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Abstract: Human brain atlases are tools to gather, present, use, and discover knowledge about
the human brain. The developments in brain atlases parallel the advances in neuroanatomy. The
brain atlas evolution has been from hand-drawn cortical maps to print atlases to digital platforms
which, thanks to tremendous advancements in acquisition techniques and computing, has enabled
progress in neuroanatomy from gross (macro) to meso-, micro-, and nano-neuroanatomy. Advances
in neuroanatomy have been feasible because of introducing new modalities, from the initial cadaveric
dissections, morphology, light microscopy imaging and neuroelectrophysiology to non-invasive
in vivo imaging, connectivity, electron microscopy imaging, genomics, proteomics, transcriptomics,
and epigenomics. Presently, large and long-term brain projects along with big data drive the de-
velopment in micro- and nano-neuroanatomy. The goal of this work is to address the relationship
between neuroanatomy and human brain atlases and, particularly, the impact of these atlases on the
understanding, presentation, and advancement of neuroanatomy. To better illustrate this relationship,
a brief outline on the evolution of the human brain atlas concept, creation of brain atlases, atlas-based
applications, and future brain-related developments is also presented. In conclusion, human brain
atlases are excellent means to represent, present, disseminate, and support neuroanatomy.

Keywords: neuroanatomy; human brain atlases; neuroeducation; brain research; brain atlases in
clinics; large brain projects; big brain data

1. Introduction

For centuries, the human brain has been an enormous challenge for scientists and
an abundant inspiration for artists. However, the great importance of the brain has not
always been fully understood. In Ancient Egypt, for instance, the brain was considered
a rather useless organ with no need to be mummified. In Ancient Greece, Herodotus
advising on the mummification process recommended removing as much of the brain as
possible and mixing any remains of it with drugs, implying the brain was toxic. One of
the greatest philosophers of Antiquity, Aristotle, who also substantially contributed to
natural sciences, viewed the brain as a cooling mechanism for blood, while the heart
was the seat of intelligence. Toward the end of Antiquity, St. Augustine, considered the
father of psychology, demonstrated a better understanding of the brain by dividing it
into three compartments, the environment with the senses, the movement environment,
and the seat of memory. Then, after one thousand years of stagnation, Leonardo da Vinci
created beautiful images, though not always anatomically correct, of the brain capturing its
anatomy, by bridging art and science. It was however Vesalius, universally considered to
be the most important anatomist and the founder of modern anatomy, who started a new
era of anatomical investigation ending its dependence on Greek and Arabic authorities,
often erroneous and based upon animal rather than human studies [1]. Vesalius also
made a substantial contribution to neuroanatomy by providing the first description of
the human corpus callosum linking two halves of the brain, putamen, globus pallidus,
caudate nucleus, pulvinar, midbrain, pineal body, and internal capsule, among others.
Willis introduced a new level of neuroanatomical accuracy and reclassified the cranial
nerves. Neuroanatomy advancements through brain gross dissections were accomplished
by 19th-century neuroanatomists including Arnold, Burdach, Foville, Gratiolet, Mayo,
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and Reil as it was illustrated and reviewed by Schmahmann and Pandya [2]. One of the
first maps of the human cortical surface based on cytoarchitectonics was created in 1909 by
a German neurologist named Korbinian Brodmann [3]. Brodmann postulated that areas
differing in structure perform different functions. Brodmann’s areas are still in use today in
neuroeducation and research.

Since then, there has been a tremendous development of human brain maps and
atlases in terms of concept, content, functionality, applications, and availability. I have
earlier distinguished four generations of brain atlases: early cortical maps, print stereotactic
atlases, early digital atlases, and advanced brain atlas platforms [4].

Neuroanatomy, as the study of the structure and organization of the nervous system,
and human brain atlases, as tools to gather, present, use, and discover knowledge about
the human brain, are obviously linked. The goal of this work is to address the relationship
between neuroanatomy and human brain atlases and, particularly, the impact of these
atlases on the understanding, presentation, and advancement of neuroanatomy. To better
illustrate this impact, a brief outline about the evolution of the human brain atlas concept,
creation of brain atlases, atlas-based applications, and future brain-related developments is
also presented.

