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Abstract: Neuromyelitis optica spectrum disorder (NMOSD), a demyelinating CNS disorder in which
inflammatory cells infiltrate the spinal cord and optic nerve, has been identified as an AQP4-IgG-
positive disease. Some of its most common clinical characteristics are optic neuritis, acute myelitis,
area postrema syndrome, and brainstem syndrome. However, the relationship between aquaporin-4
(AQP4) and NMOSD appears to be involved in pathologies outside of the CNS due to the fact that
autoimmune, muscular, and paraneoplastic syndromes are more common in patients with NMOSD.
This perspective presents an analysis of the current literature on neuromyelitis optica in an effort to
further understand and compile pathologies that arise outside of the CNS secondary to NMOSD.
Recontextualizing neuromyelitis optica as a systemic condition will facilitate greater diagnostic ability
and improved treatment approaches.

Keywords: neuromyelitis optica spectrum disorder (NMOSD); aquaporin-4 (AQP4); paraneoplastic
diseases; autoimmune disorders

1. Background

Aquaporins are a family of membrane transport proteins that includes 13 recognized
isoforms of fluid transport channels found in the plasma membranes of many different cell
types [1]. The main fluid that aquaporin channels transport is water; however, research
has also demonstrated their role in transporting substances such as glycerol, urea, and
potentially some gases and ions [2,3]. In the central nervous system, AQP1 and AQP4
predominate [4]. Of specific interest in several neurological pathologies is AQP4, which has
been principally identified for its role as a water channel found in astrocytes in the CNS,
but also plays a role in the epithelial cells of numerous other organs [5]. Knockout studies
in mice provide strong evidence that some of the most important roles of AQP4 in the brain
include cerebral water balance, astrocyte migration, and neural signal transduction [6].
Therefore, pathologies involving AQP4 often lead to severe neurological symptoms.

The pathogenesis of AQP4 diseases is complex. Within the last decade alone, re-
searchers have identified various ways in which AQP4 expression and distribution change,
due to physiologic and pathologic processes. When astrocyte tonicity was altered in rats, it
was found that cell surface expression of AQP4 subsequently adapted to compensate [7].
When human astrocytes were cultured at hypothermic and normothermic conditions,
ELISA analysis demonstrated that the hypothermic conditions elicited an increase in sur-
face expression of AQP4, suggesting the human body has the capacity to alter AQP4
expression to accommodate various physiologic states [8]. For example, hypoxia induces
calmodulin-driven increases in AQP4 cell-surface localization [9].

One AQP4-related disease is neuromyelitis optica spectrum disorder (NMOSD) [10].
It was estimated in 2020 that NMOSD has a prevalence among East Asians of 3.5/100,000,
among Whites of 1/100,000, and among Blacks ranging from 1.8 to 10/100,000, with
a 9:1 female predominance [11]. NMOSD is a demyelinating CNS disorder in which
inflammatory cells infiltrate the spinal cord and optic nerve. It has been identified as an
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AQP4-IgG-positive disease [12]. Recent research has demonstrated that these anti-AQP4
antibodies target primary cortical astrocytes (see Figure 1) and disrupt the ability of the
AQP4 channels to redistribute in response to changes in their environment [13], yielding
some of the most common clinical characteristics of NMOSD, including optic neuritis, acute
myelitis, area postrema syndrome (APS), and brainstem syndrome [14]. See Table 1.
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Table 1. Core clinical characteristics frequently seen in NMOSD patients.

NMOSD Diagnostic Criteria for Adult Patients [15].

Diagnosis with AQP4-Abs:

• at least one core clinical characteristic;
• positive AQP4-Abs with best available method;
• exclusion of alternative diagnosis (e.g., sarcoidosis, neoplastic/paraneoplastic, vascular, chronic infection).

