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Abstract: The literature on the crosstalk between the brain and the gut has increased considerably
in recent years. It is widely accepted now that the microbiome plays a significant role in several
brain disorders, neurodevelopment, neurocognitive stages, and physiological functions. However,
the mechanisms that influence such crosstalk are still not well elucidated. In this sense, one of
the possible mechanisms by which the microbiome could influence brain function is through gut
hormones released by enteroendocrine cells: ghrelin, cholecystokinin (CCK), peptide YY (PYY),
vasoactive intestinal polypeptide (VIP), glucagon-like peptide (GLP1-2), corticotropin-releasing factor
(CRF), glucose-dependent insulinotropic polypeptide (GIP), secretin, serotonin (5-HT), and oxytocin.
Especially when one considers that the brain expresses receptors for these hormones in areas impor-
tant to the neurobiology of brain disorders (e.g., depression), such as the hippocampus, amygdala,
hypothalamus, and suprachiasmatic nucleus. To strengthen this hypothesis, gastrointestinal dys-
function (such as altered motility or pain) is relatively common in depressive patients, and changes
in diet (low-carbohydrate diets, for example) positively affect mood. Additionally, alterations in
the gut microbiome are relatively common in depressive patients and are related to the levels of
Akkermansia, Lactobacillus, Bifidobacteria, Faecalibacterium, Roseburia and Clostridium. Finally, concerning
the gut-released hormones, the literature reports that ghrelin can be a peripheral marker for the
antidepressant treatment success rate and has elevated levels during depression. GLP-1 is tightly
correlated with HPA axis activity being decreased by high cortisol levels. CCK seems to be altered
in depression due to increased inflammation and activation of Toll-like receptor 4. Such finds allow
the postulation that hormones, the microbiome and mood are intertwined and co-dependent. VIP
is correlated with circadian rhythms. There is a bidirectional connection of the circadian rhythms
between the host and the microbiota. Circadian rhythm disruption is associated with both poor
outcomes in mental health and alterations in the microbiota composition. In sum, in the past year,
more and more research has been published showing the tight connection between gut and brain
health and trying to decipher the feedback in play. Here, we focus on depression.
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1. Introduction

The gut–brain axis is now well established, but the microbiome production of dif-
ferent metabolites and hormones that can influence locally and in the brain, has only in
recent years started to be explored. The literature links the microbiome and several brain
conditions, such as neurodevelopmental disorders [1,2], depression [3,4], anxiety [5,6],
Parkinson’s [7,8], Alzheimer’s [9], and schizophrenia [10], among others. Additionally,
bacterial metabolites could be key players in these multifactorial diseases by influencing the
availability of neurotransmitters, the induction of the inflammatory response, and/or the
production of hormones. However, at the moment, very little has been researched in this
regard, although the literature is filled with correlations between microbiome alterations
and various developmental/psychiatric conditions. Such lack of research may be due to the
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complexity of bacterial ecology since this ecological complexity makes it hard to disentangle
and correlate the molecular pathway alterations and specific profiles of dysbiosis. It is
worth pointing out that the receptors for peptides produced in the gut by enteroendocrine
cells (EE cells) are also found in several brain areas and could therefore be one of the links
which explain the influence of gut homeostasis in brain health [2,11].

In fact, some animal work can corroborate such a hypothesis. Most of the current
mechanistic literature at the moment comes from germ-free (GF) animals in comparison
to specific pathogen-free (SPF) mice or control animals (with normal microbiomes) [12].
For instance, Fröhlich and co-workers [13] showed that antibiotic treatment in adult mice
could cause alterations in the colonic microbiome followed by alterations in the levels
of metabolites (SCFA—short chain fatty acids, trimethylamine, adenine and uracil) and
cognitive impairment. Crumeyrolle-Arias and co-workers [14] showed that changes in the
microbiome (comparing GF and SPF rats) were correlated with altered levels of corticos-
terone (CORT) and dysfunctional dopamine turnover in brain areas critical to the stress
response. Additionally, Fan and co-workers [4] observed depressive-like behaviour in mice
after treatment with antibiotics, followed by increased corticosterone levels, disruption
in neurotransmitter levels and changes in the relative abundance of Bacteroides thetaio-
taomicron, Klebsiella oxytoca, and Klebsiella aerogenes after stress. Additionally, Luczynski
and co-workers [12] reported changes in stress hormone signalling, such as adrenocor-
ticotropic hormone (ACTH) and CORT, alterations in microglia function and neuronal
function, accompanied by behavioural changes. Additionally, an increasing numbers of
clinical studies show correlational findings [6,15]. For instance, a recent work correlated
pre-existing individual differences in host–microbiome with the susceptibility to be resilient
or responsive to traumatic stress [16].

Interestingly, studies also report that gastrointestinal (GI) dysfunction or some level of
distress has a higher prevalence in individuals with some brain/psychiatric disorder when
compared to controls and that the GI symptom severity can be correlated with the severity
of the neurological/psychiatric condition [17–19]. In the autism spectrum, an increased
intestinal permeability and altered motility in patients were reported, and such findings
were replicated in animal tests where it was also shown that treatment with Bacteroides
fragilis was capable of reversing such stereotypic behaviours [1]. Additionally, in Parkin-
son’s disease, it was shown that infection with H. pylori, as well as small intestine microbial
overgrowth, were correlated with the intensity of motor symptoms [7,19], while a decrease
in bacteria groups related to SCFA production was correlated with cognitive decline and
a low BMI (body mass index). Additionally, Saji and co-workers [20] showed a correla-
tion between specific enterotypes (I and III specifically) and dementia. Finally, studies
showed that patients suffering from depression and/or anxiety frequently present changes
in colonic motility, which can, in turn, alter intestinal physiology and the microbiome
constitution [21,22].