2. Evolution of Brain Atlas Concept

The concept of the brain atlas has been evolving together with the tremendous progress
in neuroanatomy thanks to imaging and computing. It should be noted that various authors
consider or define the brain atlas differently as briefly overviewed below. Traditionally,
the brain atlas is considered a collection of brain maps or a database. Here, there are a few
examples. Roland and Zilles define brain atlases as collections of micrographs or schematic
drawings of brain sections with identified anatomic structures [5]. Evans et al. treat brain
atlases as large-scale neuroimaging databases providing the mean and variance in the
population [6]. Mori et al. consider the brain atlas a tool for image structurization via
atlas-based image subdivision to exploit a great amount of imaging information offered
by medical systems [7]. Amunts et al. regard brain atlases as central for integrating
diversified information about various aspects of the brain [8]. Kuan et al. consider the brain
atlas a tool aiming to integrate diverse information, understand complex brain anatomy,
localize experimental data, and plan experiments [9]. Costa et al. consider the atlases
the means able to produce specific, testable hypotheses about circuit organization and
connectivity [10]. Chon et al. find anatomical atlases in standard coordinates to be necessary
for the interpretation and integration of research findings in a common spatial context [11].
Hence, despite some minor differences, what is common for all these approaches is that
they mainly reflect a research usefulness of brain atlases in human and/or animal studies.

I proposed a different concept of the human brain atlas by extending its standard
imaging content with a knowledge database, tools for content processing and analysis,
and means to broaden this content with the user’s data [12]. This concept has been cus-
tomized to stereotactic and functional neurosurgery as a population-based, self-growing,
and structural-functional multi-atlas. Subsequently, based on the atlas evolution review [4]
and considering various perspectives and applications, my latest definition of the human
brain atlas has evolved as follows: “the reference human brain atlas is a vehicle to gather,
present, use, and discover knowledge about the human brain with a highly organized con-
tent, tools enabling a wide range of its applications, massive and heterogeneous knowledge
database, and means for content and knowledge updating and growing by its user” [13].
Correspondingly, an architecture embodying such a brain atlas is proposed along with a
method of its implementation [13].

3. Creation of Human Brain Maps and Atlases

The evolution of brain fixation techniques combined with optical microscopy enabled
neuroanatomy advancement beyond gross anatomy toward microanatomy. Several early
cortical maps were created from microscopy in the first three decades of the 20th cen-
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tury encapsulating new knowledge about the human brain. Early brain mappers include
Brodmann [3], Campbell [14], Flechsig [15], Vogt and Vogt [16], and Von Economo and
Koskinas [17]. Their maps were made for a single modality, cytoarchitectonics [3,17] or
myeloarchitectonics [15,16], and varied in the number of parcellated cortical areas. This de-
velopment was a substantial step forward in comparison to examining gross neuroanatomy
from cadaveric studies.

To localize cerebral structures in neurosurgery in the pre-tomographic imaging era,
stereotactic brain atlases were developed. These, initially print, atlases represented a
significant step forward in atlas development both in terms of atlas content and concept.
In the 1950s, stereotactic brain atlases were created by Speigel and Wycis in 1952 [18],
Talairach et al. in 1957 [19], and Schaltenbrand and Bailey in 1959 [20], followed by Andrew
and Watkins in 1969 [21], Van Buren and Borke in 1972 [22], Schaltenbrand and Wahren
in 1977 [23], Afshar et al. in 1978 [24], and Talairach and Tournoux in 1988 [25] and
1993 [26]. The contents of these atlases vary covering deep gray nuclei (by Talairach et al.,
1957), the thalamus and adjacent structures (by Andrew and Watkins, 1969), variations
and connections of the thalamus (by Van Buren and Borke, 1972), deep structures and the
whole brain (by Schaltenbrand and Wahren, 1977), the brainstem and cerebellar nuclei
(by Afshar et al., 1978), the whole brain (by Talairach and Tournoux (1988), and brain
connections (by Talairach and Tournoux, 1993).

