review study examines each
of those prediction models, by elaborating the relevant internet search data as well as other
alternative data, and analyzing the prediction models.

2.2. Search Strategy and Selection Criteria

In this section, the process to identify the articles for this review study is presented.
Since this review study focuses on COVID-19 forecasting/prediction literature that utilizes
internet search information, two constraints were imposed on the scope of this systematic
and quantitative review study:

• Forecasting studies of COVID-19: papers that provided future predictions/forecasts for
a specific region in the world and for a specific future horizon. The search terms used
were as follows: COVID-19, coronavirus, SARS-CoV-2, prediction models, forecasting
models, predictive analysis.

• Data-driven including internet search: broadly defined as papers that incorporated
COVID-19-related data, internet search data, and other exogenous information into
the setup or fitting of the model. Here, the internet search information was broadly
defined as datasets that reflected the online search behaviors of a population of interest.
The search terms used were as follows: internet search data, internet search infor-
mation, Google Trends, online search behavior, COVID-19 time series information,
mobility data.

Many different search term combinations, selected from the above imposed con-
straints, were used to retrieve desired research studies in online databases, including
Google Scholar [54], Scopus [55], and PubMed [56]. Some of the search strings used were
as follows: “COVID-19 prediction models” AND “internet search data”; “COVID-19 fore-
casting models” AND “Google Trends”; “COVID-19 prediction” AND “internet search
information” AND “mobility data”; “COVID-19 forecast” AND “online search behavior”
AND “time series information”. After the initial search, 217 documents were retrieved, of
which 28 were duplicates. Then, by further filtering with both constraints above, 9 studies
were finally selected for this review.

Table 1 lists all the research studies considered in this paper, and their high-level
overview of objectives, model types, data source, and quality assessments.
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Table 1. Studies reviewed in detail in this article. List of abbreviations: COVID-19, coronavirus
disease 2019; LASSO, least absolute shrinkage and selection operator; RMSE, root mean square error;
MAE, mean absolute error; MAPE, mean absolute percentage error; correlation, Pearson correlation;
persistence (model), rule-based baseline model that uses the count “today” as an estimate of all future
predictions; AR, autoregressive model; LSTM, long-short term memory; ARIMA, autoregressive
integrated moving average; PCA, principle component analysis; hospitalization, hospital admission;
CI, confidence interval; PI, prediction interval; CDC, Center for Disease Control and Prevention; %ILI,
percentage of influenza-like illnesses; Media Cloud, an open-source platform for media analysis,
which shows the number of digital news articles covering the topic of interest in time series; health
bot, data generated by virtual AI-based triage systems from Azure Microsoft; the output is a time
series of number of people “flagged” with COVID-19.

Study Objective Type of Model Online Search
Data Source Other Data Inputs Quality Assessment

Liu et al.
(2020) [45]

Forecast 2-day-ahead
COVID-19 cases in all 32

China provinces.
LASSO Baidu

China CDC, Mobility,
Media Cloud,

COVID-19 cases

RMSE, Correlation:
outperform persistence

and AR baseline
models in both metrics

Ayyoubzadeh
et al. (2020) [46]

Forecast 1-day-ahead
COVID-19 confirmed cases

in Iran

Linear regression,
LSTM Google Trends COVID-19 cases

RMSE: linear
regression with Google
search data performs

better than LSTM with
Google search data

Prasanth et al.
(2021) [47]

Forecast 1-week-ahead
COVID-19 cases and deaths

in U.S., U.K., and India
LSTM Google Trends COVID-19 cases

and deaths

RMSE, MAPE: LSTM
has significant

reduction from ARIMA
baseline model

Rabiolo et al.
(2021) [48]

Investigate the relationship
between Google Trends
symptom searches and

COVID-19 cases and deaths;
use ARIMA to predict

COVID-19 cases and deaths
in Australia, Brazil, France,

Iran, India, Italy, South
Africa, U.K., and U.S. up to

14 days ahead

PCA and ARIMA Google Trends COVID-19 cases and
deaths

RMSE: models with
search terms and

COVID-19 time series
information

outperform those
without

Lampos
(2021) [49]

Forecast 1- and
2-week-ahead COVID-19

deaths in U.S., U.K.,
Australia, Canada, France,
Greece, and South Africa.
Produce point estimates

and CI

Gaussian process
(GP) Google Trends Media Cloud,

COVID-19 deaths

MAE: the inclusion of
search queries in GP
autoregressive model
significantly improves

its performance

Turk et al.
(2021) [50]

14-day-ahead COVID-19
hospitalizations forecast in
Greater Charlotte market

area in U.S.

Vector
autoregression

(variant)
Google Trends

Mobility, health bot,
COVID-19

hospitalizations

MAPE: outperform
ARIMA (time series
benchmark) model

Ma and Yang
(2022) [51]

Forecast 1–4-week-ahead
COVID-19 deaths in U.S.
national and states level.
Produce point estimates

and CI

LASSO,
spatialtemporal

statistical approach
Google Trends COVID-19 cases

and deaths

RMSE, MAE,
Correlation:

outperform persistence
and time series

benchmarks, and
perform reasonably
against other CDC

Forecast Hub methods

Wang et al.
(2022) [52]

Forecast 1–2-week-ahead
COVID-19 hospital

admissions in U.S. national
and states level. Produce

point estimates

LASSO,
spatialtemporal

statistical approach
Google Trends COVID-19 cases,

vaccination rate

RMSE, MAE,
Correlation:

outperform persistence
and time series

benchmarks, and
perform reasonably
against other CDC

Forecast Hub methods
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Table 1. Cont.