Moreover, obesity and a Western diet have been reported to be associated, at some
level, with psychiatric disorders, although the directionality of the association is not entirely
defined [23–25]. Goldbacher and Matthews [23], and Hawkins and Steawart [24] wrote
reviews showing an association between psychological characteristics and metabolic dys-
function and between excess adiposity and depression symptoms, respectively. At the same
time, the work of Gowey and colleagues [25] reported that elevated depressive symptoms
and/or perceived stress were generally associated with increased waist circumference,
higher C-reactive protein, and lower high-density cholesterol, while the practice of physical
activity and healthy diet seemed to attenuate this association.

In sum, in the past year, more and more research has been conducted showing the
tight connection between gut and brain health and pointing out the tight interplay between
the health of the microbiome and brain function. In this regard, there are some literature
reporting the trans-kingdom symbiosis between the microbiome and the host and the
influence of microbial metabolites in brain function, but this is out of the scope of the
present paper, for a detailed review on the topic please refer to [26,27]. This review will
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focus on the main gut hormones (released by enteroendocrine cells) that may influence the
brain, focusing primarily on depressive states (see summary Figure 1). Additionally, since
the role of circadian rhythm in depression has also gained strength in the past few years,
the connection between circadian rhythm and the microbiome will also be explored in the
following sections.
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Figure 1. Summary of the crosstalk between the microbiome, gut, brain and gut hormones.
SCFA: short-chain fat acids; PYY: peptide YY; GLP-1/2: glucagon-like peptide 1 and 2; GIP: glucose-
dependent insulinotropic polypeptide; 5-HT: serotonin; CCK: cholecystokinin; VIP: vasoactive in-
testinal polypeptide; CRF: corticotropin-releasing factor; VTA: ventral tegmental area; NAc: nucleus
accumbens; SCN: suprachiasmatic nucleus; CORT: cortisol; CRH: corticotropin-releasing hormone;
NA: noradrenaline; ACTH: adrenocorticotropic hormone; CRP: C-reactive protein; DA: dopamine;
GABA: gamma-aminobutyric acid; HPA axis: hypothalamic-pituitary-adrenal axis.

2. Literature Search Method

In this review, the search was divided into separate search terms grouped as follows:
“(microbiota[Title/Abstract]) AND (depress* or bipolar or mania or anxiety or ad-

diction or schizophrenia or psychiatr* or “mental health”[Title/Abstract])) AND (circa-
dian[Title/Abstract])”, “((microbiota or microbiome)[Title/Abstract]) AND (hormone[Title/
Abstract])) AND (depression[Title/Abstract])” or “((microbiota or microbiome)[Title/Abstract])
AND (hormone[Title/Abstract])) AND ((brain disease or mental disorder) [Title/Abstract])”.
Searches were performed on PubMed (Bethesda, MD, USA) between September and
30 October 2022. The total number of papers obtained was 230, and papers were further
filtered to remove manuscripts that were not directly related to the review topic.
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3. Gut Hormones

Approximately 1% of the total number of cells in the mucosal lining are EE cells
responsible for synthesizing and secreting hormones. Although in low percentage among
the epithelial cell population, this is the largest endocrine organ in the human body. The
hormones produced are essential players in the control of metabolism and behaviour [28].
Reports have shown that the microbiome can influence the release of hormones in EE cells
and, therefore, can influence the host’s physiological and disease progression states [28,29],
but this is still a field not well explored.

Hormones produced by enteroendocrine cells include ghrelin, cholecystokinin (CCK),
peptide YY (PYY), vasoactive intestinal polypeptide (VIP), glucagon-like peptide (GLP-1),
corticotropin-releasing factor (CRF), glucose-dependent insulinotropic polypeptide (GIP),
secretin, serotonin (5-HT), and oxytocin. This expression presents anatomical variation
(see Figure 2): ghrelin and orexigenic peptides are produced in the stomach; the proximal
part of the small intestine producing CCK, secretin, GIP and GLP-1; the distal small and
large intestines producing GLP-1/2 and PYY; and the large intestine producing CRF and
the majority of 5-HT; while mesenteric neurons produce oxytocin and VIP [11,30–34]. In
this review, the main focus will be ghrelin, CCK, PYY and VIP due to their known role in
behaviour and brain function [2,11,35,36].
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Figure 2. Schematic representation of the cell’s anatomical location producing gut hormones.
CCK: cholecystokinin; PYY: peptide YY; VIP: vasoactive intestinal polypeptide; GLP-1/2: glucagon-
like peptide 1 and 2; CRF: corticotropin-releasing factor; GIP: glucose-dependent insulinotropic
polypeptide; 5-HT: serotonin.

3.1. Ghrelin

The hormone ghrelin is produced in the stomach by A (X-like) cells, has 28 amino
acids, and binds to the growth hormone secretagogue receptor type 1a [35,37]. Ghrelin is
a hormone that controls orexigenic and adipogenic signals in the body, and it is released
by the stomach when it is empty to signal to the brain to eat. While in the brain, ghrelin
contributes to stress responses. Due to its location in the brain, it is not of surprise that
ghrelin would play a role in depression and anxiety. The receptors for the peptide are found
in the amygdala, hippocampus, ventral tegmental area and nucleus accumbens [37,38].
Moreover, ghrelin may also affect arousal states, helping regulate sleep–wake patterns [38,39].
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It is not yet completely understood whether the microbiome influences ghrelin levels
or if the central activity of ghrelin, through vagal stimulation, affects the microbiome. The
literature shows that ghrelin levels are depleted in GF mice compared to the control [40].
Khosravi and co-workers [41] showed that H. pylori infection in GF mice increased ghrelin
levels and inflammation during fasting, while other bacteria protected SPF mice, indicating
that ghrelin is independent of the microbiome, increasing in the presence of a single
pathogen. In opposition, Hamamah and Covasa [40] showed decreased levels of leptin,
GLP-1, PYY, and ghrelin in GF mice and that microbiome restoration could restore the
hypothalamic and hindbrain neuropeptides deficits present in the mice, indicating that
the microbiome could control such levels. Finally, Fetissov and co-workers [42] described
decreased levels of ghrelin in the plasma of autistic children, accompanied, or not, by
increased ratios of Firmicutes to Bacteroidetes.

