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Abstract: Psychedelics could have revolutionary potential in psychiatry, although, until recently,
the pharmacodynamic properties of such compounds have not seemed to differ much from those
of serotonin, whose levels are raised by Serotonin Reuptake Inhibitors (SSRI). The cardinal point
is that serotonergic compounds, such as antidepressive drugs, do not have the potential to induce
long-lasting neuroplasticity as psychedelics do. Therefore, the biological underpinnings of the pe-
culiar effect of such compounds had not been fully understood until new astonishing molecular
findings came out this year to shed new light on them. Specifically, the phenomena of neuroplasticity
are triggered by the stimulation of a peculiar type of receptors: the intracellular 5-HT2A receptors.
Interestingly, psychedelics can reach this pool of intracellular receptors due to their lipophilic proper-
ties, as they can cross the lipophilic neuronal membrane while serotonin cannot. The importance of
such a discovery should not be underestimated as the specific mechanisms involved have not yet
been elucidated and a better understanding of them could pave the way to the development of new
drugs (and/or new tailored therapeutic strategies) able to sustain neuroplasticity while minimizing
side effects.
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1. Introduction

In the last decade, a revamped interest in psychedelic research spread in the scientific
community as a “psychedelic renaissance” and mounting evidence on the potential appli-
cations of psychedelics in several psychiatric disorders was provided by clinical studies [1].
Nowadays, the antidepressant properties of psilocybin are widely reported by randomized
clinical trials (RCTs) and confirmed by meta-analyses [2–6]. The evidence of efficacy is not
limited to mood disorders, but also extends to the treatment of anxiety disorders, partic-
ularly in the context of life-threatening diseases [7,8] and substance use disorders [9,10],
and several other trials are currently ongoing on in other clinical populations such as
eating disorders, obsessive compulsive disorder, and neurocognitive disorders [11–15].
A plausible rationale also emerged for the treatment of schizophrenia, but possible im-
plications are more controversial [16,17]. Although findings concerning the therapeutic
role of such compounds being relatively new, the definition of psychedelics is still based
on a classification dating back to the 1960s, and it is still under debate [18]. Classic (or
serotonergic) psychedelics (semi-synthetics or derived from plants) are so called because
their pharmacological effects are primarily mediated by the serotonergic system, as they
are agonists or partial agonists of the 5-HT2A receptor [19,20]. Among the most used
compounds in psychedelic research are Lysergic Acid Diethylamide (LSD), psilocybin and
its active metabolite Psilocin, Mescaline and N,N-dimethyltryptamine (DMT). Concerning
the serotonergic system, despite several attempts to uniquely clarify its role, its function
remains elusive, constituting an enigma or a puzzle of too many pieces [21,22]. It has been
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argued that such complexity may be due to its diversity in terms of receptor subtypes [23]
and extensive innervation of the brain [24]. Interestingly, in vitro findings on the ability of
psychedelics to induce neuroplasticity (neurite growth, sprouting of dendrites and synap-
togenesis) shed a new light on other possible implications of the serotonergic system, and
particularly of the 5-HT2A receptors [25–27].

2. 5-HT2A Receptors

The 5-HT2A receptor is one of at least 14 different 5-HT receptor subtypes in the
mammalian brain [23], and like almost all of them, it is a G protein-coupled receptor
(GPCR). The 5-HT2A receptor is the main excitatory GPCR of the serotonin receptor family,
therefore the main effect of the 5-HT2A receptor is to increase the excitability of the neuron
once serotonin binds to it [28]. The expression of 5-HT2A receptors is predominant in the
cortex, being the most abundant serotonergic receptor in the cortical layers, particularly in
high-level associative cortex [29]. Moreover, 5-HT2A receptors are mainly expressed on
the dendrites of glutamatergic pyramidal neurons in layer V of the cortex [30] pointing
at a putative mechanism of modulation elicited by them on such projecting neurons. The
5-HT2A receptors are known to be the primary target of antidepressants, particularly SSRI,
thus this pool of receptors elicits antidepressant and anxiolytic properties when stimulated
by increased levels of serotonin induced by antidepressant molecules [21].

