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Abstract: The zebrafish model is an emerging model for the study of the complex behavioural
patterns noted in depression and neurological disorders. Confinement and memory loss are linked
with cognition and mental health impairment, where confinement paradigms are assessed using
other behavioural responses based on novel tanks or T tanks. Since zebrafish are exploratory animals,
the impact during confinement cannot be evaluated using a novel tank or T tank. The present
study investigates the response of the zebrafish to acute confinement and assesses its memory-based
learning behaviour through parameters such as movement, swimming speed, and time spent inside
the confined space. The movement and swimming speed of the fishes in confinement showed no
significant difference. When confined inside a space, the fish showed their anxiety with erratic
movements or bouts of freezing, which declined by 83%, during the six days of confinement and the
escape time from the confinement space also decreased by 58%. The impact of anxiety, resulting in
clockwise and counter-clockwise movement, also reduced after three days. Our results summarise
that the decrease in anxiety can help the fish in habituating itself to a forced condition. This experiment
on zebrafish behavioural biology is used to assess the cognitive behaviour against confinement, and
it emphasizes the learning of behavioural adaptions under both crowded and solitary conditions.
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1. Introduction

Zebrafish are considered one of the best model organisms to study developmental
biology, toxicology, pharmacology, and behavioural research [1]. It is recognised by several
researchers [2] as one of the best models for cognitive research regarding memory [3],
aggressive–submissive behaviour [4], food searching behaviour, shoaling behaviour, etc.
Many approaches have been employed to study learning and memory, with respect to
anxiety and other cognitive impairments, in zebrafish. Behaviour responses are considered
as the reflection of neural activity and its modulation by external stimuli [5]. Memory,
learning, and social behaviours are found to be major hallmarks of various neurodegenera-
tive, psychological, and cognitive disorders [6]. Several paradigms have been developed
to quantify and understand zebrafish behaviour and cognition [7–11]. It is also reported
that the complexity of behaviours in zebrafish is very high, and hence, significant research
must be conducted to completely understand these behaviours [12]. Cognitive behavioural
studies in zebrafish can be correlated to human neurological disorders and can help in the
understanding of the various aspects of the disease symptoms [13–15].

The memory and anxiety-based behavioural assays were performed on zebrafish to
determine the effects of the toxicity of specific drugs/compounds on their memory and
learning [16–18]. When zebrafish are introduced into a potentially dangerous environ-
ment or stimuli, complex behaviours will be provoked. These can be observed as erratic
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movements, freezing bouts, opercular movement, coded colour change, geotaxis, thigmo-
taxis, and scototaxis [19]. A tolerable level of isolation from, or deprivation of, society
would produce mental abnormalities, such as hallucinations, anxiety states, depression,
and paranoid symptoms in humans. The correlation of anxiety with learning is important
for understanding cognitive impairment, since it has been reported that confinement is
also a key feature contributing to memory loss during the early stages of Alzheimer’s
disease [20–22]. The escaping behaviour of zebrafish from a moving trawl net is observed,
and the group of fishes learned to escape from the net in a faster way through social
learning [23]. The disruption of several neurological compounds and neurotransmitters,
which is the underlying cause of neurological disorders, arises due to stress caused by
social isolation [24–26]. Moreover, a slowing in EEG frequency was observed during soli-
tary confinement due to social deprivation [27]. Anxiety-induced or stressed zebrafish
subjected to confinement showed stress-induced hyperthermia as an emotional fever [18].
The spatiotemporal exploratory activity of the shortfin zebrafish in the open tank after the
short period of confinement is significantly different from that exhibited by the control
group [28]. Nociceptive behaviour in zebrafish was observed to be anxiety-eliciting in the
confinement space [29].

Anxiety is the most notably observed behaviour of zebrafish when they are introduced
into a new environment. Increasing evidence suggests that the anxiety-like behaviour of
zebrafish is evolutionarily conserved and comparable with mammalian models [30,31]. Addi-
tionally, this anxiety behaviour regulates aversive learning and emotionality [20,32]. Anxiety
and stress can be caused by various factors, including handling, capture, net chasing, physical
disturbances, novel environment, exposure to a predator, addiction withdrawal, fish crowding,
confinement, social stressors, environmental stressors, and infections.

In this study, we have used a simple assay to assess and understand the memory
repertoire of zebrafish to space confinement and its related anxiety. Memory and anxiety-
based behavioural assays shall be performed in zebrafish to determine the effects of toxicity
of specific drugs/compounds on their memory and learning. The correlation of anxiety
with learning is important for understanding cognitive impairment, since it has been
reported that confinement is also a key feature that contributes to memory loss during
the early stages of Alzheimer’s disease [33]. In this study, we have used a simple assay to
assess and understand the behavioural repertoire of zebrafish to space confinement and its
relation with anxiety and memory.