Diagnosis without AQP4-Abs/unknown status:

• at least two core clinical characteristics resulting from one or more clinical attacks and fulfilling the following:
• at least one of optic neuritis, LETM, APS;
• dissemination in space (two or more different core clinical characteristics);
• fulfillment of additional MRI requirements as applicable;
• negative for AQP4-Abs with best available method, or testing unavailable;
• exclusion of alternative diagnoses.

Core clinical characteristics:

• optic neuritis;
• acute myelitis;
• APS;
• brainstem syndrome;
• symptomatic narcolepsy or acute diencephalic syndrome with NMOSD-typical diencephalic MRI lesions;
• symptomatic cerebral syndrome with NMOSD-typical brain lesions.

Additional MRI requirements for NMOSD without AQP4-Abs/unknown status:

• acute optic neuritis: normal or only nonspecific white matter lesions on MRI brain; or optic nerve MRI with T2-hyperintense
lesion or T1-weighted gadolinium-enhancing lesion extending over >1⁄2 optic nerve length or optic chiasm involvement;

• acute myelitis: MRI spinal cord demonstrating attack-associated lesion spanning ≥3 contiguous vertebral segments (LETM);
or ≥3 contiguous segments of focal cord atrophy with previous history of acute myelitis;

• APS: dorsal medulla/area postrema lesion on MRI brain;
• acute brainstem syndrome: periependymal brainstem lesions.

Core Clinical Characteristic Symptoms

Optic Neuritis Ocular pain, blurred vision, vision disorder, inability to distinguish
certain colors, and partial or complete loss of vision [16].

Acute Myelitis Lower back pain or sharp, shooting sensations that radiate down
the legs or arms or around the torso, paresthesia [17].

APS
Hiccups, nausea, and/or uncontrollable vomiting for several days
in connection with an area postrema attack, a bulbar region, and an
emetic reflex center [18].

LETM Contiguous inflammatory lesions of the spinal cord [19].

Abbreviations: APS = Area Postrema Syndrome; AQP4 = aquaporin-4; IgG = immunoglobulin G; LETM = longitudi-
nally extensive transverse myelitis lesions; NMOSD = neuromyelitis optica spectrum disorders.

Recent advancements in NMOSD treatment have made great strides in improving
our knowledge of potential therapeutic modalities to treat patients suffering from this
debilitating disease. One example is the transition from immunosuppression to targeted
treatments for NMOSD-specific elements of the autoimmune cascade. Another example is
the greater emphasis on discovering and utilizing evidence-based therapeutic modalities
rather than “off-label” adaptations [20]. Recent advances have also demonstrated that
it is possible to target the subcellular relocalization functions of AQP4, such as with the
calmodulin-inhibiting antipsychotic drug trifluoperazine [21,22].
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Improvements in technology have also facilitated breakthroughs in our understand-
ing of AQP4 diseases. Of note, Computer-aided Drug Design (CADD) [23] and high-
throughput screening platforms [24] have enabled researchers to be far more efficient
in screening compounds that do or do not have potential applications for their specific
projects. Similarly, two novel devices termed “human blood–brain barrier on-a-chip” [25]
and “human brain endothelial microvessel-on-a-chip” [26] have allowed greater capacity
to test pharmaceuticals in a model resembling the human blood–brain barrier.

However, an area that appears to still be lacking in sufficient research is the relationship
between AQP4 and NMOSD outside of the CNS given that autoimmune, muscular, and
paraneoplastic syndromes are more common in patients with NMOSD [27]. This is likely
due, at least in part, to the fact that AQP4 is found in numerous human tissues.

2. Methods

PubMed and UpToDate databases were searched from March 2022 to August 2022 us-
ing the key terms: “autoimmune”, “CNS”, and “systemic”, in conjunction with “aquaporin-
4” or “AQP4” and “neuromyelitis optica”, or “NMO”. This search generated 741 results.
Results that did not address the nature of NMOSD as an AQP-4 disease or that did not
provide examples of symptoms outside of the CNS were excluded. Only articles in En-
glish from the last 10 years were included, with the exception of fundamental disease
characterizations. This resulted in 62 articles used in this perspective.