Study Objective Type of Model Online Search
Data Source Other Data Inputs Quality Assessment

Ma et al.
(2022) [53]

Forecast 1–4-week-ahead
COVID-19 cases, deaths,

and 1-week ahead
influenza. Produce point

estimates and PI

LASSO,
spatialtemporal

statistical approach
Google Trends COVID-19 cases,

deaths, %ILI

RMSE, MAE,
Correlation:

outperform persistence
and time series

benchmarks, and
perform reasonably
against other CDC

Forecast Hub methods

3. Data Acquisition and Preprocessing

The literature considered in this paper (Table 1) focuses on various regions in the
world. This section lists all the COVID-19-related data (forecasting targets), and all data
inputs considered in the above studies, with the focus on internet search data. Details of
data usage and availability of the selected research studies (Table 1) are further provided in
Table S4 in Supplementary Materials.

3.1. COVID-19-Related Data (Forecasting Target)

Since the COVID-19 initial outbreak and the continuous spread, many different organi-
zations around the globe, including the Center for System Science and Engineering (CSSE)
at John Hopkins University (JHU) [57], China CDC [58], and European Center for Disease
Prevention and Control (ECDC) [59], have maintained COVID-19-related data such as the
number of confirmed cases and deaths, to keep track of the spread of the epidemic. These
data are available in various geographical resolutions (country-wise or region-wise). The
research studies (Table 1) consider some or all the COVID-19-related data listed below in
various geographical resolutions as forecasting targets, as well as input features used in the
models to assist the forecasts. Tables S1 and S2, in Supplementary Materials, also showcase
the sample dataset of COVID-19 cases, deaths, and hospitalizations.

• Confirmed cases: daily/weekly COVID-19 new confirmed cases (infections) time
series in different geographical resolutions. For example, the many U.S. studies used
the JHU CSSE COVID-19 dataset [57] as the official ground truth. Confirmed case
counts in China were obtained from China CDC [58]. The confirmed case counts in
other regions were obtained from ECDC [59].

• Reported deaths: daily/weekly COVID-19 newly reported deaths time series in differ-
ent geographical resolution. The data sources were similar to confirmed cases time
series above.

• Hospitalizations: COVID-19 hospitalizations generally refer to the number of daily/weekly
newly admitted patients to the hospitals in various geographical resolutions that
tested positive for COVID-19. Hospitalizations reflect the number of severe cases, and
therefore keeping track of hospitalizations is strategic for policymakers as it allows
predicting the potential saturation of the hospital systems, and helping local public
health officials make timely decisions in allocation of healthcare resources, such as
ventilators, ICU beds, personal protective equipment, personnel, etc. Hospitalization
data is maintained by different organizations across different regions in the world. For
example, the U.S. Department of Health and Human Services (HHS) [60] releases the
ground truth information of new hospital admissions in the U.S.

• Vaccination rates: percentage of fully vaccinated population in daily/weekly fre-
quency, reported by different health organizations in each region. For example, U.S.
vaccination rates are reported by the CDC [61] with daily frequency.

3.2. Internet Search Data

At the inception of a disease outbreak, official data may be unavailable or crude due
to lack of a mature surveillance system. Internet search data, in the meantime, serves as a
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great auxiliary tool for monitoring the spread of disease, which reflects the development of
the disease almost instantaneously. Internet search data generally refers to how frequently
one query term is searched or mentioned on the internet. There are many sources of
search frequencies available to the public, such as Google Trends [62], Baidu Index [63],
etc. Google Trends, for example, provides estimated Google search frequency time series
for a desired query term in the specified geographical resolution and time frame [62].
In particular, Google Trends employs a sampling technique that collects all raw Google
search frequencies of the query of interest and calculates the proportion that contains this
query. The Baidu Index exhibits a similar sampling mechanism, which returns the search
frequencies of a query (in Chinese) of interest. Due to its wide geographical coverage and
popularity, Google Trends is used by the majority of the forecasting studies considering
internet search data. Alternative internet search data sources are considered in regions
where the Google search engine data are not considered as a representative sample, such
as Baidu [63]. Table S3 in Supplementary Materials also showcases the sample dataset
obtained from Google Trends.

Despite the advantages of internet search, the queries obtained from the internet are
abundant and most of them are unrelated to the relevant disease. Furthermore, the raw
search frequency time series might be noisy. Therefore, mechanisms for selecting important
search queries and de-noising the search frequencies are necessary. The research studies
(Table 1) incorporated different data-driven approach for selection and pre-processing,
which will be discussed in detail below.

