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Abstract: Cell phone technology has advanced rapidly with the start of 5G being rolled out across the
networks. To keep up with this demand, cell tower companies have responded by erecting numerous
towers. Engineers and researchers analyze the network topography to make recommendations for
cell tower locations. Cell tower companies evaluate these recommendations using a host of other
factors. In this research, a model was developed to help a regional telecommunications company
predict throughput for locations using competitive and demand factors. Model results represented a
large improvement over internal key performance indicators.
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1. Introduction

Demand for wireless services has increased exponentially since the mid-1980s when
cell phones were first introduced [1]. As of 2020, the leading indicator survey of the wireless
communications industry—conducted by the Cellular Telecommunications and Internet
Association (CTIA) [2]—estimated the number of wireless subscribers in the U.S. to be about
443 million. This report also notes that the total value of the wireless industry now exceeds
that of insurance, hotels, restaurants, and transportation industries combined. To that
end, it is well established that present demand conditions show that more infrastructure is
needed to support wireless growth.

The industry responded by greatly increasing the number of cell towers. There are
over 150,000 cell towers within the U.S., which are built and managed mostly by cell tower
companies—not the national cell phone carriers. Of these towers, 63% are owned by the
three largest cell tower providers: American Tower, Crown Castle, and SBA Communica-
tions [3]. The remaining towers are mostly owned by smaller, regional companies.

When faced with the challenge of evaluating proposed locations for new towers,
regional cellular companies often seek guidance from national carriers, consultants, or
specialized network design and optimization software, such as Atoll [4]. A site selection
process facilitated by any of the information sources mentioned above is likely to consider
a plethora of criteria—which, it should be noted, can vary considerably from company
to company. Still, these recommendation lists can easily have hundreds of potential sites,
and—due to time and cost constraints—it is not feasible for regional cell tower companies to
act on all. Since national carriers typically pay a variable monthly rate to regional cell tower
companies based on throughput serviced, these cell tower companies are motivated to select
the tower locations that would maximize network throughput. Throughput, measured in
megabytes, is the amount of data and, to a much smaller extent, voice transmitted between
the tower and cell phones.

The purpose of this paper is to not only determine relative predictors of cell tower
throughput, but also to prioritize potential cell tower sites on the recommendation list for
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less populated areas. Recommended sites have already been vetted for topography, power,
access and proximity to sensitive sites such as hospitals and schools.

The contributions of this paper are threefold. First, this study improves our under-
standing of how cell tower site selection decisions can be made based on throughput
prediction models derived from aggregated data sources. Second, it extends the current
literature on cell tower site selection in that it leverages the digital divide research to inform
model creation. Third, it provides a useful template not only for carriers living in a 4G
world, but also those that have expanded into 5G services, since 4G is not being replaced,
but rather serving as a building block for 5G.

The remainder of this paper is organized as follows: Section 2 provides a thematic
literature review focused on the various lines of inquiry that informed our work. Section 3
introduces our conceptual model. In Section 4, we present the measures and exploratory
analysis; this is followed by Section 5, which describes the methodological approach of our
study. In Section 6, we present our results. Section 7 provides a discussion of the findings.
In Section 8, we discuss the corporate implications of our research. Finally, in Section 9 we
discuss the study’s implications and make our concluding remarks.

2. Literature Review
2.1. Spatial Placement and Associated Health Concerns

Telecommunication engineers typically have three overarching goals in mind when
analyzing coverage maps to determine new tower placements: expansion, capacity, and
quality [5]. These goals alone can be quite vexing but there are many other factors to con-
sider, such as demand factors, health considerations, town ordinances, power availability,
and ease of site access to name a few [6]. With regard to addressing the problem of spatial
placement, many researchers have proposed network design solutions [7–10]. Additionally,
specialized software can be purchased to address some of the geographic and physical
considerations including the software program Atoll. The Atoll program tends to work
best in municipal areas as rural areas may be impacted by undocumented aspects of terrain,
such as tree lines.

Health issues related to cellular transmissions [11–13], especially the location of base
stations, are of particular concern. Base stations, which essentially allow a network of cell
towers to be interconnected, are not recommended to be located in the vicinity of hospitals
and elementary schools [14]. Some studies even explored the potential adverse health
effects due to cell phone usage and non-ionizing radiation in general [1,15]. That being said,
to date, scientific studies have shown no clear link between the invisible radio frequency
emissions of cell towers and the health of humans or animals [16].