3. The Historical Conceptual Issue

Since the discovery of the pharmacodynamic properties of LSD and other psychedelic
compounds, astonishment and many questions have arisen in the scientific community
regarding the overlap with serotonin or serotonergic compounds in terms of biological
targets [22]. Although both classes of compounds showing a great affinity for the 5-HT2A
receptors (5-HT2AR) acting as agonists, the clinical effects were totally different [31].
Psychedelics induce perceptual alterations such as illusion, visual hallucinations, hyper-
esthesia for colours, synaesthesia, change of meaning of perceptions, mystic experiences,
alterations of ego boundaries such as ego dissolution, and altered consciousness, a sort of
dreamlike state of consciousness [31,32]. Contrarily, serotonergic compounds or Selective
Serotonin Reuptake Inhibitors (SSRI) do not elicit such effects and show antidepressant
and anxiolytic properties [21]. It should be noted that there are a myriad of clinical trials on
the antidepressant properties of psilocybin, and some anxiolytic effects have been reported
as well [15]. As we are going to discuss later, such effects are probably the result of another
underlying mechanism of action: neuroplasticity [25]. Nevertheless, a hallucinogenic effect
has never been described among SSRI users. Why such discrepancies in terms of effects
when the mechanism of action in terms of pharmacodynamics is the same? It has been
argued that the main reason is the intracellular transduction pathway involved, which
differs depending on the trigger at 5-HT2A receptors [25,33]. Although such a conclusion
is plausible, it has not yet been confirmed by any findings and it remains unclear how this
process could take place. It is important to note that until the specific mechanism of action
of psychedelics is explained, it will not be possible to progress further in terms of tailored
interventions or in the synthesis of molecules capable of minimizing unwanted/side effects
and maximizing the potential of such compounds.

4. The Intracellular 5-HT2A Receptors

Although G protein-coupled receptors (GPCRs) such as 5-HT2A receptors are believed
to be localized primarily to the plasma membrane, there is evidence proving also their
intracellular localization [34–36]. Specifically, Cornea-Hébert et al. were among the first
to describe a predominant cytoplasmatic localization of 5-HT2A receptors in rats using
light and electron microscope immunocytochemistry and monoclonal antibodies against
the N-terminal domain of the receptor protein [37]. A few years later, the same authors
reported a predominant intracellular distribution of 5-HT2A receptors in the pyramidal
neurons of the cerebral cortex, according to the distribution of 5-HT2A receptors located



Psychoactives 2023, 2 289

transmembrane with the extracellular binding domain. In addition, they suggested a
possible association of intracellular 5-HT2A receptors with the cytoskeletal microtubule-
associated protein MAP1A [38]. The potential association with the cytoskeleton in cortical
neurons is of great interest in light of more recent findings on the ability of psychedelics to
modulate neuronal cytoarchitecture [25]. Indeed, Cornea-Hébert et al. hypothesised that
such a pool of receptors could participate in intraneuronal signalling processes involved in
cytoskeleton reorganization [38].