3.2.1. Query Selection

As correlation between COVID-19-related internet search queries and COVID-19
trends are well-studied in the literature [38,44], the majority of the research studies (Table 1)
selected the relevant queries based on correlation. By starting with a large pool of COVID-
19-related search terms in Mandarin, Liu et al. [45] first conducted a correlation study
between the search terms and COVID-19 case counts, and eventually collected the top
three search terms with highest correlations in the daily search fraction from Baidu [63]
(“COVID-19 symptoms”, “how many degree is fever”, and “symptoms of fever”). Similarly,
Prasanth et al. [47], Rabiolo et al. [48], and Turk et al. [50] selected the list of terms based
on medical expertise [64] and prior correlation studies [44], where the selected terms were
a combination of general COVID-19-related terms such as “COVID-19”, “coronavirus”,
and specific intervention and symptom-related terms such as “hand sanitizer”, “mask”,
“cough”, “fever”, “shortness of breath”, etc. Furthermore, as people tend to search for
COVID-19-related information online before they arrive at a clinic or are tested positive [65],
COVID-19-related search volumes tend to peak prior to reported cases or deaths. Several
studies exploited this by computing the optimal delay between search frequencies and
COVID-19 trends, to further select the important queries based on the association between
optimally lagged search queries and COVID-19 trends. Lampos et al. [49] determined the
list of search terms by COVID-19-related symptoms and keywords, and computed the
time lags between the search frequencies and COVID-19 confirmed cases and deaths, as
inputs to their forecasting model. Ma and Yang [51], Wang et al. [52], and Ma et al. [53]
developed an end-to-end data-driven selection mechanism that selected 23 important search
queries from the 256 top searched COVID-19-related Google search terms, by ranking the
Pearson correlation coefficient between optimal lagged search term and COVID-19 trends
(forecasting target), with a cutoff threshold of 0.5, using summer 2020 as the training
period. The selected 23 important search terms contained more specific COVID-19-related
symptoms, such as “loss of taste” and “loss of smell”, compared to other studies. Figure 1
shows the delay in peaks between the Google search query, “loss of taste”, and COVID-19
cases (a) and deaths (b) trend. It illustrates the association between COVID-19 trends and
important search queries, as well as the optimal time lag in between, which could be helpful
for early outbreak detections.
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Figure 1. Google search query “loss of taste” [62] and United States national-level COVID-19 weekly
cases [57] (a), deaths [57] (b), and hospitalizations [60] (c), from 1 March 2020 to 7 August 2022.
The Google search query “loss of taste” search frequency [62] is in red. COVID-19 U.S. national
level weekly cases [57], deaths [57], and hospitalizations [60] trends are in blue. Y-axes are adjusted
accordingly. This figure illustrates the delay in peak between the search frequency of “loss of taste”
and COVID-19 cases, deaths, and hospitalizations. The delay in peak is illustrated by the yellow
arrow in the figure.

3.2.2. Search Volume Data Preprocessing

Being user-dependent by design, estimators based on internet search data embody
many sources of uncertainty and instability. The frequencies of the obtained internet search
queries from Google Trends are sparse and they have sudden spikes/drops due to natural
noises in sampling approaches. In particular, Google Trends truncates data to 0 if the search
volume for the query is too low. Thus, the zeros in a particular query’s search frequencies
obtained from Google Trends indicate missing data due to low search volume, which is
very common in practice, especially for low-density population areas and low-internet-
connected areas. Moreover, search queries obtained from Google Trends could have sudden
spikes/drops due to natural noises in its sampling approaches. Researchers have developed
different data-driven techniques to filter the selected search queries’ frequencies, before
employing them in forecasting models. Liu et al. [45] employed a 2-day moving average
in all the selected queries to enhance signal and reduce noise, while Rabiolo et al. [48]
conducted principle component analysis (PCA) and used two principle components from
all the selected queries for subsequent forecasts. On the other hand, Ma and Yang [51],
Wang et al. [52], and Ma et al. [53] first addressed the high sparsity in the state-level data
through a weighted average of state-level and regional or national-level search queries’
frequencies, and incorporated an interquantile range (IQR)-based data filtering mechanism
to further smooth out extreme outliers due to sudden spikes/drops. Wang et al. [52] further
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applied a 7-day moving average to remove the weekly seasonality in the selected Google
search queries, before employing them in the hospitalizations forecasts. Lampos et al. [49]
took a step further by not only filtering out the noise in the search queries’ frequencies
but also the news media effects led by public fear. They proposed an autoregression (AR)
model that minimizes the news media effects on the search queries, by splitting the search
population into infected and concerned. By estimating the infected population within the
search queries’ frequencies, they demonstrated the robustness of search queries serving
as early warning signals for future waves, and significantly improved the forecasting
performances in all regions of interest.

3.3. Other Auxiliary Data Sources

Besides COVID-19-related data serving as time series information and internet search
data serving as exogenous variables, the research studies (Table 1) also incorporated other
auxiliary data in their forecasting frameworks.

News media reports, referring to time series of numbers of COVID-19-related news
media articles, also contain strong associations with COVID-19 trends as exogenous vari-
ables [45]. Media Cloud is an online open-source platform that contains news media reports.
By specifying the keywords, Media Cloud allows the tracking of media on a particular
topic or multiple topics of interest related to the keywords, and is used in many of the
forecasting studies above. Media Cloud will return a time series of the number of related
news articles available over time from a collection of media websites using the specified
keywords, which represents the region-specific news/media activity trends. Liu et al. [45]
treated this as exogenous time series information as an input of their forecasting model. On
the other hand, Lampos et al. [49] used media coverage for preprocessing of the selected
search queries, in order to minimize the news media effect on search queries’ frequencies.