Besides stereotactic, other print atlases were published for neuroradiology, neuro-
surgery, neuroscience, and neuroeducation, including a brain atlas for computed tomog-
raphy [27], an atlas of the hippocampus [28], an atlas of the cerebral sulci [29], an atlas of
brain function [30], an atlas of the brainstem and cerebellum [31], an atlas of morphology
and functional neuroanatomy [32], an atlas of the brainstem and cerebellum with magnetic
resonance 9.4 Tesla (T) images [33], and the Netter’s atlas of neuroscience [34].

As print atlases had several limitations, including static content, sparseness of image
plates, limited functionality, and difficulty in mapping into patients’ scans, electronic and
interactive brain atlases have been developed. Initially, these were digitalized versions of the
stereotactic print atlases followed by their enhancements and extensions as reviewed in [4,35].

In particular, two stereotactic brain atlases are of great importance, “Atlas of Stereotaxy
of the Human Brain” by Schaltenbrand and Wahren [23] and “Co-Planar Stereotactic Atlas
of the Human Brain” by Talairach and Tournoux” [25]. The Schaltenbrand and Wahren atlas
is based on 111 brains and comprises photographic plates of macroscopic and microscopic
sections through the hemispheres and the brainstem. The macroscopic plates provide
the extent of variation in the brain structures. The microscopic myelin-stained sections
demonstrate in great detail cerebral deep structures which usually are not well visible
on brain scans. This atlas is available in most surgical workstations. The Talairach and
Tournoux atlas presents the cerebral structures as colored drawings through axial, coronal,
and sagittal sections of a single, normal brain specimen. It is applied in neurosurgery and
brain research reaching over 22,000 citations.

Because of the importance of these two brain atlases, we have developed their en-
hanced and extended electronic versions, and the applied processing was explained in
detail in [36]. These electronic atlases are fully parcellated which enables their automatic
labeling. This parcellation is by unique coloring and closed contouring (a contour represen-
tation is additionally useful for atlas-to-data registration as the contours do not block the
actual patient data); see Figure 1. These electronic atlases have been embedded into atlas-
assisted stand-alone applications [37–40] and plug-in libraries licensed to 13 companies
and integrated with major surgical workstations [41].



Anatomia 2023, 2 31
Anatomia 2023, 2, FOR PEER REVIEW 4 
 

 

 

Figure 1. Electronic brain atlases: (left) Talairach and Tournoux axial fully color-coded plate 4 mm 

above the intercommissural plane; (right) Schaltenbrand and Wahren coronal microscopic plate in 

contour representation 4 mm behind the posterior commissure (note that all the contours are 

closed). 

Enormous advancements in imaging, brain mapping, and computing drive the de-

velopment of human brain atlas platforms. I have specified 23 directions in the evolution 

of brain atlas content development grouped into eight categories by employing various 

criteria, including scope, parcellation, plurality, modality, scale, ab/normality, ethnicity, 

and a combination of them [4]. I briefly overview these brain atlas categories and provide 

some examples of brain atlases from numerous centers. 

The scope of brain atlases ranges from structural neuroanatomy [42–45] to connec-

tional neuroanatomy [46–51] to vascular neuroanatomy [52,53] including cerebral variants 

[54] to cranial nerves and nuclei [55] to gene expression [56] including gene expression in 

brain development [57]. 

In general, the human brain can be parcellated into numerous anatomically and/or 

functionally distinct cortical regions and subcortical structures based on macrostructural, 

microstructural, functional, and/or connectional features. The parcellation category rep-

resents novel and/or finer parcellations of brain structures and surfaces based on various 

modalities and approaches. The developments here are from classic gross anatomy, cyto-

architecture, and myeloarchitecture to functional magnetic resonance imaging (fMRI) ex-

ploiting resting-state and task-based sequences [58], chemoarchitecture [59], vascular ter-

ritories [60], anatomic connectivity based on diffusion tensor imaging [48] and diffusion 

spectrum imaging [61], anatomic-functional connectivity based on diffusion and resting-

state MRI [62], electroencephalography [63], (multi)receptor architecture [64], and/or mul-

tiplicity of them [50,65]. Both the size and the number of the parcellated regions can be 

variable; for instance, a multi-modal MRI-based parcellation of the cerebral cortex results 

in 180 variable-size areas per hemisphere [65], the Brainnetome atlas is parcellated into 210 

various cortical areas and 36 subcortical regions [62], and the Yale Brain Atlas consists of 

690 same-size one-square centimeter parcels [63]. 