Sources were analyzed and categorized by Level of Evidence, following the formulary
developed by the U.S. Preventive Services Task Force. Of the 62 articles used, two were
considered Level III. The remaining articles were Level I through Level II-3.

• Category I: Evidence from at least one properly randomized controlled trial.
• Category II-1: Evidence from well-designed controlled trials without randomization.
• Category II-2: Evidence from well-designed cohort or case–control analytic studies,

preferably from more than one center or research group.
• Category II-3: Evidence from multiple time series with or without intervention, or

dramatic results in uncontrolled experiments such as the results of the introduction of
penicillin treatment in the 1940s.

• Category III: Opinions of respected authorities, based on clinical experience, descrip-
tive studies and case reports, or reports of expert committees.

3. Results
3.1. CNS

NMOSD is believed to occur due to invasion of anti-AQP4-IgG antibodies through
the blood–brain barrier, which then bind the AQP4 channels found on astrocytes. Upon
binding, these antibodies cause complement- and cell-mediated damage to the astrocytes,
as well as internalization of excitatory amino acid tranporter-2, a glutamate transporter [28].
This leads to astrocyte death, and subsequent oligodendrocyte death. In turn, this causes
demyelination of nerves previously supported by these astrocytes and oligodendrocytes,
leading to the various NMOSD symptoms previously discussed [14,29].

Emerging research is extracting greater detail regarding the specific neuropathological
processes commonly seen in NMOSD. Cognitive impairment in NMOSD patients has a
prevalence of approximately 44% [30]. Case studies have also demonstrated a potential for
developing acute anosmia and dysphagia [31,32]. Optic neuritis and visual acuity loss have
been demonstrated to occur due to physical changes in the cerebrum, specifically decreased
gray matter volume and compromised functional connectivity [33]. Acute non-obstructive
hydrocephalus has been discovered in patients with NMOSD, most likely due to the loss of
AQP4, [34] a loss which mouse-model studies demonstrate cannot be compensated for by
AQP1 [35].
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The majority of research regarding NMOSD in the past has considered it to be exclu-
sively confined to the CNS. However, given that AQP4 channels are present in various
locations throughout the body, emerging evidence is beginning to demonstrate that this is
likely not the case, and diagnosticians should use a wider lens when evaluating for, and
treating, NMOSD.

3.2. Muscular

For most of its known history, it has been believed that NMOSD had little to no
effect on skeletal muscle tissue. However, with greater testing capabilities, evidence is
emerging that demonstrates that pathologic changes are, in fact, occurring in the skeletal
muscles of NMOSD patients. These include hyperCKemia, loss of AQP4, and deposition
of IgG and activated complement products [36]. Muscle biopsy studies have shown that
AQP4 expression is significantly reduced in patients with NMOSD, [37] a potentially useful
diagnostic tool that may hint at a clinically relevant correlation between NMOSD and
potential effects in muscular tissues that is not yet fully understood. This is particularly
important in light of the fact that only AQP1 and AQP4 are expressed in skeletal muscle
tissue; [38] yet AQP1 does not appear to take on a compensatory role in the event of AQP4
loss [35]. One potential explanation for this discrepancy is that there are supramolecular
aggregation differences between CNS and muscular AQP4 [39].

While the evidence does not rise to the level of actionable, a couple of interesting
case reports are of note. In 2019, Shang et al. (level III evidence) described the case of
a patient who developed rhabdomyolysis and then later developed NMOSD [40]. The
authors hypothesized that tissue destruction secondary to rhabdomyolysis may have led to
the creation of anti-AQP4-IgG in the muscle, although it is difficult to draw any definitive
association between the conditions based on a single case. Nevertheless, the underlying
established pathophysiology of NMOSD notes that anti-AQP4-IgG antibodies precipitate
the development of NMOSD (See Figure 1). Another case report (level III) described
the second known occurrence of myotonic dystrophy type 2 subsequent to an NMOSD
diagnosis, though the authors stated the coexistence could be coincidental [41]. While a
limited amount of level III evidence exists to connect NMOSD and certain disorders of the
musculature, the underlying connection of the conditions through AQP4 lends credence to
some of the speculated associations. This molecular link between NMOSD and muscular
disorders provides a new perspective and suggests that perhaps the relationship should be
re-examined in the light of emerging evidence that demonstrates a poorly understood and
under-researched area.