Mobility data have also been shown to assist COVID-19 forecasts, serving as an exoge-
nous variable [66,67]. Google mobility [68], Apple mobility [69], and Facebook movement
range maps [70] are the most popular mobility data sources used in the literature studies.
They all share a similar structure, where the reports record a community’s daily movement
in different areas such as retail and recreation, groceries and pharmacies, parks, transit
stations, workplaces, and residential addresses. A baseline mobility index is established
for 7 days in a week, which represents the usual community mobility value. The mobility
data reports the movement pattern of the community, with the percentage of changes from
the baseline day’s value. Turk et al. [50] incorporated both Apple mobility reports and
Facebook movement range maps in their forecasting model, in addition to Google search
data and COVID-19 time series information.

As the COVID-19 pandemic continues, severe seasonal influenza may break out
alongside COVID-19, causing additional burdens on healthcare resources and public
safety. Influenza outbreaks happening alongside the COVID-19 wave could also potentially
serve as useful information for COVID-19 forecasts, and vise-versa. For decades, the U.S.
CDC has monitored flu activities through the Influenza-like Illness Surveillance Network
(ILINet), which collects the weekly reported number of outpatients with influenza-like
illness (ILI) from thousands of healthcare providers and publishes the weekly ILI per-
centages. Ma et al. [53] proposed an accurate COVID-19 and influenza joint forecasting
framework, ARGOX-Joint-Ensemble, which efficiently incorporates previously proposed
ILI and COVID-19 forecasting models into a new ensemble framework that pools the infor-
mation between influenza and COVID-19. In particular, it incorporates real-time influenza
information for COVID-19 cases, deaths, and hospitalizations forecasts, and vise-versa for
ILI forecasts.

4. Methods

The selected papers (Table 1) aim to forecast the spread of COVID-19 with different
models, harnessing the predictive power of internet search data and other auxiliary data
source introduced above. In general, the prediction models used are data-driven statistical
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and machine learning techniques. This section briefly introduces the various prediction
models used by the 9 identified studies (Table 1), as well as the subsequent evaluation
process for the forecasting results. Details of model implementations and code availabilities
of the selected studies are further provided in Table S4 in Supplementary Materials.

4.1. Prediction Models
4.1.1. Statistical Models

Incorporating information up to the current time point to generate future predic-
tions with statistical and probabilistic properties, statistical models are widely used in
disease forecasting [12–15], and can be generally categorized into linear and nonlinear-
based models.

Linear-based models are mostly connected with regression models but can be also
referred to models assuming linear connection between a response variable (target) and
explanatory variables (exogenous information). In the disease forecasting task, one of the
most used linear-based models is the autoregressive moving average model (ARMA), and
its variants, such as AR, MA, ARIMA, etc. ARMA models predict future data in a series
using past data, by representing the relationship between past, current, and future values
of the same time series as a linear function [71]. Their simplicity of structure provides
flexibility of incorporating additional exogenous variables (ARMA-X and other variates),
and strong interpretability of autocorrelation and the relationship with all exogenous
variables incorporated. Rabiolo et al. [48] fitted an ARIMA model to forecast COVID-19
cases and deaths in multiple countries by treating Google search data (PCA dimensionality
reduced) as exogenous variables, and demonstrate that a simple ARIMA model can perform
reasonably in forecasting the COVID-19 pandemic. Meanwhile, Turk et al. [50] used
a vector-autoregression (VAR)-based model, combining Google search data, healthcare
chatbot scores, and mobility information, to produce COVID-19 hospitalizations predictions
in the Greater Charlotte market area. In addition, one can incorporate L1-norm penalty
into an ARMA structure to achieve model selection while enjoying the interpretability and
simplicity from the linear structure. Ma and Yang [51], Wang et al. [52], and Ma et al. [53]
proposed an autoregression-like model that combines COVID-19 time series information
and Google search data with L1-norm penalty for U.S. national COVID-19 forecasts. They
demonstrated that past COVID-19 time series and Google search information efficiently
complement each other in a rolling-window forecasting manner. More detailed descriptions
are presented in Section 2.2 in Supplementary Materials.

On the other hand, the targeted time series might exhibit a more complicated structure
and relationship with itself, and the exogenous variables considered, that cannot be easily
captured by linear-based models. A nonlinear model generally refers to empirical or semi-
empirical modeling that takes at least some nonlinearities into account. An example of
nonlinearity in COVID-19 forecasts is that the number of cases leads to a disproportionate
number of deaths during the peak periods of a COVID-19 wave [2]. More technical
details on nonlinearities in time series are discussed in [72]. The Gaussian process (GP),
defined as a stochastic process such that every finite collection of those random variables
has a multivariate normal distribution [73], is one of the nonlinear-based models that
is commonly used in time series forecasting, and justified by prior works on modeling
infectious diseases [74,75]. Lampos et al. [49] develop a GP-based forecasting model to
provide D-day-ahead COVID-19 death predictions in multiple countries, and showcased
how Google search data can enhance early warning signals compared to baseline models.
Other nonlinear modeling attempts are also considered among the research studies. For
instance, Ma and Yang [51] incorporated an ensemble framework that combined their U.S.
state-level COVID-19 death predictions, generated from three different submodels, and
selected the best predictor for each week for 1–4-week-ahead COVID-19 death forecasts.
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4.1.2. Deep Learning Models