In fact, several bacteria have been correlated with ghrelin levels; Clostridium and
Ruminococcus have been positively associated; increased levels of Faecalibacterium and
Prevotellaceae are negatively correlated; and finally, the data is controversial regarding the
levels of Bacteroides, Bifidobacterium, Lactobacillus [11,43].

Nonetheless, the importance of ghrelin in the control of stress is well established, and it
has become a candidate target for treating mental disorders in the past few decades [44–46].
In fact, according to the review presented by Horne and Foster [45], ghrelin could be taken
as a peripherical biomarker for chronic stress, and it seems to be a possible marker for
responsiveness to antidepressant treatment. However, the triad microbiome, ghrelin, and
elevated chronic stress levels have not yet been explored mechanistically.

Additionally, increased ghrelin levels seem to have beneficial effects for Parkinson’s
patients. According to Chu and co-workers [47], elevated ghrelin levels induced by fasting
have neuroprotective effects through AMPK signalling in dopamine neurons, accompanied
by an increase in the relative abundance of Lactobacillus. Additionally, it is also important to
notice that since ghrelin is involved in lipid and glucose metabolism, which in turn affects
mitochondrial respiration, it may play a neuroprotective role against neurodegeneration
conditions, such as Alzheimer’s disease [48,49].

3.2. Cholecystokinin (CCK)

CCK has a 115 precursors, and was first isolated and described in 1960; the release
of CCK happens postprandially after the ingestion of fat or protein [35]. The biologically
active forms of this peptide include Gly-extended and amidated CCK-33, -58, -22, and
-8 [50]. CCK can bind to two receptors (CCK1 and CCK2) that are rhodopsin-like G protein-
coupled receptors, the first more abundant in the intestine and the second in the brain [11].
In the intestine, CCK is produced by I-cells in the proximal small intestine [35].

In the brain, the CCK hormone seems to regulate appetite and food intake [2,51],
social behaviour and emotional processing [52–54]. Researchers have also correlated the
elevation of CCK levels with increased levels of anxiety behaviour in both humans and
animals and believe that the brain areas affected are the amygdala, hippocampus and
cortical areas [55,56].

According to Del-Bel and co-workers [52], social isolation can increase CCK mRNA
expression in the amygdala, hippocampus, cortex and ventral tegmental area (VTA) of rats.
While target mutations in CCK receptors can alter social behaviour in mice [57]. Interest-
ingly, genetic changes have been observed in the CCK gene in patients with Asperger’s
syndrome (AS), which is part of the autistic spectrum [58]. Changes in CCK levels were
also reported in depression [53], anxiety and schizophrenia [56]. Additionally, concerning
neurodegeneration, CCK may reduce the activity of glycogen synthase kinase-3 and have a
protective effect on memory loss in Alzheimer’s disease [59].

However, despite being a very abundant gut peptide in the brain, the role of the
microbiome in this peptide is not yet well explored. Very few studies exist regarding the
microbiome’s effects on CCK levels. Bogunovic and co-workers [60], showed that treatment
with LPS can stimulate the release of CCK in cell models through Toll-like receptor 4 (TLR-4)
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activation. According to Duca and co-workers [61], this hormone is lower in GF mice,
independently of the expression of EE cells in the intestine. Additionally, the only study
performed in humans correlated the observed changes in the microbiome with CCK levels
after bariatric surgery and did not find any correlations [62].

3.3. Glucagon-like Peptide (GLP-1, GLP-2)

The glucagon-like peptide is 30 amino acid long produced in the distal part of the small
intestine and the colon by L-cells [35]. It has two forms, peptides 1 and 2, and it is released in
response to the ingestion of carbohydrates and fat in a 1:1 proportion. The role of these two
peptides is distinct (for a review, see [63]), and here we will focus only on GLP-1, which
the receptors are expressed in the brain. In the brain, GLP-1R (glucagon-like receptor 1) is
present in the brainstem and the hypothalamus and presents an anorexigenic function.

Regarding the stress response, GLP-1 seems to activate the HPA response, having a
positive role in activating the hypothalamus–pituitary–adrenocortical response to stress.
The literature also reports that elevated levels of glucocorticoids reduce the bioavailability
of GLP-1, as a negative feedback loop [64]. Regarding GLP-1 and anxiety, the data shows
opposite results when evaluating animals versus humans. According to the literature, cen-
tral injection of GLP-1 in mice decreases exploration time on anxiety tests, while in humans,
the elevated levels of this hormone seem to have an anxiolytic effect [65,66]. According
to Diz-Chaves and co-workers [67], the possible antidepressant and anxiolytic effects of
GLP-1 would be related to the decreased activation of TREK in the HPA axis. Additionally,
some studies have suggested a neuroprotective activity of GLP-1 in neurodegenerative
disorders [68,69].