3.3. Cancer

Patients with NMOSD have an increased cancer risk, particularly lung, breast, and
genitourinary [42,43]. The relationship underlying this correlation is complex and needs
further investigation, but does appear to be due, at least in part, to AQP4 and the distinct
AQP4 profiles found in different cancers [44]. Therefore, screening for cancer in patients
with NMOSD is encouraged.

A case series from 2021 examined three cases, each with distinct cancer diagnoses but
all linked by the underlying diagnosis of NMOSD, demonstrating the paraneoplastic po-
tential of NMOSD [45]. The first NMOSD-positive patient developed grade 2 lymphopenia,
normochromic normocytic anemia, and IgG lambda monoclonal gammopathy. The second
presented with a lesion extending from C1 to C5, periventricular gliosis, a large uterine
mass, and extensive pelvic and bowel invasions. The third developed cerebral white matter
cortical lesions and lung adenocarcinoma stage 3b. This reiterates a recommendation to
screen NMOSD patients for paraneoplastic conditions.

Various case reports performed within the last five years have demonstrated
melanoma, [46] breast cancer, [47] small-bowel neuroendocrine tumor with hepatic
metastasis, [48] gastric carcinoid tumor, [49] lung adenocarcinoma, [50] and esophageal
squamous cell carcinoma, [51] all occurring secondary to NMOSD. In the majority of
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cases, the development of the pathologies can be directly linked to NMOSD, given
that the paraneoplastic cells are anti-AQP4-IgG positive. Based on the diversity of
syndromes and of the patients in which they present, it is reasonable to hypothesize that
the above-listed pathologies represent only a portion of the potential paraneoplastic
complications that can arise subsequent to developing NMOSD.

3.4. Autoimmune

There is an increasingly distinct connection between development of NMOSD and
subsequent development of other autoimmune disorders. Sjogren’s Syndrome, Systemic
Lupus Erythematosus (SLE), myasthenia gravis, and autoimmune thyroid diseases are
the most reported autoimmune disorders secondary to NMOSD [52,53]. While it is not
surprising to find autoimmune diseases secondary to an initiating autoimmune disease,
there is an emerging theory to explain this process as a connection between NMOSD and
alterations in the gut microbiome.

Assessment of the gut microbiota in patients with NMOSD has shown that the micro-
biome of NMO is altered when compared to healthy controls and patients with multiple
sclerosis [54,55]. An increase in Clostridium perfringens was the most noteworthy change,
given that there is ample evidence that Clostridia found in the gastrointestinal tract can
affect the equilibrium of regulatory T cells and Th17 cells [56]. This suggests a possible
direct link between gut microbiota and the underlying immune responses driving NMOSD
development, and at the same time driving development of other autoimmune diseases.

3.5. Other

Given that AQP4 is found in numerous and diverse human tissues (see Figure 2), it is
unsurprising that case reports have been published which describe symptoms that cannot
easily be added to the categories already delineated here. A few notable examples are
provided. One study reported that 43.8% of participants developed menstrual irregularities
subsequent to developing NMOSD [57]. A 2019 case study investigated a woman who
developed posterior reversible encephalopathy syndrome subsequent to being diagnosed
with NMOSD [58]. A case report from 2018 detailed the disease course of a pregnant
female patient with Hepatitis C who subsequently developed NMOSD. Because of her
pregnancy and her positive Hepatitis C status, she was unable to be treated using the
typical therapeutic modalities. This resulted in a more severe disease course [59].