Deep learning methods, trained using supervised learning, are deep neural networks
that learn directly from input data to predict some targets. Such models are more flexible
than both mechanistic models and statistical models, due to their representation capa-
bility and less sophisticated handcrafting preprocessing of the input data. In time series
forecasting problems, many deep learning-based models take inspiration from natural
language processing applications, including long short-term memory (LSTM) [76], gated
recurrent unit (GRU) [77], etc. All the above models can capture intrinsic information
from sequential data for accurate prediction. LSTM models are a type of recurrent neural
network (RNN) [78], and are able to overcome the drawbacks of the vanilla RNN, the
exploding and diminishing gradients problem, by additionally “remembering” portions of
the past, so-called memory [76]. Therefore, LSTMs are capable of learning and capturing so-
phisticated relationships between the target and input data with long time lags in between,
and produce robust and accurate forecasts. Further details of the vanilla LSTM structure are
demonstrated in Supplementary Materials Section 2.1 and Figure S1. Prasanth et al. [47]
used the search data from selected queries on a baseline LSTM structure for U.S, U.K, and
India 1-week-ahead COVID-19 cases and deaths predictions. Ayyoubzadeh et al. [46], on
the other hand, fitted a linear regression model and a vanilla LSTM model, both incorpo-
rating Google search data, to provide short-term a COVID-19 cases forecast in Iran, and
compare the performances with each other.

4.2. Evaluation Process and Metrics

The selected papers evaluate the forecasts, produced from the developed prediction
models, through comparison against alternative benchmarks via different error metrics. To
evaluate the accuracy of a point estimate of COVID-19 target (cases, deaths, and hospitaliza-
tions) against the actual ground truth, the selected studies used several different evaluation
metrics, including root mean squared error (RMSE), mean absolute error (MAE), mean abso-
lute percentage error (MAPE), and Pearson correlation (correlation). RMSE between an esti-

mate ŷt and the true value yt over period t = 1, . . . , T is
√

1
T ∑T

t=1(ŷt − yt)
2. MAE between

an estimate ŷt and the true value yt over period t = 1, . . . , T is 1
T ∑T

t=1|ŷt − yt|. MAPE

between an estimate ŷt and the true value yt over period t = 1, . . . , T is 1
T ∑T

t=1

∣∣∣ ŷt−yt
yt

∣∣∣. Cor-
relation is the Pearson correlation coefficient between ŷ = (ŷ1, . . . , ŷT) and y = (y1, . . . , yT).
To evaluate the accuracy of a probabilistic prediction and confidence or prediction interval
of COVID-19 target (cases, deaths, and hospitalizations) against the actual ground truth, the
selected studies used two different evaluation metrics: the weighted interval score (WIS)
and the empirical coverage. The weighted interval score (WIS) [79] is a proper scoring rule
(smaller is better), that takes an entire predictive distribution into account and penalizes
over- and under-confidence. Following CDC Forecast Hub’s submission guideline [5]
in this study, the WIS between the true value and a predictive distribution at time was
evaluated across 11 prediction intervals with nominal coverages of 98%, 95%, 90%, . . . ,
10%. The WIS between the true value y = (y1, . . . , yT) and predictive distributions over
period t = 1, . . . , T was computed by averaging the WIS across the period. The empirical
coverage between the true value y = (y1, . . . , yT) and the prediction intervals over period
t = 1, . . . , T is the proportion of true values falling inside a given central prediction interval
with 95% nominal coverage.

The evaluation process is generally performed as follows: (1) the point estimates (or
probabilistic predictions) of a particular COVID-19 target in a specific region and time
interval of interest are produced from the developed model; (2) a particular evaluation error
metric is chosen and the corresponding error is computed; (3) alternative benchmark point
estimates (or probabilistic predictions) of the same COVID-19 target in the same region and
time interval are collected; (4) benchmark error is computed with the same evaluation error
metric; (5) performance analysis is conducted by comparing the error reduction between
the developed model and benchmark.
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By choosing the appropriate benchmark, one can directly evaluate the prediction
performances of COVID-19 waves in different regions and different periods, focusing on
point estimates, while further interpreting the uncertainties in different rapidly changing
dynamics, focusing on probabilistic predictions. The comparisons against different bench-
marks could also provide additional insights on the importance of a particular exogenous
data and model structures of the developed forecasting framework. More guidelines on
COVID-19 forecast reporting and evaluation metrics can be found in [80,81].

5. Results

With the foundations of prior correlation analysis between internet search data and
COVID-19 trends, the selected research studies (Table 1) took a step further by systemati-
cally uncovering potentially useful online search queries, filter/de-noising, and utilizing
them to forecast COVID-19 trends. They illustrate the predictive power of public search
information in their proposed forecasting models, by producing COVID-19 predictions
in the geographical regions and the time frames of interest. Finally, they evaluated the
forecasts through different evaluation metrics, shown in Section 4.2. Generally, the selected
studies analyzed their models’ predictive power, by comparing the model forecasts with
different benchmark forecasts, briefly summarized below.