2.2. Demand Factors Related to Cellular Transmissions

Considerable research relating to demand factors for cellular transmissions can be
derived from internet mobility and digital divide studies. Mobile internet studies tend to
examine individual patterns of usage and digital divide studies examine gaps in internet
usage. Digital divide studies profile the population segments of internet access and the use
of information and communication technologies [17].

The most obvious indicators of cellular demand are population density for the area [5,18]
and the concentration of businesses operating in the vicinity. The low levels of these
indicators in rural areas have led to pronounced digital divides [19]. Several government
programs have addressed this divide, including the COVID-relief bill [20]. However, even
when internet services are available, many smaller businesses may not be equipped to fully
exploit mobile internet [21].

Divides may also occur due to socio-economic factors. In 2014, Gerpott and Thomas [22]
conducted a large meta-analysis of 174 past studies concerning mobile internet usage.
Mobile internet was largely defined as internet accessed via smartphones. Their meta-
analysis examined age, gender, education, and income. Gender was the least conclusive
with an average correlation of 0.00. A small relationship was found with age, which had an
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average correlation of −0.14; however, its credibility interval included zero. Both education
level and income had a positive impact on mobile internet usage; the average correlation
was 0.18 and 0.13, respectively.

The relationship between mobile internet usage, age, and income is not always clear.
Ghose and Han [23] questioned whether a linear relationship exists between usage and age
as they found an inverted U relationship. Likewise, Prince et al. [24] suggested the same
type of relationship between income and usage. They also asserted that decreased usage
for lower income customers may be due to data caps.

Mobile internet usage by minorities has been difficult to ascertain. A recent Pew
research survey [25] showed no racial and ethnic differences were found when it comes
to smartphone ownership. However, differences do emerge for mobile internet usage.
For example, 25% of Hispanics report being “smartphone” only internet users. Similarly,
Quintanilla [26] reported that minorities tend to take advantage of hotspots more so than
Whites. Minorities usually have less access to broadband services than Whites [27].

The mobility of mobile internet and cell phone usage has also been studied. Surpris-
ingly, most mobile usage still occurs largely at fixed locations such as home, school, work or
friends’ homes [22]. However, some studies [28] have shown that focusing on only census
tracts can be too limiting. By and large, the pattern of usage for truly mobile internet and
cell phone usage can be quite complex [28].

Given the growth in cellular transmission and the amount of resources devoted to closing
the digital divide, the differences in profiles may be closing rapidly. In fact, a 2017 Deloitte [29]
survey shows the gaps closing between differences in racial or socio-economic profiles.

The authors do not know of any academic studies where researchers have predicted
actual cell tower throughput based on aggregate competitive and demand factors. Yet the
authors did find one study that shared some similarities, namely Prieger’s 2013 paper that
sought to predict the count of cell towers, based on a limited set of predictors [18]. The
authors of the present study go beyond Prieger’s work in that our research predicts cell
tower throughput and incorporates many more predictors.

Additionally, the authors identified a gap in terms of how site selection was performed
by carriers. Several carriers informed us that they had not identified an informative
predictive model to prioritize spatially determined tower locations. Instead they relied
on the the number of complaints received in a service area. This research aims to fill the
research gap noted above and improve overall cell tower site selection.

3. Conceptual Model

Given the above literature review, the conceptual framework in Figure 1 is proposed
to examine both the demand and competitive predictors of cell tower transmission. Socio-
economic, race, and consumer/business presence are included as antecedents of through-
put. Moreover, it should be noted that the intersection of consumer/businesses presence
represents the truly mobile aspect that may occur in vehicles or by roadways. Beyond
socio-economic factors, race, and consumer/business presence, our modeling framework
considered two other factors: competition and intra-network reliability. Indirect competi-
tion could be Wi-Fi transmissions carried through broadband technologies such as cable,
fiber, or satellite transmissions. Direct competition could be other cellular carriers that
are available in the immediate vicinity of the tower. Intra-network reliability refers to the
presence of a neighboring company tower meant to handle peak demand and handovers
(a handover occurs when an ongoing call or data session is transferred from one channel
to another channel). However, it is important to remember that such towers would canni-
balize each other’s demand under normal conditions. In this study, a neighboring tower
is always defined as being within a 5-mile radius of the tower, which is the approximate
reach of a given tower. This is typical for rural settings, but in more metropolitan areas the
distance could be less. Ultimately by considering all these factors in the modeling process,
we hoped that the framework would prove to be a fairly accurate reflection of demand.
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Figure 1. A conceptual model for throughput.