Parcellation not only introduces subdivision but also enables systematization, locali-

zation, and comparison, ideally making the brain “addressable”. Parcellated regions can 

be named based on some existing nomenclatures, such as Terminologia Anatomica [66] 

which is an international standard for the whole body or Terminologia Neuroanatomica tar-

geting the central nervous system, peripheral nervous system, and sensory organs [67]. 

Several nomenclatures have been introduced for research applications, such as Neu-

roNames supporting synonyms and multiple languages [68], Uberon [69] supporting sin-

gle- and cross-species queries, Foundation Model of Anatomy (FMA) providing a structure-

based template from the molecular to the macroscopic levels for representing biological 

Figure 1. Electronic brain atlases: (left) Talairach and Tournoux axial fully color-coded plate 4 mm
above the intercommissural plane; (right) Schaltenbrand and Wahren coronal microscopic plate in
contour representation 4 mm behind the posterior commissure (note that all the contours are closed).

Enormous advancements in imaging, brain mapping, and computing drive the de-
velopment of human brain atlas platforms. I have specified 23 directions in the evolution
of brain atlas content development grouped into eight categories by employing various
criteria, including scope, parcellation, plurality, modality, scale, ab/normality, ethnicity,
and a combination of them [4]. I briefly overview these brain atlas categories and provide
some examples of brain atlases from numerous centers.

The scope of brain atlases ranges from structural neuroanatomy [42–45] to connectional
neuroanatomy [46–51] to vascular neuroanatomy [52,53] including cerebral variants [54]
to cranial nerves and nuclei [55] to gene expression [56] including gene expression in
brain development [57].

In general, the human brain can be parcellated into numerous anatomically and/or
functionally distinct cortical regions and subcortical structures based on macrostructural,
microstructural, functional, and/or connectional features. The parcellation category repre-
sents novel and/or finer parcellations of brain structures and surfaces based on various
modalities and approaches. The developments here are from classic gross anatomy, cy-
toarchitecture, and myeloarchitecture to functional magnetic resonance imaging (fMRI)
exploiting resting-state and task-based sequences [58], chemoarchitecture [59], vascular
territories [60], anatomic connectivity based on diffusion tensor imaging [48] and diffusion
spectrum imaging [61], anatomic-functional connectivity based on diffusion and resting-
state MRI [62], electroencephalography [63], (multi)receptor architecture [64], and/or
multiplicity of them [50,65]. Both the size and the number of the parcellated regions can be
variable; for instance, a multi-modal MRI-based parcellation of the cerebral cortex results
in 180 variable-size areas per hemisphere [65], the Brainnetome atlas is parcellated into
210 various cortical areas and 36 subcortical regions [62], and the Yale Brain Atlas consists
of 690 same-size one-square centimeter parcels [63].

Parcellation not only introduces subdivision but also enables systematization, localiza-
tion, and comparison, ideally making the brain “addressable”. Parcellated regions can be
named based on some existing nomenclatures, such as Terminologia Anatomica [66] which
is an international standard for the whole body or Terminologia Neuroanatomica targeting
the central nervous system, peripheral nervous system, and sensory organs [67]. Several
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nomenclatures have been introduced for research applications, such as NeuroNames support-
ing synonyms and multiple languages [68], Uberon [69] supporting single- and cross-species
queries, Foundation Model of Anatomy (FMA) providing a structure-based template from
the molecular to the macroscopic levels for representing biological functions of the human
body [70], and Common Coordinate Framework (CCF) ontology to define positions in the
body down to individual cells [71]. Alternatively, parcellation-related identifiers are used,
such as numbers in naming Brodmann’s areas [3] or parcel unique names with a gyrus
code and a letter indicating the parcel position within the gyrus in the Yale Brain Atlas [63].