Finally, the gut microbiome can elicit the secretion of GLP-1 through three distinct
pathways. Firstly, LPS can bind to TLR-4 in L cells and increase GLP-1 production [60,70].
Secondly, SCFA can activate G protein-coupled free fatty acid receptors 2 and 3 (FFAR2-3)
in L-cells, increasing intracellular calcium and GLP-1 [71,72]. Lastly, indole can increase
calcium influx and promote GLP-1 production [73]. New evidence from Ren and co-
workers [74] shows that a low-carbohydrate diet can lessen depressive symptoms while
increasing GLP-1 through increased SCFA and relative abundance of SCFA-producing
bacteria Roseburia, Ruminococcus and Eubacterium in diabetic patients. Additionally, accord-
ing to Leeuwendaal and co-workers [43] a decrease in Firmicutes and Bacteroidetes and an
increase in Proteobacteria were related to increased levels of GLP-1. However, mechanistic
data correlating bacteria and GLP-1 in different brain diseases is still scarce.

3.4. Peptide YY (PYY)

Peptide YY (PYY) is a 36 amino acid peptide produced by L cells in the ileum and colon.
The production of this peptide happens especially in response to lipids, carbohydrates and
proteins [11,75]. PYY is part of the neuropeptide YY family, comprising NPY, PYY and PP
(neuropeptide Y, peptide YY and pancreatic polypeptide, respectively) [75]. In the brain, it
can be found in the hypothalamus, nucleus tractus solitarii, spinal cord, and pons. This
peptide can bind to four different receptors Y1, Y2, Y4, and Y5, with different levels of
affinity depending on which family member is in question (for review, see [76]). The Y4
receptor seems to be involved in depressive and anxiety states [75,77], and most literature
reports point out that PYY binds to Y2 but not Y4 [11], decreasing its importance in the
pathology of depression and anxiety. However, there are some pieces of evidence of the
role of these hormones in hedonic states, although most of the literature for this family of
peptides is related to NPY (for review, see [78]).

Batterham and co-workers [79] showed that administration of PYY promoted hedo-
nic states, while Painsipp and co-workers [80] showed that knockout of PYY increased
depressive-like behaviour in animals independent of sex, while anxiety behaviour would
be sex-dependent and induced by NPY. Interestingly, Stadbauer and co-workers [81]
showed that Y2 receptor agonism produces behavioural and cognitive symptoms similar
to schizophrenia and related psychotic disorders in mice.
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Additionally, according to Leeuwendaal and co-workers [43], antibiotic-induced fluc-
tuations in Enterococci, Coliforms, and Bifidobacteria were correlated to an increased PYY
secretion. Hassan and co-workers [82] showed that antibiotic treatment could increase the
levels of PYY and GLP-1 while depleting microbiota and inhibiting the anhedonic effect of
a high-fat diet. However, most of the literature explores the role of NPY, not PYY, in such
states, which is out of the scope of the present review.

3.5. Vasoactive Intestinal Polypeptide (VIP)

The vasoactive intestinal polypeptide (VIP) is a 28 amino acids peptide which interacts
with two distinct class B GPCRs (G protein-coupled receptors), namely VIP receptor 1
(VIPR1) and 2 (VIPR2) [83]. Among the many activities of this peptide are vasodilation,
immune activation and circadian rhythm control. It is important to notice that VIP receptors
can also bind PACAP (pituitary adenylyl cyclase-activating peptide), which has its own
receptor to which VIP has a low affinity [33]. VIP is produced mainly by mesenteric
neurons but also can be produced by activated T cells [84], and endogenous VIP is released
by numerous stimuli such as acetylcholine, serotonin, substance P and GLP-2 [33].

Regarding circadian rhythm, neurons that express this hormone can be found in the
ventral area of the suprachiasmatic nucleus (SCN) and it seems to play a role in controlling
motor activity. Moreover, according to Vosko and co-workers [85], VIP through vasoactive
intestinal peptide receptor 2 (VPAC2R) plays a pivotal role in synchronizing SCN to light
cues and helps maintain the synchronicity between oscillating neurons.

Additionally, Mosley and co-workers [86] recently showed the neuroprotective and
immunomodulatory effect of a vasoactive intestinal peptide receptor-2 peptide agonist
(LBT-3627). In this study, treatment with LBT3627 could prevent neurodegeneration in-
duced by a 6-hydroxydopamine (6-OHDA) and α-synuclein (α-Syn). Additionally, the
neuroprotective role of this hormone has already been reported by other groups [87], as
well as the immune-modulatory role [88]. Finally, the literature reports that an increase
in PYY led to an elevation in the levels of BDNF after administration of a diet rich in
non-digestible carbohydrates [89].

However, although much research has been done to try to understand the role of the
microbiome in the development of psychiatric disorders, very little is known about how the
microbiome can alter gut hormones and consequently influence brain function, as discussed
in this section. Therefore, more efforts are needed to elucidate how the microbiome can
influence hormones and vice versa.

In the next section, a more detailed revision of what is known regarding the micro-
biome’s influence on depression will be explored.

4. Depression, Gut Microbiome and Hormones

Depression is one of the most prevalent psychiatric illnesses that affect the population.
It is estimated that at least 16% of the general population will suffer from this disorder at
some point in their lives, and its consequences are, to some extent, permanent [90,91]. The
most prevalent type of depression is unipolar or major depressive disorder (MDD), in which
the core symptoms are anhedonia (lack of pleasure) and depressed mood (DSM-V), but
the phenotypic expressions of this disorder vary [92]. MDD neurobiology is complex and
multifactorial encompassing genetic, epigenetic and environmental factors [93]. However,
an imbalance in the microbial environment (dysbiosis) is commonly observed in depressive
patients and may be a key player in disease development [94]. Several studies have shown
a correlation between depressive states and changes in specific gut microbiome species,
mainly Actinobacteria, Firmicutes, Bacteroidetes and Proteobacteria. However, the directionality
of such a relation is not yet possible to define [95,96]. Due to these observations, the gut
flora became a novel target for the treatment of depression, and several studies focus on
improving the richness and diversity of the gut microbiome population [97].