The factors used in this model are all measured at an aggregate level as unit-level data
(end consumers [customers or businesses], and competitive towers) are often unavailable.
As a consequence, one socio-economic variable, gender, was excluded, as there is little
variation at an aggregate level. Furthermore, the average correlation between gender
and usage from Gerpott and Thomas’s [22] meta-analysis was zero. Age and income
were maintained due to their non-zero correlation, as well as their potential non-linear
relationships.

4. Measures and Exploratory Analysis
4.1. Regional Cell Tower Company

To implement the above model, a regional cell tower company from Wisconsin was
selected, Bug Tussel Wireless (BTW, Green Bay, WI, USA). BTW’s original mission was to
provide reliable broadband wireless internet connectivity to its customers, who, for the
most part, live outside metropolitan areas. As the company grew, it realized that defining
reliable internet connectivity required a partnership with a national cell phone carrier.

Bug Tussel, like many tower companies, was looking for ways to prioritize cell tower
site recommendations. Previous reliance on subject matter experts (SMEs), internal/industry-
based tools, and key performance indicators (KPIs) did not always lead to tower site
selections that maximized throughput. Consequently, BTW desired a more data-directed
approach that could help them visualize the problem, as well as provide them with pre-
dictive and explanatory models for site selection. The data for most predictors were
derived from publicly available information sources. These predictors and their sources are
explained in sufficient detail to allow study replication with other tower companies.

4.2. Potential Predictor Variables

The data used for the predictors within the framework comes from seven major
sources: Wisconsin Department of Transportation, Open Cell ID, U.S. Biz Data, the U.S.
Census, the Federal Communications Commission, Google Maps, and BTW. Table 1 below
shows the variable categories, the indicators, the data sources and the type of measure.
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Table 1. Data sources, indicators and directionality.

Category Construct Data Source Measure Directionality

Socio-Economic
Education U.S. Census Percentage College (Bachelor’s

degree or higher) Positive 1

Age U.S. Census Percentage 65+ Negative 1

Income U.S. Census Household Income USD Positive 1

Race Race U.S. Census Percentage White Negative 1

Competition
High-Speed Cable FCC Cable Indicator (0, 1) Negative 3

High-Speed Satellite FCC Satellite Indicator (0, 1) Negative 3

Other Towers Open Cell ID Cell ID Count Negative 3

Network
Redundancy

Network
Redundancy BTW Neighboring BTW Tower (Count) Negative 4

Presence

Consumer (C) U.S. Census Population Positive 2

Recreational Water Google Maps Recreational Water–Stepped (0, 1, 2) Positive 2

Business (B) U.S. Biz Business Indicator–Stepped (0, 1, 2, . . . ) Positive 2

Business U.S. Biz Business Count Positive 2

Transit (B and C)
Travel U.S. Census Travel Time (minutes) Positive 2

Traffic WI DOT Traffic Count Positive 2

Throughput N/A BTW MB per month N/A
1 from the literature; 2 proxy of demand/population; 3 competitive media; 4 redundancy.

Table 1 provides more details as to how the conceptual model in Figure 1 can be
operationalized from a measurement point of view. For example, the socio-economic
construct “education” can be obtained from the U.S. Census. Specifically, the census
provides measures at a county level to indicate what percentage of the population has
at least a college degree. For modeling purposes, the sign of the relationship between
education and throughput is assumed to be positive due to its correlation, as reported in
the meta-analysis study of the literature review. Likewise, all table footnotes of “1”, indicate
relationships supported from past studies. Footnotes of “2” indicate proxies of cellphone
demand which are all assumed to be positive. Footnotes of “3” indicate competitive media
which are assumed to negatively impact throughput. Finally, footnotes of “4” indicate
redundancy in the company network which is assumed to negatively impact throughput
for the tower.

4.2.1. Socio-Economic

All socio-economic indicators were obtained from the U.S. Census [30] and measured
at the county level. County-level measures were chosen since cell tower customer base
tends to be broader than the demographics specific to a census tract or block [28]. Education
was measured as the percentage of people who had a bachelor’s degree or higher. Income
was presented as the median household income (measured in 1000 s). Age information was
limited and represented as the percentage of individuals 65 or older. Education and income
are assumed to be positively related to throughput while age, in this case, is assumed to
be negative.