5. Psychedelics: A Matter of Lipophilicity

Over the years, unsolved questions concerning different putative mechanisms under-
lying the different effect of serotonergic compounds persisted, until February 2023 when
Vargas et al. gathered many in vitro findings using molecular and genetic tools to show the
underpinnings of psychedelic action [35]. The authors performed a series of experiments
to clarify why some 5-HT2AR agonists (psychedelics) promote neuroplasticity, whereas
others (serotonin) do not. To do so, they used DMT, d5-methoxy-N,N-dimethyltryptamine
(5-MeO), Psilocin and related modified compounds (N-methylation) in order to decrease
the polarity. They also used, in different sets of experiments, modified serotonergic non-
psychedelic molecules in order to increase lipophilicity, or non-modified serotonergic
compounds and ketanserin (and methylated ketanserin) with or without electroporation.
The plasticity-promoting properties, and thus the ability to promote neurites growth, the
sprouting of newborn dendrites and the arborisation of pre-existing ones, was measured
as outcome (a fixed concentration of 10 µM was used for each compound) [35]. Indeed,
there is much evidence pointing at neuroplasticity (rearrangements of cyto-architecture and
creation of new synapses) as the pivotal mechanism of action of psychedelic compounds in
a range of concentrations (in vitro) from 10 nM (LSD) to 10 µM [25,39]. In brief, Vergas et al.
proved the involvement of a particular class of 5-HT2AR, the intracellular pool of 5-HT2AR,
in the induction of neuroplasticity. The required, necessary and fundamental property
of 5-HT2AR agonists in order to enhance neuroplasticity is lipophilicity, as membrane
permeability is a requirement for psychedelic-induced neuroplasticity [35]. Interestingly, it
was demonstrated that lipophilicity is directly proportional to psychoplastogenicity: the
higher the lipophilicity, the higher the ability to induce neuroplasticity in target neurons. As
a matter of fact, psychedelics can rearrange the conformation of neurons simply by crossing
the lipophilic neuronal membrane and stimulating the intracellular pool of 5-HT2AR. On
the other hand, polar compounds such as serotonin cannot do it because they cannot cross
the membrane [35]. Overall, these results explain why serotonin and polar serotonergic
compounds do not engage similar plasticity mechanisms: it is a matter of location.

6. Intracellular 5-HT2A Receptors: Possible Implications
6.1. Endogenous Ligands?

The location of 5-HT2AR is probably determinant in inducing different signalling
cascades, and thus different effects especially in terms of neuroplasticity. The existence of
such a pool of receptors with different characteristics compared to extracellular 5-HT2AR
and the impossibility of serotonin to reach them could make the existence of specific
ligands possible [35]. Interestingly, there is evidence of endogenous psychedelics synthesis
in mammalians and even humans [40–42]. The N,N-dimethyltryptamine (DMT) is the
result of the conversion of tryptamine, a metabolite of tryptophan, operated by indole-N-
methyl transferase (INMT). The highest enzyme activity in the human brain is found in the
subcortical layers of the fronto-parietal and temporal lobes and the cortical layers of the
fronto-parietal lobe [40,41]. It could be hypothesized that this system, which encompass
the intracellular 5-HT2AR pool and the endogenous DMT, sustains the phenomena of
neuroplasticity in frontal and temporal areas by counteracting the physiological process of
synaptic pruning, which becomes pathological in some psychiatric conditions.
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6.2. Therapeutic Implications: Personalized Interventions?

The peculiarity of having two pools of receptors separated by a lipid membrane is
that polar agonists can stimulate only the extracellular receptors, whereas non-polar or
lipophilic compounds can bind both [35]. The possibility to induce the selective expression
of intracellular 5-HT2AR in certain brain areas is fascinating because it should not produce
any effects as serotonin cannot bind them until a non-polar agonist is administrated.
Therefore, by selectively inducing an increased number of 5-HT2AR and then administering
a psychedelic compound, enhanced neuroplasticity should be obtained only in the selected
areas of the brain. Another strategy could be the selective inactivation of this pool of
receptors except the target areas in order to achieve the abovementioned results. To do so,
many current techniques allow specific molecules and drugs to be delivered to specific
cell populations, even in the central nervous system (CNS) [43–47]. The main issue in
the delivery of drugs in the CNS, in order to target specific neuronal populations, is
represented by the blood–brain barrier (BBB) [44]. Focused ultrasound combined with
intravenously injected microbubbles (FUS) transiently increase the permeability in specific
regions of the BBB [46]. The concomitant administration of recombinant adeno-associated
viruses (AAVs) intravenously allows them to cross the BBB at precise FUS-targeted brain
regions [43]. Similarly, liposomes have been widely used in drug delivery in the CNS
for the treatment and/or diagnosis of neurological diseases [44]. The covalent ligation
of macromolecules as peptides, antibodies and RNA aptamers is an effective method for
receptor-targeting liposomes, allowing their blood–brain barrier penetration and/or the
delivery of therapeutic molecules to the target site [44,45]. Many other strategies could be
hypothesized, but the cardinal point is the peculiarity of this two-steps process: (1) the
number/availability/transduction/gene transcription/functionality of 5-HT2AR could
be modulated in the first step of the process without any effect, because this class of
receptor is inapproachable by non-psychedelic serotonergic compounds; (2) the subsequent
administration of psychedelics will induce neuroplasticity depending on the topological
pattern of 5-HT2AR availability previously induced.