In fact, the relationship between the gut and brain axis (called GBA, or more re-
cently MGBA for microbiome–gut–brain axis) consists of three pathways that produce
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a bidirectional flow of information [11,98–100]. This link occurs through hormonal com-
ponents, including the HPA axis, gut hormones and anatomical connections such as the
vagus nerve [11,99]. Another relevant factor to account for is the effect of early life dis-
turbances and stress on brain development and function, correlated with depression in
late life stages [101]. Additionally, in this lane, there is also growing evidence that the
gut microbiome at the beginning of life (from conception to the two years of life) has a
crucial role in shaping health outcomes [99]. Animal studies showed the gut microbiome’s
essential role in regulating early brain development [102–104]; for example, Bifidobacterium
infantis has been shown to elevate plasma tryptophan and thus influence 5-HT transmis-
sion [99]. Therefore, the presence of a healthy microbiome early in life is fundamental to
brain health. In this regard, gut microbiota composition is determined by several perina-
tal factors [105,106], and as for the prenatal period, there is no consensus regarding the
existence of a placental microbiome in healthy full-term pregnancies [107,108]. Therefore,
since infant gut colonization begins at birth [106,109,110], the delivery mode plays a critical
role in microbiome colonization. While vaginal delivery exposes the infant to its mother
vaginal microbiota, in which Lactobacillus, Prevotella or Sneathia spp. are predominant [111],
the caesarean section results in an altered microbial composition in the neonate which
is enriched for skin bacteria (prevalence of Staphylococcus, Corynebacterium and Propioni-
bacterium spp.) [99,111–113]. Additionally, the type of feeding seems to be important in
bacterial colonization as breastfed infants have a higher amount of Bifidobacterium and high
microbiome diversity than formula-fed infants [106,114]. Such richness could be explained
by the nutritional value of human breast milk, which is rich in non-digestible oligosaccha-
rides [115,116]. Other factors can disturb the bacterial profile, such as antibiotic exposure,
gestational age (which seems to be correlated with caesarean section) and environmental
factors. However, the bacterial composition tends to revert to its previous level of diversity
with the removal of the disturbing factor, except for dietary patterns, which tend to be
relatively permanent [99,117] and creates lasting disturbances for brain development.

Going back to the bidirectional flow of information that occurs on the MGBA, pre-
clinical and clinical studies involving HPA axis disturbance presented a relationship be-
tween the depressive phenotype, diminished variety and richness of the microbiome, and
an increased amount of Gram-negative bacterium [96,118]. One of the forms by which the
brain can influence the microbiome is through the HPA axis, which regulates intestinal
peristalsis and the control of epithelial cell functions. Dysfunctional states of this axis, such
as stress-related hyperactivity, can modify the permeability of the intestinal epithelium
through the reduced expression of claudins [9]. As a result, an increased inflammatory
response is observed [119]. Additionally, several pieces of evidence show that psycholog-
ical or physical stress can significantly dysregulate the MGBA, as observed in irritable
bowel syndrome (IBS). Additionally, individuals with this condition generally present
comorbidities such as depression and anxiety [120,121].

Furthermore, studies reported that the growth and function of bacteria (such as adhe-
sion to the intestinal mucosa) could be affected by mammalian neuroendocrine hormones
and catecholamines [122]. For example, the absence of neuronal 5-HT in an animal model
negatively impacted gut microbiome composition, which can be worsened by chronic corticos-
terone treatment [123]. Additionally, rats chronically treated with ACTH presented a higher
relative abundance of Desulfovibrio [124], which is known to promote a pro-inflammatory
environment by up-regulating interleukin 6 (IL-6), interleukin 8 (IL-8) and tumour necrosis
factor-alpha (TNF-α) [96,125]. In Addition, the overgrowth of Gram-negative bacteria, such
as the Enterobacteriaceae family, which promotes systemic inflammation through increased
gut barrier permeability and bacterial translocation, was observed in women with postpar-
tum depression (PPD) [118,126]. It is important to note that such changes in inflammatory
states could, in turn, increase VIP levels (through increased levels of T-activated cells),
which would promote changes in circadian rhythms and sleep disturbance, a common
complaint among depressive patients [33,84]. Moreover, GLP-1 seems to be part of the
feedback loop activating the HPA axis [64] and seems to be involved in the peripheral
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activation of VIP [33]. The literature also points to a possible antidepressant and anxiolytic
effect of GLP-1 activation [67] by the depletion of TREK activation in the HPA axis. In
Addition, anti-inflammatory drugs can increase the levels of GLP-1 [74], while chronically
elevated corticosterone levels seem to inhibit its production [64]. HPA hyperactivity and
increased corticosterone also increase CCK levels, and blockage of CCK seems to decrease
such hyperactivation [53,127]. In sum, it is possible to theorize that the crosstalk between
GLP-1 and VIP could be fundamental in maintaining euthymic states and that the sleep
disturbance and HPA hyperactivation observed in depressive states could, in part, be
caused by inflammatory states that would disrupt such peptides, while increasing levels of
CCK. Such intricate relationships between the HPA axis and gut peptides could explain, at
least in part, the high prevalence of intestinal dysfunction in depressive patients and also
the depressive states of patients suffering from intestine complications, such as IBD.