4.2.2. Race

Race information was represented as the percentage of people who identify as White-
only in the U.S. Census. As observed by previous research, race is an important factor
with regard to the digital divide [27] and the use of hot spots [26]. In Wisconsin, 87% of
citizens fell into this category [30]. The majority race is assumed to be negatively associated
with throughput.
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4.2.3. Competition

Competitive factors represent either the availability of other cellular services in the
area or broadband services that could be used in lieu of cellular data. Knowledge of
such competitive factors is highly desirable, but there can be difficulties in accessing that
information. Competitive carriers usually do not disclose such information due to privacy
and safety reasons (see the Stored Communications Act and Fourth Amendment of the
U.S. Constitution) [31]. Instead, it may be possible to use a proxy which is the neighboring
count of cells. It should be noted that there is a difference between the number of cell
towers and the number of cells. It is unlikely for a single cell tower to have just one antenna
with a 360◦ range; rather, it is common for a single cell tower to have multiple antennas.
For example, a single cell tower might have four antennas, each with a 90◦ range, thereby
creating four unique cells, each with its own Cell ID (see Figure 2). Towers typically have
between 3 to 15 antennas per carrier [32]. Cell IDs can be obtained from the open database:
OpenCellID [33].

Analytics 2022, 1, FOR PEER REVIEW 6 
 

 

citizens fell into this category [30]. The majority race is assumed to be negatively associ-
ated with throughput. 

4.2.3. Competition 
Competitive factors represent either the availability of other cellular services in the 

area or broadband services that could be used in lieu of cellular data. Knowledge of such 
competitive factors is highly desirable, but there can be difficulties in accessing that infor-
mation. Competitive carriers usually do not disclose such information due to privacy and 
safety reasons (see the Stored Communications Act and Fourth Amendment of the U.S. 
Constitution) [31]. Instead, it may be possible to use a proxy which is the neighboring 
count of cells. It should be noted that there is a difference between the number of cell 
towers and the number of cells. It is unlikely for a single cell tower to have just one antenna 
with a 360° range; rather, it is common for a single cell tower to have multiple antennas. 
For example, a single cell tower might have four antennas, each with a 90° range, thereby 
creating four unique cells, each with its own Cell ID (see Figure 2). Towers typically have 
between 3 to 15 antennas per carrier [32]. Cell IDs can be obtained from the open database: 
OpenCellID [33]. 

 
Figure 2. A single tower with four cells. 

An overlay of Wisconsin cell ID locations (displayed in light gray) and actual BTW 
tower sites (displayed in black) are shown in Figure 3. Naturally, the darker gray areas 
occur near major municipal areas and along highways. 

 
Figure 3. OpenCellID (gray) and Bug Tussel tower sites (black). 
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An overlay of Wisconsin cell ID locations (displayed in light gray) and actual BTW
tower sites (displayed in black) are shown in Figure 3. Naturally, the darker gray areas
occur near major municipal areas and along highways.
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Another competitive factor is broadband access. High-speed broadband could po-
tentially reduce cellular demand due to substitution of cellular data transmission either
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by direct Wi-Fi access or even Wi-Fi assist [34]. For this study, only fast broadband ser-
vices of over 100 Mbps were considered [35] for both cable and a few qualifying satellite
services. This information was obtained from the Federal Communications Commission
(FCC) [36]. Since the broadband providers self-report this information, the maximum
advertised throughputs could be hard to achieve [37].

Fiber optics was not considered due to its relative lack of availability in many of the
rural areas where BTW operated. Two binary variables were created to represent whether
high-speed cable or high-speed satellite services were available in the immediate area. All
competitive factors are assumed to be negatively associated with throughput.

4.2.4. Network Redundancy

The number of neighboring BTW towers was calculated for each potential site. Neigh-
boring BTW towers are mainly present to increase reliability, permit handovers, and to
accommodate peak demands [8]. Neighboring towers are assumed to be negatively associ-
ated with throughput as they can cannibalize throughput from each other.

4.2.5. Business Presence

Business presence data were derived from the U.S. Biz Data databases [38]. U.S. Biz
Data is a scrape of publicly available web pages and thus, it required a fair amount of
data preparation to remove duplicates, clean, and reformat. Some fields, such as employee
counts may not be populated or may represent the counts for the entire company instead
of the desired location. For large businesses, employee counts were cross-checked using
additional sources of information, such as the company’s website.

Ultimately the data we obtained from U.S. Biz Data were used to created two business
variables. One variable simply represented the number of companies that occupied the
same service area as a neighboring tower (business count). The other variable was an
indicator of business size. This variable, formatted with an escalating scale, took into
account the presence of small, medium, and large businesses. The levels of this indicator
variable were 0 for small-sized business (i.e., companies with less than 100 employees),
1 for medium-sized business (100–499 employees), and 2 or more for large-sized business
(500+ employees). In particular, the large level was incremented by one for every additional
500 employees. To that end, it is worth noting that only two large businesses took on levels
beyond 2. These levels helped with handling the imprecision of employee counts and
reduced the impact of small businesses.