In another example, a systematic review performed from 2019 to 2021 provided strong
evidence to suggest that patients with NMOSD are more susceptible to COVID-19 and
have worse outcomes. The authors concluded that the most significant risk factor appeared
to be pre-existing treatment of NMOSD with rituximab; therefore, clinicians should bear
this in mind as they develop treatment plans for their patients with NMOSD [61].

Interestingly, patients with NMOSD had much higher urine pH and much lower
urine specific gravity levels than patients with MS [62]. Additionally, approximately 2% of
patients with MS develop pruritus, compared to 21% in patients with NMOSD [62]. This
further differentiates NMOSD from MS and supports the view that NMOSD should be
considered a systemic condition.

All of these reports, along with the systematic review mentioned, suggest that im-
provements in NMOSD treatment—particularly for those with comorbidities—should be
sought after.
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Figure 2. NMOSD is an anti-AQP4 antibody disease. AQP4 is found throughout the body [60],
particularly in the regions in the above figure. As the traditional definition of NMOSD as a CNS-
exclusive disorder is challenged, further connections are being discovered that demonstrate the
possibility of pathologies arising in any body region where AQP4 is expressed.

4. Discussion

Given the diverse associations between NMOSD and other pathological processes
outside of the CNS, it is highly likely that the anti-AQP4 etiology of NMOSD is not restricted
to the CNS (See Table 2). The increased incidence of paraneoplastic disorders secondary
to NMOSD diagnosis is of particular note and concern and should be heavily considered
by care providers. Screenings for the cancers most commonly associated with NMOSD
could be of great benefit, though more research is needed to establish more predictable
and universal guidelines. Hemorrhagic conditions and menstrual irregularities are also
significant and should be monitored.
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Table 2. A summary of some of the possible presentations and complications discovered in NMOSD
patients, as discussed in this work.

Summary of Non-CNS Pathologies with a Connection to NMOSD

• Muscular Disorders;
• Hemorrhage;
• Paraneoplastic Diseases, such as:

# Lung cancer;
# Breast cancer;
# Melanoma;
# Neuroendocrine tumor;
# Gastric cancer;
# Esophageal cancer.

• Autoimmune diseases, such as:

# Sjogren’s Syndrome;
# SLE;
# Myasthenia Gravis;
# Autoimmune Thyroid Diseases.

• Gut Microbiome Irregularities;
• Menstrual Irregularities;
• Nephropathies;
• Pruritus.

Another area that needs further exploration is the minor, but pathologic, skeletal
muscle changes and the decrease in AQP4 expression in muscle biopsies of patients with
NMOSD. It is not yet understood why this occurs, but further research on this topic could
create even more concrete diagnostic criteria for NMOSD.

Also of note are the additional autoimmune conditions that arise with or subsequent
to NMOSD. In particular, the potential connection between the gut microbiome and au-
toimmune disorders should be investigated further.

Fortunately, increasing interest in treating AQP4 diseases has encouraged investigation
into therapeutic modalities that may go beyond current conventional treatments [20–26].
The research is still emerging, and much remains to be understood. Nevertheless, current
evidence would dictate that greater resources should be dedicated to researching and
reconsidering therapeutic approaches to AQP4 diseases such as NMOSD.

The conditions and associations explored in this article may only graze the surface of
the multitude of systemic presentations of NMOSD that warrant both further investigation
as well as a more holistic, systemic approach to NMOSD diagnosis, monitoring, and
treatment, as opposed to the more prevalent CNS-specific viewpoint.

5. Conclusions

Traditionally, NMOSD has been viewed through the lens of an autoimmune disorder
limited almost entirely to the central nervous system. However, emerging research supports
NMOSD as a vast systemic disorder, attributed in part to the anti-AQP4 antibodies found
in NMOSD patients. Researchers, clinicians, and patients should be aware of the potential
development of cancers, other autoimmune disorders, muscular pathology, and more, to
guide not only treatment but improved patient outcome and quality of life. Future studies,
employing statistical correlational analysis with other comorbidities using national datasets,
should be carried out to provide more tangible evidence of observed associations.
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