Within the plurality category, probabilistic brain atlases provide novel neuroanatomi-
cal information in terms of statistical distributions of the studied entities. For instance, these
atlases may contain the mean values, standard deviations, moments, and other quantifiers
of volumes (e.g., for the entire brain [72], white matter [73], cerebellum [74], or subcortical
structures [75]), areas (such as cortical surface regions [76]) or distances (e.g., the thickness
of the cortical mantle). Multi-atlases can illustrate neuroanatomy over the lifespan. For
instance, a mega multi-atlas [77] comprises 90 component brain atlases with the brain
specimens ranging from 4 to 82 years of age.

In the modality category, the major advancement has been from postmortem to in vivo
data enabled by neuroimaging allowing to accomplish a “living neuroanatomy”. Fur-
thermore, more detailed neuroanatomical images with better quality are feasible in brain
atlasing due to the increased teslage of the acquired MRI neuroimages, namely, from
1.5T [78] to 3T [45,53] to 7T [52,79–83] to 9.4T [84].

The scale category includes brain atlases with various temporal, spatial, and combined
spatiotemporal scales. Several temporal scale-related brain atlases aggregate age-dependent
neuroanatomical changes ranging from pediatric to geriatric populations [85–87]. Other
relevant works include a dynamic 4D atlas of the developing brain [88] and a temporal cell
atlas of gene expression in brain development [57].

The spatial scale of brain atlases ranges from macro- to meso- to micro- to nano-
scale, including the integration of atlas data across multiple scales. The developments
in this area include the BigBrain with a 20-micrometer resolution [89], a comprehensive
cellular-resolution (of 1 µm/pixel) atlas linking macroscopic anatomical and microscopic
cytoarchitectural parcellations [90], a whole-brain cell atlas integrating anatomical, physio-
logical and molecular annotations for a complete characterization of neuronal cell types,
their distributions, and patterns of connectivity [91], a genomics brain atlas [56], an atlas of
brain transcriptome [92], an atlas of serotonin [93], and a proteomic brain atlas [94].

Several disease-specific atlases have been created, e.g., for Alzheimer’s disease [95],
dementia [96], stroke [97,98], brain tumors [99], and epilepsy [100]. Some of them en-
able the quantification of brain structural deficits in epilepsy, depression, schizophrenia,
Alzheimer’s disease, autism, and bipolar disorders [101]; others include the Probabilistic
Stroke Atlas [98] which facilitates outcome prediction, the Virtual Epileptic Patient atlas which
provides an automated brain region parcellation and labeling for epileptology and func-
tional neurosurgery [100], and the Probabilistic Atlas of Diffuse WHO Grade II Glioma Locations
which identifies the preferential locations of these gliomas in the brain [99]. A different
way of atlas use is presented in [102] to investigate genetic correlations between brain
phenotypes (attained as cortical surface area and thickness) and psychiatric/neurological
disorders by means of genetically informed brain atlases. This study revealed the asso-
ciation between global surface and fronto-parietal thickness with attention-deficit hyper-
activity disorder, temporal area with schizophrenia and autism spectrum disorder, and
fronto-occipital morphology with neurological disorders.

Ethnicity-based brain atlases enable comparison of neuroanatomy between various popu-
lations, such as Chinese and Caucasian [103] and Indian with Chinese and Caucasian [104].

The design, development, and validation of a human brain atlas is a painstaking
and time-consuming process that requires high attention to detail. The design principles
of a holistic and reference brain atlas are formulated in [105], computational methods
employed in brain atlas development are addressed in [106], visualization and interac-
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tion are discussed in [107], and a user-centric and application-balanced architecture cum
implementation of a reference human brain atlas is proposed in [13].

4. Brain Atlas-Assisted Applications

The human brain atlases are employed across education, research, and clinics [4]. In
neuroeducation, the brain atlas assists students and educators as a visual and interactive
tool with parcellated and labeled virtual brain models, equipped with an intuitive and
friendly user interface, able to communicate cerebral complexity in a more convenient
and comprehensible manner. In research, brain atlases focus predominantly on how to
integrate and openly share massive amounts of heterogeneous experimental data in a
common reference atlas space and to relate these data across scales. In clinics, brain atlases
are valuable computer-aided tools to support and enhance screening, diagnosis, treatment,
and prediction.