4.2.6. Consumer Presence

Consumer presence was measured by the county population (measured in 1000s),
a recreational water indicator, the mean travel time to work (MTTW) indicator, and the
maximum traffic flow of neighboring roads. The latter two variables are not necessarily
exclusive to consumers—that is, they could include vehicular traffic due to businesses as
well. All traffic count data were measured in 1000s.

Two variables were derived from the U.S. Census [30]: county population and MTTW.
The state of Wisconsin contains 72 counties, of which BTW operates in 29. MTTW was the
commute time for work, which was likely overestimated during the pandemic. Both these
consumer presence variables were assumed to be positively associated with demand.

The average annual daily traffic (AADT) data was collected from the Wisconsin De-
partment of Transportation (DOT) [39]. AADT is estimated from roughly 3000 traffic count
sites in the state of Wisconsin; however, only 300 are continuously monitored. Therefore,
some AADT values may be several years old, depending on when they were last surveyed.
Figure 4 is a screenshot of the monitoring sites near the La Crosse area, which is an impor-
tant market for BTW. Since neighboring highways may have several monitoring sites, it
was decided to use the maximum value of all neighboring traffic count sites for each tower.
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The last variable was a recreational water indicator, which was an important consid-
eration before COVID-19, but became even more applicable during the pandemic. Since
“Stay-at-Home” orders further encouraged remote working, some employees took ad-
vantage of this by working near recreational areas or in vacation homes. Wisconsin has
many popular tourist destinations associated with its many lakes, which number in excess
of 15,000.

To determine if a BTW tower neighbored a recreational water body, a proxy variable
was created using Google Maps. That is, the map view was used to determine the number
and size of neighboring bodies of water. The recreational water indicator was then coded
as 0 for no recreational bodies of water and 1 if there was a single, small recreational body
of water in the neighboring area. If there were several small bodies of water or a large
body of water in the area, then the recreational water indicator was coded as 2. It should
be further noted that the Google satellite view was also used to ensure that the bodies
of water in the area were in fact recreational. For example, cranberry bogs, which are
prevalent in Wisconsin, are decidedly non-recreational and therefore were excluded from
the recreational water indicator.

4.2.7. COVID Trend

From the beginning of March 2020 through May 2021 at a time when “Stay-at-Home”
orders were common, BTW network data showed noticeable shifts in throughput for towers
in recreational areas. As a case in point, Figure 5 shows a time series of throughput for a
single tower in the Sparta recreational area from January 2019 to May 2021, with a distinct
uptick in throughput after March 2020. True, there were many cell towers that experienced
increased throughput at this time period, but only those near recreational areas saw such a
pronounced shift.
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5. Method

The first goal is to determine if a predictive model with a significant R2 can be es-
tablish as that would help management prioritize sites. The second goal is to develop an
explanatory model to help management understand and informally assess sites. The latter
goal also will help confirm the directionality of the relationships between predictors and
cell phone usage (i.e., throughput) as noted in prior studies.

To expedite the creation of the best predictive model, a model screening feature
was used in JMP Pro 16, a relatively automated modeling process. The model screening
process examines numerous machine learning and statistical models that could be used
for prediction of the continuous response variable. Eight models were selected by default
including: decision trees, random forest, boosted tree, boosted neural network, support
vector machine, multivariate regression, Lasso regression, and K-nearest neighbors (KNN).
Since the models are predictive in nature and can be treated as a black box, all of the
measures in Table 1 were used.

A reduced regression model was also created for explanatory purposes. Explanatory
models can be more difficult to develop due to issues such as multicollinearity; thus, it is not
possible to select all variables for the final model. Four criteria were used to govern the final
selection of variables into the regression model. First, a variable must have a statistically
significant correlation with the dependent variable. Second, the squared correlation among
the independent variables cannot be so high as to violate Klein’s rule [40]. Third, if the
inclusion of a predictor results in a sign reversal for a significant beta, the predictor was
removed. Fourth, all the variable inflation factors (VIFs) should be less than 5.0 [41].

Determining variable importance from a regression model can be challenging [42]. A
widely used family of importance measures considers the averaging of relative importance
over all orderings of independent variables. Theil and Chung [43] suggested an information
theoretic measure that could be used to quantify the amount of information in an ordered set
of independent variables. The information measure is calculated as log2 (1 − R2), which can
be further decomposed to give a unique additive importance for each independent variable
in bits. The bits for each of the independent variables are then converted into percentages
by dividing by the sum of all bits [44]. These percentages represent the relative importance.