2. Methodology
2.1. Animal Husbandry

Adult wild AB-type zebrafish (about 1.5 years old) bought from a local aquarium
were kept in quarantine for 2 weeks and maintained in a re-circulating stand-alone system
(Aquaneering, San Diego, CA, USA) at 28 ◦C with 10:14 h dark:light cycle. The pH and
conductivity were maintained at 7.1 to 7.8 and 1000–1400 µS/cm, respectively. All the fishes
were fed thrice a day with commercial fish feed and with Artemia nauplii [34]. The handling
and experimentation on animals were carried out under the protocol of the Institutional
Bioethical Committee (ID IBSC/2013/DBT-IDB/RRK-009) and complied with the ARRIVE
guidelines, carried out following the U.K. Animals (Scientific Procedures) Act, 1986, and its
associated guidelines.

2.2. Experimental Setup

A standard cuboid shape (25 cm length × 17 cm width × 12 cm height) with a 100 mm
dia Petri dish at the centre was used for this experiment (3.5 L filled with water). The Petri
dish was provisioned with an over-lid, which can be manually opened and closed without
disturbing the water in the tank. A 100 mm dia Petri dish was used to evaluate the effect of
a confined space on anxiety and memory. Initially, the adult zebrafish (n = 6) were kept in
the closed Petri dish for 15 min for acclimatisation, after which the Petri dish was opened
manually and the movement of the zebrafish was video recorded (top view) until the fish
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escaped from the confined space (Petri dish). The opening of the lid was considered as the
stimuli for the zebrafish to move out of the confined space (Figure 1A). The memory to how
to escape from the confinement zone was observed through the swimming and turning
behaviour. Changes from stress and anxiety behaviour to slow swimming behaviour on
consecutive days is observed as learned escaping behaviour until the application of the
stimuli (lid open) (Table 1). All apparatuses rested on a level stable surface.
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Figure 1. (A) Illustration of the experimental design showing acclimatisation of zebrafish in the
confined space for 12–15 min, after which the dish was opened for the observation of the behaviour.
This setup was used to study the habituation of zebrafish in confinement; (B) representation of
the movement of zebrafish in the confined space, including crossing over the huddle during the
experiment. (C) The movement pattern tracked using the tracker software.

2.3. Behaviour Analysis

Using adult zebrafish, the experiment was repeatedly performed, and measurements
were recorded for 6 days. The quantification of the behaviour of zebrafish was assessed
based on parameters such as total distance travelled, total time spent, and the swimming
speed of the fish [35]. The clockwise and counter-clockwise movement also indicated
the zebrafish escape behaviours [36]. All behavioural recordings were analysed, and a
graph was plotted using Tracker software (video analysis and modelling tool, Version
4.11.0) [37,38] (Figure 1B). The x and y coordinates at each time point—(x1, y1) as time point
A, and (x2, y2) as time point B—were obtained, and the distance travelled was calculated
using Formula (1), followed by the calculation of the swimming speed using Formula (2).

Distance =
√

((x2 − x1)2 + (y2 − y1)2) (1)

Velocity = distance/time (2)

2.4. Statistical Analysis

All other data were calculated as means ± standard deviation (SD) using the tool
Origin 8.0, and the comparison within populations was made using ANOVA (Graph Pad
Prism Version 6.0, San Diego, CA, USA). The correlation–regression curve and a percentage
analysis were performed, wherever applicable. A statistical significance of 0.05 is used in
the study.
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Table 1. Ethogram describing the behaviour category and its definition, as observed in the present study.

Behaviour Category Behaviour Definition Description

Anxiety

Freezing Bout
A complete cessation of movement (except for gills
and eyes) by the fish, resulting from high
stress/anxiety or as part of the submissive behavior.

Erratic movement/Burst swimming Complex behavior characterized by sharp changes in
direction or velocity and repeated rapid darting.

Zig-zagging The direction of movement changes in a seemingly
alternating (zig-zag-like) manner.

Darting A single fast acceleration in one direction.

Escape
Alarm reaction

An adaptive escape reaction which serves as an
anti-predatory response exhibited in the context of
fear-inducing stimulation; typically characterized by
increased speed of movement and rapid directional
changes, a response set that is often referred to as
erratic movement (see also zig-zagging). The alarm
reaction may also include freezing.

Turn A simple change in swimming direction.

Startled

A quick startle response in which the fish body first
curves to form a C-shape, and then the fish propels
itself away at an angle from its previous position
using a fast swim.

Escape The ability of a zebrafish to escape from the
confined space.

3. Results

The video recordings were captured using a Canon SX 50 camera at a rate of
30 frames per second; the swimming behaviour was recorded until the fish came out
of the confinement space (as shown in Figure 1B) and was tracked using the manual track-
ing method in the video analysis and modelling tool Tracker-Version 5.1.5 [39]. Initially, the
fish were kept in the confined environment for acclimatisation for 12–15 min, following
which a stimuli was induced by opening the confinement area for the fish to escape. The
fish showed a startled swim response as soon as the stimuli was induced, and the escape of
fish from the confined space was observed. The zebrafish moves at an optimal speed of
39 cm/s, and the threshold was set to 45 cm/s for erratic movement. The fish’s speed, upon
reaching less than 5 cm/s, was considered as freezing.