Additionally, tight crosstalk between gut microbiota metabolism and host health has
been demonstrated, making this interaction important to developing depressive phenotype
in animal models [96] and humans [118]. Microbial metabolism generates diverse com-
pounds, such as cytokines, neurotransmitters (serotonin (5-HT), dopamine (DA), gamma-
aminobutyric acid (GABA), and melatonin), SCFAs, tryptophan and bile salt metabo-
lites [128]. In Addition, these metabolites have an autocrine and paracrine influence on
the enteric nervous system (ENS), the vagus nerve, and central nervous system (CNS)
activity [129]. Correlation analysis between microbial composition and metabolite expres-
sion showed that active metabolites from Akkermansia and Lactobacillus were intimately
related to host inositol metabolism and biosynthesis of phenylalanine, tyrosine and trypto-
phan [130]. Lactobacillus produces pyruvic acid, hippurate and d-arabitol, which correlates
with an increased richness in the gut microbiome [96,131]. Akkermansia muciniphila plays an
important role in mucosal barrier homeostasis, besides producing metabolites such as acetic
acid, propionic acid and oligosaccharides, which are used as substrates for Faecalibacterium
prausnitzii. In Addition, Faecalibacterium, Phascolarctobacterium and Butyricicoccus (which
are significantly decreased in PPD patients), are butyrate producers [118,132]. Elevating
butyrate production is correlated with a healthy gut since these short-chain fatty acids
inhibit inflammation and consequent disruption in intestinal permeability. Increased gut
permeability is linked to increased levels of LPS in circulation, which in turn can activate
Toll-like receptors (such as TLR-4) and stimulate the release of CCK [60], which is reported
to be elevated in depression [53]. Reinforcing the importance of CCK in depressive states,
the literature reports that repeated social defeat increases CCK [127], which can be reversed
by antidepressant treatment.

Studies in a GF mice model demonstrate the direct influence of the gut microbiome on
host behaviour, brain development and hormonal function [99,133,134]. For instance,
GF rats inoculated with a faecal transplant (FT) from depressive patients developed
depression-like behaviours and molecular changes similar to depressive patients [134].
These depressed rats presented reduced hippocampal levels of neurotransmitters (5-HT,
noradrenalin (NA) and DA), HPA axis hyperactivity accompanied by high levels of CORT,
ACTH and corticotropin-releasing hormone (CRH), increased inflammatory markers (TNF-
α, IL-6, IL-1 and interferon-gamma (IFN-γ)) and reduced levels of anti-inflammatory
cytokines (IL-4, IL-10). High levels of pro-inflammatory cytokines contribute to the inhibi-
tion of the negative feedback of the HPA axis, increasing blood–brain barrier permeability
and reducing 5-HT synthesis [135]. Beyond such alterations, dysbiosis can also induce
mitochondrial structure damage (change in shape, size, and presence of vacuoles) in small
intestinal cells. Mitochondrial damage often results in multiorgan and multi-system lesions,
especially in high-energy demand and metabolism organs, such as the brain, contributing
to an increased inflammatory response [136], and stimulating kynurenine synthesis. In this
sense, it is relevant to mention that increased ghrelin levels can decrease mitochondrial
damage and have been proposed as a target for treating neurodegenerative conditions
where mitochondrial damage is high [48,49]. However, in opposition, high levels of ghrelin
have been linked to the hyperactivation of the HPA axis and MDD [45], and ghrelin seems to
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inhibit the release of 5-HT while increasing its turnover in animal models [137]. Moreover,
kynurenine and 5-HT pathways depend on tryptophan metabolism and a shift towards the
kynurenic pathway, as in dysbiotic states, has been associated with depression and neuronal
damage [138,139]. For example, in the study by Zhao and co-workers [139], the depressive
phenotype in rats was accompanied by a high relative abundance of Lactobacillus and
Bacteroides, which was negatively correlated with 5-HT levels and positively correlated with
kynurenine, while Ruminococcus and Clostridium IV were positively correlated with 5-HT
levels. It is important to emphasize that the metabolism of 5-HT is closely connected to the
gut microbiome, and 90% of produced 5-HT arises from the intestinal microbiota; therefore,
shifts in the activation of the gut 5-HT production will significantly affect the brain as
well [140]. Finally, returning to the role of diet in controlling the microbiome, hypergly-
caemic states can cause dysbiosis through the disruption of tryptophan metabolism [141].
At the same time, patients suffering from MDD can develop metabolic syndrome, and
patients with metabolic syndrome have a high incidence of depression [141–144]. Inter-
estingly, a decreased abundance of Clostridia phylum was seen in anhedonic-depressed
patients with a simultaneous increase in Bacteroides enterotype, which can increase insulin
callousness through high LPS and TNF-α levels [145,146].

4.1. Gut Microbiome, Depression and Nutrition

Food ingestion is highly related to gut microbiota composition. A healthy gut micro-
biome is fundamental for the host’s metabolic functions, facilitating energy extraction from
food through their enzymes, increasing vitamin synthesis, preserving nutrients and modi-
fying taste receptors [61,110,147]. Epidemiological studies report that imbalanced nutrition,
eating (EDs), and alcohol/substance disorders increase the risk of depression [82,148].
In addition, such disorders share neurobiological mechanisms that regulate depressive
behaviours (such as disturbed reward processing) and related neural circuitries [149,150].
EDs are a multifactorial health problem that depends on diet composition, genetic, and
environmental factors, including the gut microbiota [151,152]. Such influence may be due to
the modulatory effects of the gut microbiome (per transcriptome regulation) on hormones
such as GLP-1, PYY, GIP and leptin [153,154].