6. Results
6.1. Predictive Model

In total, there were 259 towers with complete case data. The dependent variable was
average monthly throughput measured in megabytes using the timespan of 1 March 2020
through 31 May 2021. A start date of 1 March 2020 was chosen, as this was when the
BTW network data showed the most noticeable change in tower throughput due to the
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COVID-19 pandemic. However, the start date for some towers may be later if they were
more recently constructed.

The model screening results with their average out-of-sample R2 is shown in Table 2.
A five-fold cross-validation procedure was used for out-of-sample evaluation. The highest
R2 was used to select the most dominant model for predictive purposes, which was a
gradient boosted neural network. The gradient boosted neural network had an average R2

of 52.42%, while the lowest performing model, KNN, had an R2 of 26.46%.

Table 2. Model fits of throughput from the SAS JMP screening process.

Method R2

Gradient Boosted Neural Network 52.42%
Fit Least Squares 44.86%

Generalized Regression Lasso 40.87%
Boosted Tree 38.35%

Bootstrap Forest 33.37%
Support Vector Machines 31.96%

Decision Tree 27.88%
K-Nearest Neighbors (KNN) 26.46%

The R2 values for all the folds of the dominant model (i.e., the gradient boosted neural
network) are shown in Table 3. The R2 values range from 40.84% to 63.46% and their
variation is indicative of some unique tower sites in the data, to be explained later.

Table 3. R2 for folds of the gradient boosted neural network.

Fold 1 R2 Fold 2 R2 Fold 3 R2 Fold 4 R2 Fold 5 R2

63.46% 56.15% 47.41% 40.84% 54.22%

The R2 for the dominant predictive model (i.e., the gradient boosted neural network;
52.42%) was quite large compared to internal existing models. For comparison purposes,
the company’s current KPI, retainability, was no longer effective as it had an R2 of 2%.

6.2. Explanatory Model

The correlations between the predictors and the response variables are shown in
Table 4. Significant correlations are marked with an asterisk and variables with insignificant
correlations (Percentage 65+, Percentage College, and Travel Time) are not considered for
inclusion within the regression model.

Table 4. Correlation of predictors with throughput.

Predictor r

Population 0.3643 *
Business Indicator 0.3650 *
Recreational Water 0.2432 *
Percentage White −0.2898 *
Cable Indicator 0.2001 *

Neighboring BTW Tower −0.2079 *
Percentage 65+ −0.0684

Percentage Bachelors+ 0.0194
Travel Time −0.0381

Household Income 0.1415 *
Business Count 0.1815 *

Satellite Indicator 0.1422 *
Traffic Count 0.2110 *
Cell ID Count 0.2029 *

* p < 0.05 (two-tailed).
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Using Klein’s rule for multicollinearity, three variables were further examined: cell
ID count, business count, and traffic count. The cell ID count was found to share a high
correlation with both business count (0.7926) as well as traffic count (0.7630). Given this
issue—plus the reality that cell ID count was not a true measure of competitive towers—the
decision was made to drop this variable from consideration.

Table 5 shows the regression results for cell tower throughput using the final list of
selected variables. In this table, the beta values, robust standard errors, t ratios, p values,
and variance inflation factors (VIF) are shown for each variable. The robust standard errors
were used, as the model displayed heteroscedasticity with a significant Breusch–Pagan test.

Table 5. Regression results for cell tower throughput.

Variable Estimate Robust
Std Error t Ratio Prob > |t| VIF

Intercept 4,583,444.67
Population 4428.76 1633.56 2.71 0.007 ** 1.75

Business Indicator 443,882.54 100,106.77 4.43 <0.001 *** 1.41
Recreational Water 238,596.79 77,472.87 3.08 0.002 ** 1.22
Percentage White −53,112.16 19,918.88 −2.67 0.008 ** 1.62
Cable Indicator 270,499.90 129,245.02 2.09 0.037 * 1.19

Neighboring BTW Tower −194,012.47 40,622.30 −4.78 <0.001 *** 1.09
Household Income 19,028.53 7982.26 2.38 0.018 * 1.42

Business Count −1144.96 1165.57 −0.98 0.327 2.32
Satellite Indicator 123,791.68 130,025.59 0.95 0.342 1.18

Traffic Count 803.04 13,615.48 0.06 0.953 1.83
* p < 0.05, ** p < 0.01, *** p < 0.001 (two-tailed).