• Persistence (naïve) rule: a rule-based model that uses the COVID-19 target (cases,
death, or hospitalization) count at date T as an estimate of the prediction for T + δt.

• Time series baseline: generally refers to linear-based models such as the autoregressive
moving average model (ARMA) [71], and its variants (AR, MA, ARIMA, etc.), that
utilize COVID-19-related time series information only (in Section 3.1).

• Simpler version of proposed model: generally refers to a simpler version of the
proposed forecasting model after removing one or multiple components in the model
structure (data component, architecture component, etc.).

• Other publicly available benchmark: generally refers to established and publicly
available benchmark predictions, such as those of the COVID-19 forecast hub [5].

5.1. Importance of Internet Search Component

Although the forecasting targets, regions, time frames, and benchmark comparisons
may differ from among all considered studies, they all demonstrate the importance of the
internet search data component in their forecasting models through detailed sensitivity
and evaluation analysis. In general, the sensitivity analysis was conducted by comparing
the proposed model forecasts against other alternative benchmark forecasts, which had
a similar model structure but did not take internet search data into account. A few of the
selected studies took a step further to compare data against benchmarks with an alternative
model structure, to further illustrate the robustness and accuracy achieved with the internet
search data.

Focusing on 51 U.S. states/districts (including Washington D.C.) and U.S. national
level, Ma and Yang [51] produced 1–4-week-ahead COVID-19 death predictions from
4 July 2020 to 5 March 2022, using the developed data-driven spatiotemporal statistical
framework with L1-norm penalty and incorporating Google search queries obtained in
different geographical resolutions. They compared their proposed method with time
series baseline models (without Google search information) and found that the Google
search information contributed to around 22% RMSE and 27% MAE error reductions at
the national level, demonstrating the additional predictive power of internet search data.
Meanwhile, on the state level, they compared their proposed state-level model with simpler
versions of the proposed models by removing the spatiotemporal and ensemble model
structure, and achieved around 18% RMSE and 20% MAE error reductions. They fur-
ther showcased the coverage of the state-level forecast confidence intervals, where they
reasonably measured the accuracy of their weekly estimates, albeit with overconfidence.
These indicate that additional ensemble (nonlinear) and spatiotemporal model structures
can further enhance the predictive power of Google search data. The detailed sensitiv-
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ity analysis on the state level demonstrates that the internet search data’s noisiness and
sparsity can be minimized, and its predictive power can be maximized with principled
and data-driven model structures. They also show competitive performance with other
publicly available COVID-19 forecasts from other research teams making predictions of
COVID-19 deaths [5]. Wang et al. [52] adapted a similar framework and extended internet
search data’s predictive power to 2-week-ahead COVID-19 hospitalization predictions at
both U.S. national and state levels. By comparison against an autoregressive model, their
proposed model achieved 18% and 25% reductions in RMSE and MAE at the national
level, respectively, while achieving roughly 8% and 12% reductions in RMSE and MAE
on average at the state level, respectively. The significant improvements from time series
benchmark predictions further emphasizes the importance of internet search data alongside
COVID-19 time series information. Furthermore, their proposed ARGO-inspired method
yielded roughly 35% and 12% RMSE error reductions for 1- and 2-week-ahead state-level
forecasts, compared with two benchmark models published by the COVID-19 forecast
hub [5], emphasizing the efficient combination of Google search information and COVID-19
time series information in different rapidly changing dynamics. Ma et al. [53] took a step
further by combining prior (COVID-19 and influenza) single disease forecasting frame-
works into joint ensemble forecasts for 1–4-week-ahead COVID-19 cases and deaths, and
1-week-ahead influenza-like illnesses. The proposed framework improved upon previous
single disease forecasts, and significantly outperformed alternative time series benchmarks
and persistence models, in both point estimates and probabilistic predictions (prediction
intervals) in all the error metrics in Section 4.2, further illustrating Google search data’s
additive predictive power for both infectious diseases. The proposed bi-disease prediction
model also remains competitive against other publicly available forecasts. Meanwhile,
Turk et al. [50] used their proposed vector-autoregression (VAR)-based model to produce
14-day-ahead out-of-sample COVID-19 hospitalization predictions in the U.S. Greater Char-
lotte market area from 2 August 2020 to 15 August 2020, incorporating both Google search
data and mobility information. Their proposed VAR-based model achieved around 22%
MAPE error reduction, compared to the baseline ARIMA, showing that efficiently combin-
ing internet search data with time series information can overcome lagging behaviors in
forecasts, while avoiding overshooting and underestimations. Lastly, Prasanth et al. [47],
Rabiolo et al. [48], and Lampos et al. [49] also produced U.S. national level COVID-19
forecasts, illustrating the strength of internet search data serving as early warning signals
from different angles.