The regulation of appetite depends on ghrelin (orexigenic hormone) promoting food
intake and leptin (anorexigenic hormone) inducing satiety. The activation of ghrelin trig-
gers an increase in PYY, while leptin induces the production of GLP-1 and α-melanocyte-
stimulating hormone (α-MSH) [155]. This peptide (α-MSH) plays a role in the activation
of immunoglobulins, which can be linked to the inflammatory profiles observed in EDs
and depressive disorders [152,156,157]. Interestingly, food restriction as a mild stressor
increased the levels of α-MSH auto-antibodies [158]. Such auto-antibodies are present
in healthy people to avoid immune complex formation by neutralizing neuropeptides.
Additionally, patients with depressive disorders showed decreased levels of acylated ghre-
lin (IgM class) and NPY (IgG class) auto-antibodies [152,159]. Furthermore, decreased
NPY IgG plasma levels seem to have a protective role in depression, higher levels were
associated with a lower body mass index (BMI) and reduced appetite, often observed in
some EDs, such as anorexia [152,160]. Connecting this alteration in NPY to the micro-
biome, clinical features of eating disorders have been associated with some specific gut
bacterial strains, e.g., Escherichia coli K12. Interestingly, this strain has a bacterial protein (ca-
seinolytic protease B—ClpB) that triggers the production of auto-antibodies cross-reacting
with appetite-regulating hormones. Additionally, ClpB is homologous with α-MSH, a
neuropeptide involved in regulating mood and emotion [158,161,162].

Among several compounds present in food and produced by the microbiota, trace
amines are of particular importance in depression [163,164]. This group of endogenous
monoamines, in particular, b-phenylethylamine (PEA), p-tyramine (TYR), tryptamine
(TRP), and p-octopamine (OCT), bind to the TAAR1 receptor. Additionally, TAAR1 acts
as a rheostat of dopaminergic, glutamatergic, and serotonergic neurotransmission and
regulates hormonal and inflammatory responses. Clinical data shows deficits in PEA are
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associated with depression, whereas MAO inhibitors are known to elevate trace amine
levels. Furthermore, the underlying antidepressant effects of exercise have been shown to
increase the levels of PEA [165,166].

Fermentation by intestinal bacteria can also produce SCFAs from dietary carbohydrates
and amino acids (such as glutamate, asparagine, and others) [167,168]. SCFAs are thought
to play a critical role in microbial–endocrine communication and influence behaviour.
Such actions are believed to be due to their neuroactive properties and involvement in
neurodevelopmental processes, CNS immune system homeostasis, microglial maturation
and blood–brain barrier integrity [82,168]. According to Sittipo and co-workers [168], the
main bacteria synthesizing SCFAs are Faecalibacterium, Clostridium, Eubacterium, Roseburia,
Anaerostipes, Bifidobacterium and Akkermasia. In addition, SCFAs stimulate the release of
leptin from adipocytes, a hormone associated with the anhedonic behaviour observed
in obese mice [82] and regulates GLP production [168]. Depletion of the gut microbiota
by antibiotic treatment (ABT) attenuated the caloric intake in HFD (high-fat diet)obese
rats and reduced the intestinal faecal amounts of fatty acids and metabolites (including
SCFAs and tryptophan), glucose and other aromatic amino acids [82,169]. Additionally,
ABT prevented HFD-inducing anhedonic behaviours and increased plasmatic levels of
leptin. There is a correlation between leptin levels and anhedonic behaviour in obese rats,
so the gut microbiome is essential in triggering such behaviours under a HFD [82].

Based on the presented studies, a diet rich in fermented foods and fibre can support a
healthy microbiota which in turn can have a protective effect against the development of
mental and eating disorders and is fundamental in the homeostasis of gut hormones.

4.2. Gut Microbiome, Depression and Pro/Prebiotics

Due to the modulatory effects of the gut microbiome on the brain, several studies
have shown the beneficial effects of pro- and prebiotics on depressive-like behaviours.
Probiotics comprise supplementation with beneficial bacteria or oligosaccharides that pro-
mote the growth of indigenous gut bacteria, such as Lactobacilli and Bifidobacteria. Both are
described to have neurotropic effects [170]. Animal studies also report a modulatory effect
of probiotics on behaviour and HPA activity, and such effects are strain-specific [171]. In
animal studies, Lactobacillus strains effectively prevented depressive-like behaviours and
lowered plasma CORT and ACTH levels [171–173]. Moreover, the literature also reports
the effects of Lactobacillus in increasing plasma IL-10 levels and restoring neurotransmitter
(5-HT, DA, NE) and glucocorticoid receptor (GR) levels [171–173]. Furthermore, Lacto-
bacillus supplementation is reported to increase the mRNA expression of BDNF through
membrane-derived extracellular vesicles (EV) released from gut bacteria [171,172]. Addi-
tionally, such a mechanism seems to be mediated by sirtuin 1 (Sirt1) [174,175]. Another
bacterium considered a candidate for treating depressive states is the Gram-negative bacte-
ria Akkermansia muciniphila. Similar to Lactobacillus, supplementation with this bacterium
had a positive effect on behaviour and a modulatory effect on CORT, catecholamines and
BDNF [176]. Finally, probiotic treatment also may increase gut microbiota richness and
diversity, combined with decreased HPA axis activity and lower levels of inflammatory
cytokines, as reported with Akkermansia, Lactobacillus and Saccharomyces boulardii [177]. In
sum, probiotics seem to positively affect depressive disorder treatment. Still, the mecha-
nisms need to be further elucidated. However, considering their modulatory effect on the
HPA axis, it can be hypothesized that they indirectly affect levels of CCK, GLP and VIP.

Finally, prebiotic supplementation (with oligosaccharides) diminished waking salivary
cortisol reactivity in health participants [89,178], increased the levels of probiotic bacteria
(Bifidobacteria and Lactobacillus), and certain butyrate-producing microbes, such as Faecal-
ibacterium, Ruminococcus and Oscillospira, in animals and humans [179,180]. Furthermore,
individuals showed increased attentional vigilance to positive versus negative stimuli,
which could be interpreted as an early anxiolytic-like profile and a decrease in negative bias
observed in depression [180]. Additionally, prebiotics decreased ghrelin and C-reactive
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protein in obese and overweight adults [181], and these markers are also reported to be
increased in depressive patients.