All variables, except business count, satellite presence, and traffic count, are statistically
significant (p < 0.05). The VIFs are relatively low with the largest value being 2.32, indicating
that multicollinearity is moderate.

The summary statistics for the regression model with the PRESS value are displayed in
Table 6. The R2 (41.85%) and adjusted R2 (39.50%) are relatively close. The PRESS statistic
has a substantive drop, which indicates some unique cell tower locations.

Table 6. Fit measures and statistics for throughput regression.

Fit Measure Fit Statistic *

R2 0.4185
R2 Adj 0.3950
PRESS 0.3276

* n = 259.

Three unique locations are worthy of mention (i.e., larger prediction errors), Mineral
Point, La Crosse, and Merrimac. These sites were unique in that they were impacted by
ordinances, topography, and tourists respectively. First, Mineral Point is listed on the
National Register of Historic Places, and therefore government ordinances prevent cell
towers from being built in that area [45]. As a result, surrounding towers are utilized less
efficiently, due to distance and topography. Second, the La Crosse area is known for its
unique topography, characterized by large natural bluffs. These bluffs pose considerable
challenges for predicting throughput as such rapid elevation changes are known to affect
tower performance. Finally, the Merrimac site has a ferry that crosses Lake Wisconsin.
Tourists tend to use data-intensive cell services—such as watching videos—while waiting
for and/or riding the ferry. Thus, we concluded that this behavior likely caused throughput
in Merrimac to differ from what might otherwise be expected in the area.

Finally, Theil and Chung’s relative importance [43] results are shown in Figure 6.
The business indicator is the most important variable at 28.33%, followed by population
(17.56%), neighboring BTW towers (14.86%), percentage White (11.91%), and recreational
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water (10.71%). The remaining variables were each under 6% importance with the insignifi-
cant variables being the least important.
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7. Discussion
7.1. Directionality and Significance of Explanatory Variables

Of the 14 study variables we initially identified as potential predictors, all were found
to have a significant correlation with throughput except travel time, percentage bachelors+,
or percentage 65+. In the following paragraphs we provide additional commentary on
these variables in particular.

With regard to the travel time, it should be pointed out that while travel time itself was
not correlated with throughput, traffic count was. We believe that there are three points
here that are worthy of further consideration. First, since “Stay-at-Home” eliminated many
individuals’ need to commute, we believe that there were fewer cars on the road at the time
of the study, and by extension, less demand for cell service while driving. Second, we felt it
logical to assume that the more data-intensive services, such as watching videos, were less
common among driving individuals/passengers than they were among stationary ones.
However, that is expected to change with the advent of more driver-assisted technologies.
Third, it is important to remember that only about 10% of traffic count sites in Wisconsin
are continuously monitored. Therefore, this measure is somewhat limited in terms of how
well it represents actual prevalence of travel.

The two socio-economic variables that did not show significant correlation with
throughput were age and education. As mentioned previously, these two variables were
operationally defined as the percentage of people over 65 and the percentage of people with
a bachelor’s degree or higher. With regard to the age variable, we did not consider this result
to be surprising, as only a small, aggregated age range was available from the census (i.e.,
people over 65 represented a relatively small percentage of the population). On the other
hand, education’s impact on demand for cellular data service is not so easily ascertained as
it is for household internet subscriptions [46]. True, more educated households are typically
more affluent, which suggests greater demand for cellular service. However, it is also
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known that smartphone ownership is more prevalent than desktop or laptop ownership in
households with lower levels of education, which suggests the opposite.

7.2. Explanatory Regression Model and Importance Plot

Although the correlations are important, the relationships within the regression model
and the importance plots provide a more explanatory picture. Population, as expected, was
one of the most important variables, but it was eclipsed by the business indicator variable.
That is to say, for businesses, it is not the total number of businesses neighboring a tower
that is important but rather the presence of medium or large businesses. Of course, type of
business is also a consideration, but that data was not readily available.

The race variable (i.e., percentage of Whites) was found to have a negative impact on
throughput in the regression model. This suggests that minorities rely more on cellular
data transmissions than individuals who regard themselves as White-only. This finding is
in line with other studies that examined how race affects cellular demand [26]. Ultimately,
household income was the only socio-economic variable that remained in the model, and
its overall importance was less than four percent. This may suggest that the digital divide
regarding socio-economic factors is closing.