Some of the selected research studies (Table 1) also focused on other regions and
countries in the world. Liu et al. [45] produced 2-day-ahead and real-time COVID-19
cases forecasts for 32 Chinese provinces for the time period spanning from 3 February
2020 to 21 February 2020. Their proposed ARGONet + GLEAM model outperformed both
persistence and AR models in 27 out of 32 Chinese provinces, and produced reasonable
disease estimates in the rest of the provinces, showcasing public search behavior as a
valuable alternative data source assisting short-term forecasts when the amounts of data
during the early stage of an emerging outbreak are limited. Ayyoubzadeh et al. [46]
predicted 1-day-ahead COVID-19 cases in Iran from 15 February 2020 to 18 March 2020,
using basic LSTM and linear regression models. They showed that a linear regression
model with Google search information can achieve better performance when data are
limited in the early stage of pandemic, compared to an LSTM model with Google search
information. By looking at the feature/coefficient weights in both models, they found
that most effective search queries were handwashing, hand sanitizer, and antiseptic topics,
besides historical COVID-19 case counts. Similarly, Prasanth et al. [47] forecasted 1-week-
ahead COVID-19 cases and deaths in India, the U.S. and U.K. during the period from
14 May 2020 to 20 May 2020, by training a hybrid grey wolf optimizer (GWO)-LSTM model
from 24 February 2020 to 13 May 2020. By conducting sensitivity analysis after removing
some of the features and simplifying model structures, their full model (with internet
search data, time series information, and GWO) achieved roughly 55%, 4%, and 52% MAPE
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error reductions compared to the best-performing alternative models in India, the U.S.,
and the U.K., respectively, for COVID-19 case predictions (similarly for death predictions).
Rabiolo et al. [48] first conducted studies of correlation between selected internet search
queries and COVID-19 growth trends in nine countries (Australia, Brazil, France, Iran,
India, Italy, South Africa, the U.K., the U.S.), and predicted 14-day-ahead COVID-19 cases
and deaths using ARIMA during the period from 22 January 2020 to 20 December 2020.
Overall, predictions based on both search terms and COVID-19 conventional metrics
performed better than those not including Google searches (13% RMSE error reduction
on average), illustrating early warning signals provided by the selected queries during
the first two COVID-19 waves in different countries. Lampos et al. [49] produced 1- and
2-week-ahead COVID-19 death point estimates and probabilistic predictions (confidence
intervals) in the U.S., the U.K., Australia, Canada, France, Greece, and South Africa from 17
February 2020 to 24 May 2020, indicating that the inclusion of important search queries
(with news media effect minimized) generally improved model accuracy compared with
basic persistence models.

5.2. Internet Search Information Serving as Early-Warning Signals

Forecasting COVID-19 trends during the initial outbreak and subsequent waves has
been extremely challenging, due to noisy and unreliable ground truth data, limited his-
torical data, and most notably the evolving nature of COVID-19 outbreaks. Meanwhile,
internet search data could serve as early-warning detection signals for future outbreaks,
and “foresee” surges of upcoming COVID-19 waves (Figure 1). Liu et al. [45] showed
that historical COVID-19 confirmed cases and internet-based search terms from Baidu
were consistently relevant sources of information over most of the study period. With
evaluations of the parameter weights, the importance of media article counts decreased
over time, whereas internet-based search terms retained their importance. Furthermore, by
incorporating the internet search terms, the proposed model overcame lagging behaviors
in its forecasts in the majority of the provinces compared to the time series benchmarks.
Although online searches can be driven by concern rather than infection, especially in the
early stage of the COVID-19 pandemic, Lampos et al. [49] showed that after incorporating
news media coverage to minimize this effect, the output from the proposed model provided
useful insights, including early warnings for potential disease spread, and showcased the
effect of physical distancing measures. Through thorough correlation studies, Rabiolo
et al. [48] observed that the Google searches of COVID-19 symptoms exhibited high sim-
ilarities with COVID-19 trends with certain time lags, similar to Figure 1. This behavior
can significantly contribute to the early warning of new waves and surges. Ayyoubzadeh
et al. [46], Prasanth et al. [47], and Turk et al. [50] also demonstrated such behaviors during
the early stage of the pandemic as well. Meanwhile, by examining the proposed model
during three periods with different rapidly changing dynamics in the U.S. (COVID-19
second wave, COVID-19 Delta variant, and COVID-19 Omicron variant), Ma et al. [53]
demonstrated the predictive power of Google search data serving as early-warning signals,
as the proposed model produced robust early-warning estimates before the increasing and
peaking periods and was less prone to overestimation in all three periods considered.

6. Discussion

Based on the intuition that COVID-19-related keyword search frequencies reflect, to
an extent, the number of people presenting symptoms related to COVID-19 before their
arrival at a clinic, these studies conducted end-to-end COVID-19 forecasting tasks during
different COVID-19 waves. By recognizing that COVID-19-related search queries follow a
similar trend to that of the COVID-19 epidemic and precede traditional COVID-19 metrics
(Figure 1), the research studies incorporated the internet search data efficiently in their
proposed models to allow early recognition of new waves and epidemic peaks, potentially
assisting governments and healthcare organizations to prepare for the newly infected cases,
and allocate hospital resource. The robustness and accuracy of COVID-19 forecasts, shown
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in all the selected research studies (Table 1), demonstrate that internet search data have
great potential in assisting short-term infectious disease forecasts.