5. Circadian Rhythms, Gut Microbiome and Hormones

Circadian rhythm disruption is associated with psychiatric disorders, such as MDD
and bipolar disorder. Animal models such as social defeat and alterations in the light/dark
cycle can induce a depressive phenotype in animals, reinforcing rhythmicity’s role in men-
tal health [182–185]. Additionally, a reduced amplitude of the skin temperature rhythm
was found in untreated, self-reported depressed patients [186], and a reduced amplitude of
circadian activity was found in patients wearing an actigraph [187]. Depression severity
is associated with a misalignment between rhythms. For example, the larger the differ-
ence between the midsleep phase and the time of minimum core body temperature, the
more intense depressive symptoms [92]. Moreover, individuals classified as evening-types
self-report an impaired overall quality of life [188] and are more likely to be diagnosed
with major depression [189]. Since circadian rhythms can be observed in most physiolog-
ical variables of the mammalian body, some reciprocal relationships between circadian
rhythms and microbiota could be expected. Additionally, the gut microbiota also expresses
circadian rhythms, both in its species abundance and metabolome, influencing the host’s
circadian pattern of the transcriptome [190] while also being affected by the host’s circadian
rhythms [191].

There are some indirect associations between the microbiota, circadian rhythms and
mental health. For example, (i) lithium has been used to treat bipolar disorders [192],
(ii) lengthening the locomotor circadian period in rats [193], and (iii) promoting changes
in the microbiota [194]. However, a cause–relationship cannot be established from these
separate data. In fact, while the relationship between circadian rhythms and the micro-
biota and the relationship between circadian rhythms and mental health is well studied,
fewer published studies have addressed the relationship between the microbiota, circadian
rhythms and mental health.

According to Ma and co-workers [195], seven days of REM sleep deprivation using
the multiple platforms method led to depressive-like behaviours in the forced swim and
sucrose preference tests and decreased alpha diversity of the microbiota in Wistar rats.
Their data also reported a decreased in the relative abundance of Akkermansia and an
increase in Oscillospira, Parabacteroides, Ruminococcus, Phascolarctobacterium and Aggregati-
bacter. In another study, microbiota-derived SCFAs were found to have a diurnal rhythm in
participants’ guts [196]. However, this rhythmicity was absent in both night workers and
individuals diagnosed with alcohol-use disorders.

Finally, a promising study was reported as a protocol involving bipolar patients and a
2-year follow-up design [197]. The researchers aimed to collect data during three distinct
mood phases: euthymia, depression and mania. The stool was collected to analyse the
microbiota composition, and blood samples were collected for the analysis of melatonin, its
metabolite levels and variants of genes related to the melatonin pathway, such as the MT1
and MT2 receptors and the enzyme aralkylamine N-acetyltransferase.

6. Conclusions

Based on the data presented and summarised in this review, it is possible to conclude
that further studies are needed to elucidate the gut microbiome’s influence on hormonal
balance. However, based on the current literature, it is possible to conclude that dysbiosis
and the presence of high inflammation in depressive patients play a role in hormonal
dysfunction. For instance, increased levels of T-activated cells increases VIP levels, and VIP
balance is necessary to keep circadian rhythmicity [33,84]. Increased cortisol disrupts the
homeostasis of GLP-1 [33,84], which may have antidepressant properties. Increased cortisol
and inflammation also change CCK levels, and high CCK levels are present in depressive
and anxious patients [53,127]. Finally, the shift from the serotonin to the kynurenine
pathway observed in inflammatory states can influence ghrelin levels [45,48,49]. Such
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intricate relationships between the HPA axis, inflammation, the microbiome and gut peptides
could explain, at least in part, the high prevalence of intestinal dysfunction in depressive
patients and could be one pathway by which dysbiosis could lead to mood disorders.
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5-HT Serotonin HFD High-Fat Diet
ABT Antibiotic Treatment HPA axis Hypothalamic–Pituitary–Adrenal Axis
ACTH Adrenocorticotropic Hormone IBS Irritable Bowel Syndrome
AS Asperger’s Syndrome IFN-γ Interferon Gamma
BMI Body Mass Index IL Interleukin
CCK Cholecystokinin MDD Major Depressive Disorder
CNS Central Nervous System NA Noradrenaline
CORT Cortisol (or Corticosterone) NAc Nucleus Accumbens
CRF Corticotropin-Releasing Factor NPY Neuropeptide Y
CRH Corticotropin-Releasing Hormone OCT p-Octopamine
CRP C-Reactive Protein PEA b-Phenylethylamine
DA Dopamine PP Pancreatic Polypeptide
DSM-V Diagnostic and Statistical Manual of Mental Disorders V PPD Postpartum Depression
EDs Eating Disorders PYY Peptide YY
EE cells Enteroendocrine cells REM Rapid Eye Movement
ENS Enteric Nervous System SCFA Short-Chain Fat Acids
EV Extracellular Vesicles SCN Suprachiasmatic Nucleus
FT Faecal Transplant SPF Specific Pathogen-Free
GABA Gamma-Aminobutyric Acid TRP Tryptamine
GF Germ-Free TYR p-Tyramine
GIP Glucose-Dependent Insulinotropic Polypeptide VIP Vasoactive Intestinal Polypeptide
GLP-1/2 Glucagon-Like Peptide 1 and 2 VTA Ventral Tegmental Area
GR Glucocorticoid Receptor
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