Another interesting finding in the regression model was that the presence of high-
speed cable or satellite did not decrease throughput, as hypothesized; rather, those variables
yielded a positive beta estimate. As such, it appears that locations with high-speed broad-
band connections do not diminish the amount of cellular data services used. The reasons
for this could range from multitasking on different devices to using devices that provide
“Wi-Fi Assist” [34]. Wi-Fi Assist is designed to aid wireless connection when broadband
services are not performing at optimal speeds.

8. Corporate Implications

This analysis and the process employed—especially the integration of inexpensive
external data sources—has had a positive impact for BTW. In fact, the company’s Chief Ex-
ecutive Officer, Steve Schneider, described the operational benefits of this study as follows:

“This project was very beneficial to our company—it shows that a diligent effort
to learn our business and analyze our data can provide new insights. We are planning
several new projects, some of which are quite complex. However, our newly-created data
analytics advisory board and our university partnership gives us confidence that we will
be successful. Telecommunication is a fast-changing field, and we need data analytics to
successfully navigate it.”

Beyond the obvious result of improved tower sites ranking, this research brought
about the following four important changes at BTW: (1) increased involvement with
medium/large business, (2) increased involvement with its national carrier, (3) increased
attention paid to government proposals, and (4) increased attention paid to recreational
bodies of water.

Although the tower company is not currently privy to individual customers, it is more
likely to be able to determine that information for medium to large companies. As such,
BTW decided that salespeople will call on such companies that neighbor a potential tower
site to see if they are interested in contracting with their partner carrier.

It was also decided that BTW should partner more closely with its national carrier so
that BTW can use joint marketing information and share data on site assessments. Through
such collaboration it was learned that its national carrier’s site recommendations were
largely governed by customer complaints. In light of this realization, BTW felt responsible
for taking a more data-driven approach to site selection, especially if it wanted to increase
service as a whole.

BTW was also involved in several government proposals to close the digital divide
for rural communities. Specifically, BTW has been working to reduce the digital divide
for rural communities, including Native American reservations. The research emphasizes
the importance of cell towers for expanding mobile internet in communities with a larger
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minority presence. The company was exploring more ways to expand its customer access
to not only cell towers but also landlines. The company had some experience with the
latter, but decided that for some communities, rolling out both types of services would
be beneficial as this study showed that there really is not much cannibalization between
broadband and cellular data services.

The last change had to do with recreational bodies of water. It was known that
some recreational bodies of water, such as Lake Wisconsin, could lead to high demand.
Still, there was an air of uncertainty among BTW personnel as this demand was a bit
seasonal (i.e., it diminished in winter months). This analysis, however, showed that, despite
some seasonality, the recreational water indicator was more important than was originally
anticipated. As a result, BTW personnel weighted this variable a little more than they did
in the past.

In a more general sense, this case study provides a template for how data integration
and analysis can be achieved inexpensively for other cell tower companies. While a data-
driven approach is often superior, the acquisition of that data can be resource-intensive,
especially if clean data is desired [47].

9. Limitations and Conclusions

This research was based on one case study of a Midwest cell tower company that
operates primarily in rural areas. Therefore, generalizations of this work should be made
only with the utmost caution. Another important point to note is that the data for this
study came largely from public sources, meaning that information about BTW’s individual
customers, or its potential customers, remained unknown. As such, the analysis dealt
with aggregated measures, which may not be able to detect underlying relationships
as effectively.

The one purchase data set was U.S. Biz Data, for 49 USD. As advertised, the data does
require a fair amount of cleaning. More expensive sources of data might allow researchers
to better vet the number of businesses and the size of businesses near a tower.

Moreover, there are additional variables that could be examined beyond those we
considered in this present study. For example, future research might take a more nuanced
view of business demand by using North American Industry Classification System (NAICS)
codes to ascertain industry type. Demand for cellular services may vary considerably by
industry and not all medium/large businesses should be considered relevant.

Finally, the timeframe of this study overlapped with the pandemic period, and, there-
fore, it is possible that the importance of some variables, such as traffic count, may change
as restrictions are lifted. However, we believe that many of the changes that occurred as a
result of “Stay-at-Home” order are not temporary phenomena but, rather, the beginning of
more permanent changes in human behavior.

This research has provided a more developed understanding of the benefits of data
analytics used in the telecommunications industry. The purpose of the model was to
improve the prediction of cell tower throughput as a means of evaluating new cell tower
locations. To that end, this study provides regional cell tower companies with a data-driven
process for prioritizing the site recommendations they receive from national carriers. In fact,
the process described in this paper proved is especially valuable as the resultant approach
offers an alternative to the usual internal KPI measurements, which were not strongly
correlated with revenue.
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