However, big data-driven forecasting methods also have limitations. One of the
limitations is that the internet search data are sensitive to media coverage and the inherit
sampling noise, and such instability could propagate into the COVID-19 predictions. By
conducting thorough correlation studies in various countries, Lampos et al. [49] discovered
that public search behavior could signal the presence of actual infections. However, this
could also be attributed or inflated by general concern, intensified by news media coverage,
increased mortality across the world, and imposed physical distancing measures, especially
before subsequent outbreaks led by different COVID-19 variants. Ma and Yang [51] and
Wang et al. [52] realized that Google search data can be noisy due to the instability of Google
Trends’ sampling approach. Especially for state-level Google search data, the lack of search
intensity can make the search data unrepresentative of the real interest of the people. To
combat these challenges, Lampos et al. [49] proposed an AR-based model to minimize
the news media effects in the search queries, by stripping out the concerned population
from the “infected” population, and inputting the preprocessed queries into their nonlinear
forecasting model for multiple country death forecasts. Meanwhile, Ma and Yang [51] and
Wang et al. [52] took a different approach by proposing an IQR-based data-preprocessing
framework, and selected the most important search queries (based on correlation) for
subsequent forecasting models. Wang et al. [52] further applied moving average smoothing
to Google search data and used national level search frequencies directly as input features
for state-level predictions to further account for instability in the state-level Google search
queries. Liu et al. [45] also applied 2-day moving average smoothing to case counts, search
volumes, and media articles (Media Cloud) to enhance signal and reduce noise.

Additionally, information in internet search data deteriorates as forecast horizons
expand, which could potentially impact long-term forecasting performances. Ma and
Yang [51] and Wang et al. [52] realized the deterioration of accuracy in their 4-week-
ahead COVID-19 death forecasts, and 3–4-week-ahead COVID-19 hospitalization forecasts.
Liu et al. [45] showed that the limited amount of epidemiological and internet search
information constrained their capacity to produce reliable long-term forecasts during
the initial COVID-19 outbreaks. Similarly, Turk et al. [50] also stated that the limited
hospitalization data during early stages of the pandemic restricted them in producing
more geographically granular estimates. Nevertheless, by modifying their proposed model
structure (incorporating L1-norm penalty [51,52]), including additional features (health
bot [50] and COVID-19 time series information [51,52]), and adjusting the forecasting
horizon in different geographical resolutions [45,46,48], they were able to compensate this
limitation and still do better than baseline benchmark models (in their results analysis).
Models to further alleviate the bias in internet search data and capture long-term COVID-19
trends could be an interesting future direction.

Despite the limitations, big data is proven to be a valuable resource for infectious
disease forecasts, which can significantly boost traditional statistical models and deep
learning method forecasting performances. Across different forecasting targets, differ-
ent regions, and different time spans, these studies provide comprehensive analysis on
using online search data as an early indicator of COVID-19 under different COVID-19
variants, potentially assisting healthcare officials and promoting general public awareness.
Furthermore, as internet search information has been shown to track successfully with
various diseases such as influenza [12,16,18,22], dengue [17], and Zika [82,83], among
others [84], the selected research studies in this paper provide additional applicability and
predictive insights for internet search data, and take a step further in prediction of future
infectious diseases.

Many future directions remain open for research on internet search data applicability
and infectious disease modeling, beyond addressing the current limitations stated above.
On the data modeling front, combining mechanistic models with data-driven statistical or
deep learning models could be an interesting future direction. Examples include physics-
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informed neural networks with ordinary differential equation constraints [85], among
others. On the disease dynamics front, as the COVID-19 pandemic continues, different
infectious diseases may break out alongside COVID-19 in different regions, including severe
seasonal influenza [86] and monkeypox [87], causing additional burdens on healthcare
resources and public safety. Accurate and real-time joint prediction of various infectious
diseases in different geographical resolutions in a reliable and timely manner is an urgent
and interesting future direction.

7. Conclusions

The researchers have studied different data-driven query selection/filtering mech-
anisms and predictive models to harness the association between internet search data
and COVID-19 trends, published in [45–53]. They emphasized that the success of the
forecasting models is because COVID-19-related public search behavior has great potential
to uncover upcoming disease outbreaks, serving as a useful external signal to baseline
time series forecasting models. The outputs from all the proposed models provide useful
insights, including early warnings for potential disease spread [45–53], and showcase the
effect of different healthcare interventions implemented by government officials, such as
physical distancing measures [49] and vaccination [52]. By comparing the results with
benchmark models, the research studies illustrate that signals from web search data could
have served as preliminary early indicators for COVID-19 prevalence across various re-
gions at different geographical resolutions. The immediate impacts of various government
interventions can also be measured via these forecasting models, and can be illustrated
in the internet search queries’ frequencies. Lastly, the qualitative analysis and correlation
studies show that COVID-19-specific symptoms or COVID-19-related generic queries cor-
relate better with, and are more predictive of, clinically reported metrics. Overall, the
research studies investigated in this review paper illustrate the predictive power of online
search data in infectious disease forecasts across different targets, regions, and time ranges,
demonstrating robustness and serving as strong external signals in traditional disease
tracking frameworks.
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paper; Figure S1: Illustration of the architecture of a baseline LSTM cell.
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