4.1. Education

The history of neuroanatomy over the centuries has been linked to the teaching
methods employed, including cadaveric dissection, plastination, observation of live models,
live surgery, animal dissection, synthetic models, bibliographic sources, radiology, and
audiovisual virtual reality including stereoscopy [108]. Electronic and interactive brain
atlases may be embedded in synthetic models, radiology, audiovisual virtual reality, and
computer-aided live surgery.

Several standard neuroeducational brain atlases have been developed, such as Digital
Anatomist [109], A.D.A.M. [110], The Electronic Clinical Brain Atlas [37], Voxel-man [78], The
Cerefy Atlas of Brain Anatomy [39], Primal’s Interactive Head and Neck [111], and The Cerefy
Clinical Brain Atlas [40].

In comparison to the standard brain atlases, advanced atlases provide novel features
in neuroeducation facilitating brain exploration and understanding. Examples of such
atlases are The Cerefy Atlas of Cerebral Vasculature [53], The Human Brain in 1492 Pieces [43],
The Human Brain in 1969 Pieces: Structure, Vasculature, Tracts, Cranial Nerves, Systems, Head
Muscles, and Glands [44], and The Human Brain, Head and Neck in 2953 Pieces [81]. These novel
features include continuous navigation and exploration, free composing and decomposing
of a 3D explorable scene (see Figure 2), joint surface and sectional anatomy, presentation in
context, correlation of anatomy and terminology, simultaneous presentation of multiple
systems, wide scope of presentations (from local to global neuroanatomy), virtual dissec-
tions, quantification, and generation of teaching materials [112,113] as well as automatic
testing and assessment of neuroanatomy knowledge [114] available, e.g., in The Cerefy Atlas
of Cerebral Vasculature [53].

Technology advancements open new avenues in brain atlasing, although on the
other hand, they may cause an increased cost and decreased accessibility of brain atlas
applications, especially for users in less privileged countries. To address this issue, I
have created the NOWinBRAIN 3D neuroimage public repository at www.nowinbrain.org.
NOWinBRAIN is a large (the largest so far), systematic, comprehensive, extendable, spatially
consistent, easy to use, long-lasting, and beautiful repository of 3D reconstructed images
of a living human brain extended to the head and neck populated with over 7800 images
(version 3.1) organized in 10 galleries. The design, development, and content of the
primary and multi-tissue galleries are addressed in [115], the combined planar–surface
gallery in [116], the dissection gallery in [117]; and the gallery of dual white matter–cortical
surfaces with the cerebral sulci in [118]. Note that despite the tremendous development of
various brain-related resources, such a repository is not yet available. This systematically
designed repository is empowered with many novel features, such as multi-tissue galleries,
the use of various spatially co-registered image sequences, and unique image-naming
syntax. It is freely available and easily accessible as a web resource without any password
or registration. These features make NOWinBRAIN valuable for neuroeducators, medical
students, neuroscientists, and clinicians, especially, in less privileged countries. The current

www.nowinbrain.org
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users are from over 75 countries on six continents. Most users are from Europe and the
United States including the technologically advanced Silicon Valley. Frequent users are
from India, China, and Egypt. There are also visitors from Nepal, Afghanistan, Sudan,
Tanzania, Brazil, Argentine, and Peru.
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Figure 2. Neuroanatomy composed of 3D pieces (such as Lego blocks) and parcellated by unique
color coding. The composed 3D scene contains the brain with the left hemisphere removed and the
right hemisphere parcellated into gyri and sulci, cervical spine, deep gray nuclei, cerebral ventricles,
intracranial and extracranial vasculature on the right, cranial nerves on the left, and the visual system
(an antero-left lateral view).