6.3. Do Lipophilic Properties Allow Storage?

Some authors classified psychedelics as psychoplastogens. The compounds pertaining
to this class show the ability to induce long-lasting neuroplasticity [46]. In other words,
the neuroplastic effect persists beyond the period in which the molecule is circulating,
and persistent growth of dendrites in the absence of psychedelic molecules in the extra-
cellular space is a hallmark of serotonergic psychoplastogens [26,27]. Despite the growing
knowledge base, it is still not currently clear how psychedelics can induce enduring neu-
roplasticity. Interestingly, an important piece was added to the puzzle recently with the
discovery of the action of 5-HT2A receptors. It has been proposed that psychedelics could
be stored in membranes of the Golgi apparatus as a substantial number of 5-HT2ARs
in cortical neurons were found in the Golgi apparatus [35]. The compartments of such
apparatus are slightly acidic compared with cytosol and extracellular space; the protonation
of psychedelics in the Golgi apparatus could lead to the retention of psychedelics and the
establishment of a sustained signalling versus the 5-HT2A receptors, which, in turn, results
in persistent growth of neural terminals, even after transient stimulation [27,35].

7. Other Mechanisms of Action Involved in Psychedelic-Induced Neuroplasticity

Despite the crucial role played by the intracellular 5-HT2A receptors, the downstream
mechanisms that lead to neuron growth and ramification have not been fully elucidated.
They are likely to involve the Tropomyosin receptor kinase B (TrkB) and mammalian target
of rapamycin (mTOR) signaling pathways, as previously demonstrated by several in vitro
findings [25,39]. Another hypothesized mechanism of action is the psychedelic-induced
increased levels of brain-derived neurotrophic factor (BDNF), which enhances AMPA
receptor delivery to the synapse [48]. This mechanism, the AMPA receptor signaling,
might be involved in the BDNF-mediated enhancement of neural plasticity elicited by
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psychedelics [25,49]. Concerning other receptors that contribute to the complex mode of
action of psychedelics, it has been demonstrated that LSD increases cortical spine density
via 5-HT1A receptors stimulation. Precisely, such an effect might be due to 5-HT1A receptor
desensitization [50]. Similar pharmacodynamic properties at the 5-HT1A receptor level
were also reported for other psychedelics, such as psilocybin and DMT, suggesting possible
similar mechanisms of action [51]. Interestingly, the formation of heterodimeric membrane
receptor complexes (e.g., D2-5-HT2A) and the stimulation elicited on them by psychedelics
might trigger different intracellular pathways, further contributing of the complexity of
such compounds in terms of mechanism of action [52,53].

8. Conclusions

The discovery of the importance of 5-HT2A receptors provides a new viewpoint on
the mechanism of action of psychedelics and could be a milestone in psychedelic research,
hopefully in terms of personalized interventions or the synthesis of new therapeutic com-
pounds with different pharmacological properties and effects. The intracellular location
and the indirect interactions with the cytoskeleton probably facilitate the remodelling of
neuronal cytoarchitecture, the sprouting of dendrites and, overall, the arborization of neu-
rons [38,54]. On the other hand, it is possible that the chemical properties of psychedelics
allow intracellular retention and gradual intracellular diffusion towards the receptors, thus
causing continuous stimulation which, in turn, sustains the long-lasting neuroplasticity [35].
All these cues should be considered for future hypotheses in the field of drug development.
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