4.2. Research

Brain atlases are widely applied in research for various purposes and play a key role
in modern neuroimage analysis [119]. One of the main areas of brain atlas applications
is human brain mapping. Then, the brain atlases, such as the BrainMap [120] or the
Brain Atlas for Functional Imaging [38], provide the underlying neuroanatomy enabling
the activation loci in functional images to be automatically labeled with cortical areas
and stereotactic coordinates. Brain atlases are widely applicable for fast, automatic, and
robust segmentation of neuroimages [121–126]. Brain atlases are central tools for data
integration [127] enabling combining various brain-related information, such as micro- and
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macrostructural parcellation, connectivity, temporal dynamics, and regional functional
specialization [8]. The brain atlas also serves as a tool for localizing experimental data and
planning experiments [9] as well as to generate hypotheses about brain organization [10]. In
addition, brain atlases enable knowledge discovery; for instance, Makowski et al. employed
genetically informed brain atlases to determine the impact of genetic variants on the brain
in genome-wide association studies of regional cortical surface area and thickness in about
40,000 adults and 9000 children [102]. These studies uncovered 440 genome-wide significant
loci (largely acquired in childhood) related to early neurodevelopment and associated with
neuropsychiatric risk.

4.3. Clinics

The first clinical application of human brain atlases has been stereotactic and functional
neurosurgery. Initially, a digital atlas, such as The Electronic Clinical Brain Atlas [37], was
employed offline in the operating room to aid neurosurgery. Subsequently, the brain atlas
libraries derived from our brain atlas database [36] were directly incorporated into several
surgical workstations, including the StealthStation (Medtronic) [41], to assist neurosurgery.
In general, the brain atlas provides pre-, intra-, and post-operative support [128]. Pre-
operatively, the atlas assists to plan the target and trajectory as well as provides a list
of structures intersected by the trajectory. The usage of multiple brain atlases improves
the planning quality and surgeon’s confidence [129,130]. Intra-operatively, the brain atlas
specifies the structures already traversed by the electrode, identifies the actual structure
where the electrode tip is located, measures distances to important structures, and provides
the neuroanatomic and vascular context [130]. Post-operatively, the atlas enables the
examination of the precision of placement of the stimulating electrode or a permanent
lesion. Other atlas-assisted applications in neurosurgery include atlas-guided do-it-yourself
neurosurgery [41] and an atlas-enhanced operating room for the future [131].

Several brain atlas-aided proofs of concepts (prototypes) have been developed in some
other areas. Namely, in neuroradiology, brain atlases can assist in neuroimage interpretation
by segmenting and labeling brain scans including pathological, template-based reporting,
dealing with data explosion by facilitating processing multi-detector (especially 320-raw
computed tomography) scans, and communication for both doctor-to-doctor and especially
doctor-to-patient [132]. Multiple brain atlases have the potential in stroke management
including prediction, diagnosis, and treatment by providing automated processes ensuring
fast decisions [60,98,133]. In neurology, the 3D Atlas of Neurologic Disorders [134] demon-
strates various locations of brain damage, including local neuroanatomy, cranial nerves,
and cerebrovasculature, along with the resulting neurologic deficits, bridging in this way
neuroanatomy, neuroradiology, and neurology [135]. Finally in psychiatry, a brain atlas
allows for the automatic generation of neuroanatomic volumes of interest for statistical
analysis, e.g., to study schizophrenic patients and controls [136].

5. Future Developments

There has been an enormous explosion of human brain-related endeavors in the
last few years. These are advanced, big, government-led, and/or well-funded projects,
initiatives, and/or national brain programs, such as The Human Connectome Project to map
structural and functional connections to investigate the relationship between brain circuits
and behavior [51]; The Allen Brain Atlas to map gene expression [56]; The Big Brain to acquire
ultra-high resolution neuroimages [89]; The CONNECT project combining macro- and micro-
structure [137]; the Brainnetome project to understand the brain and its disorders, develop
methods for multi-scale brain network analysis, and create the Brainnetome atlas [138];
The BRAIN Initiative (Brain Research through Advancing Innovate Neurotechnologies) [139]
to develop technology to advance neuroscience discovery [140]; The Blue Brain Project to
simulate neocortical micro-circuitry [141]; The Human Brain Project to create a research
infrastructure to decipher the human brain, reconstruct its multiscale organization, and
develop brain-inspired information technology [142]; the Chinese Color Nest Project to
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study human connectomics across the life span [87]; the Japanese Brain/MINDS (Brain
Mapping by Integrating Neurotechnologies for Disease Studies) project to better understand
the human brain and neuropsychiatric disorders through “translatable” biomarkers [143];
and SYNAPSE (Synchrotron for Neuroscience—an Asia-Pacific Strategic Enterprise) to map the
entire human brain at sub-cellular level by employing synchrotron tomography [144]—a
proposal of how to build a corresponding human brain atlas I have recently presented at the
SYNAPSE 2022 meeting; https://www.slri.or.th/th/index.php?option=com_attachments&
task=download&id=4493 (28 December 2022).

These and other efforts have resulted in the acquisition of big data and the develop-
ment of diverse brain-related databases, such as BigBrain, Allen Brain Atlas, HCP (Human
Connectome Project) database and HCP Young Adult Data, BIRN (Biomedical Informatics Research
Network) MRI and fMRI data, OpenNEURO, OASIS (Open Access Series of Imaging Studies)
Brains Project, ABCD (Adolescent Brain Cognitive Development) Data Repository, BCP (Baby
Connectome Project) database, BP (bipolar disorder) neuroimaging database, and the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) as overviewed in [145]. Moreover, the BRAIN Initia-
tive resulted in the development of the Neuroscience Multi-Omic Archive repository contain-
ing transcriptomic and epigenomic data from over 50 million brain cells [146]. In addition,
the online community repository NeuroMorpho.Org contains more than 140,000 neural re-
constructions (including glia) consisting of 3D representations of branch geometry and
connectivity in a standardized format, and for each reconstruction, a set of morphometric
features is extracted [147].

The abovementioned large-scale endeavors and big data empowered with high-
performance computing at peta- and exascale will enormously increase our knowledge and
understanding of the human brain at various scales and will propel the development of
novel and more powerful brain atlases.

6. Summary and Conclusions

Neuroanatomy, as the study of the structure and organization of the nervous system,
and human electronic brain atlases, as tools to gather, present, use, and discover knowledge
about the human brain, are naturally linked. Consequently, this work addresses this human
brain atlas–neuroanatomy mutual relationship.

Brain atlasing has progressed from the initial brain drawings and hand-drawn cor-
tical maps to advanced brain atlas platforms. Presently, human electronic brain atlases
have been advancing tremendously in terms of content, functionality, and applications.
The advancement is empowered by software engineering methods and tools, such as
databases, image processing, computer graphics, and virtual and augmented reality. This
advancement spreads in multiple directions which can be grouped with respect to scope,
parcellation, plurality, modality, scale, ab/normality, ethnicity, and combination of them.

Neuroanatomy has also been transformed enormously. From gross neuroanatomy
facilitated by cadaveric dissections to micro-neuroanatomy enabled by brain fixation tech-
niques combined with optical microscopy to nano-neuroanatomy empowered by modern
electron microscopy, genomics, proteomics, transcriptomics, and epigenomics, and also
from cadaveric neuroanatomy to living neuroanatomy enabled by modern imaging of struc-
ture, function, vasculature, structural and functional connectivity, and molecular processes.
Moreover, imaging offers new acquisition methods, ever-increasing spatial and temporal
resolutions, a better quality of images, and shorter acquisition times, all supported by
artificial intelligence.

This ever-growing neuroanatomical knowledge enables the creation of human elec-
tronic brain atlases. These atlases mirror the advances in neuroanatomy capturing the
dramatically increasing knowledge about the human brain in health and disease. Numer-
ous centers contribute to neuroanatomy and brain atlasing advancements from various
perspectives as briefly outlined here.

Furthermore, reciprocally, the developments in brain atlasing impact neuroanatomy
enabling the use, presentation, mining, dissemination, and growth of this knowledge as

https://www.slri.or.th/th/index.php?option=com_attachments&task=download&id=4493
https://www.slri.or.th/th/index.php?option=com_attachments&task=download&id=4493
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well as facilitating learning, understanding, exploring, researching, diagnosing, screening,
decision making, outcome prediction, and treatment of the human brain. In addition,
because of remarkable progress in brain atlasing, these atlases are able to more accurately,
realistically, and completely represent and present this neuroanatomical knowledge and
better disseminate and use it. In my opinion, human brain atlases are the best means to
represent, present, disseminate, and support neuroanatomy.

Finally, the impact on neuroanatomy and brain atlasing by the ongoing large brain
projects and acquired big data may be expected to be enormous.
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