3.1. Response Time for Escaping from Confinement

The total time spent inside the confined space showed a change in pattern from day 1
to day 6. The average time for the fish to escape on day 1, day 2, day 3, day 4, day 5 and
day 6 is 12.78 ± 6.38, 11.67 ± 7.33, 9.18 ± 2.18, 8.8 ± 2.37, 5.55 ± 1.95, and 5.12 ± 3.11 s,
respectively. There was no significant difference between each day for the time that was
spent inside the confined space F (5, 29) = 0.426, p = 0.827. A negative correlation was
observed between escape response time and treatment days with an R-value of −0.95286,
p = 0.0005 (Figure 2A).

3.2. Effect of Confined Space on the Movement of Zebrafish

The movement of the zebrafish was assessed for the time it spent inside the confined
space, along with the 6-day trial. The total distance moved each day for day 1 to day 6 is
81.80 ± 37.75, 90.56 ± 24.44, 107.28 ± 45.18, 145.49 ± 42.00, 73.16 ± 15.97, and 66.91 ± 21.84,
respectively (Figure 2B). There was no significant difference during the 6-day trial for distance
travelled inside the experimental area, showing F (5, 29) = 0.7303, p = 0.6065.
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Figure 2. (A) Regression curve showing the negative correlation between trial days (increase) and
time spent inside the confined space (decrease). (B) The movement of the zebrafish is represented
as the mean distance travelled ± SD for 6 days. (C) Image representing mean ± SD for time and
movement of the zebrafish during the confinement period, with erratic movement and freezing bouts.
(D) Regression curve showing the negative correlation between trial days (increase) and time spent in
anxiety (decrease) during confinement. (E) Image representing mean ± SD for time and movement of
the zebrafish during the confinement period, with respect to clockwise and anticlockwise movement.

3.3. Effect of Confined Space on Anxiety

The impact of the freezing bout and erratic movement was considered as a represen-
tation of anxiety. The time duration in which the zebrafish had no movement is used as
one parameter of anxiety. During the freezing bout, the fish seems to be in a non-movable
condition. The total time observed as anxiety inside the confined space for day 1 to day 6 is
6.01 ± 5.85, 3.2 ± 3.1, 1 ± 0.67, 0.08 ± 0.01, 0.52 ± 0.35, and 0.42 ± 0.38333, respectively.
The total distance travelled during the anxiety period from day 1 to day 6 is 30.26 ± 15.76,
21.72 ± 5.39, 38.50 ± 15.67, 55.57 ± 30.17, 32.11 ± 6.84, and 16.96 ± 1.72, respectively
(Figure 2C). The duration spent with erratic movement and freezing bouts was negatively
correlated with the days of trial and showed a decrease in anxiety by an R-value of −0.897,
p = 0.0151 (Figure 2D).

3.4. Effect of Confined Space on Rotational Movement

The counter-clockwise and clockwise movements were taken into consideration to de-
termine the turning movement behaviour inside a confined space. There is no significant
difference between counter-clockwise and clockwise movement concerning the travelled
time, distance, and velocity. The time spent after moving counter-clockwise from day 1
to day 6 is 3.00 ± 0.17, 8.23 ± 6.13, 6.60 ± 0.50, 4.40 ± 1.70, 2.62 ± 0.88, and 2.10 ± 1.30,
respectively; similarly, the time spent after moving clockwise was 9.77 ± 6.57, 3.43 ± 1.20,
2.58 ± 1.68, 4.40 ± 0.67, 2.93 ± 1.07, and 3.02 ± 1.82, respectively. The distance travelled after
moving counter-clockwise from day 1 to day 6 is 39.77 ± 14.00, 47.25 ± 18.60, 59.95 ± 4.59,
76.91 ± 41.91, 36.75 ± 3.27, and 31.48 ± 15.70, respectively. Similarly, the distance travelled
after moving clockwise from day 1 to day 6 is 42.03 ± 8.79, 43.32 ± 17.79, 47.33 ± 32.42,
68.58 ± 16.97, 36.42 ± 7.15, and 35.43 ± 10.65 cm, respectively (Figure 2E).



Appl. Biosci. 2022, 1 320

4. Discussion

There is an urgent need for novel bio behavioural assays using alternative model organ-
isms, especially those species with sufficient physiological complexity, which is similar to
that of humans, and a high throughput screening capacity, such as zebrafish [40,41]. In most
cognitive diseases, confinement condition plays an important role in the progression of mild
cognitive impairment and increases the risk of cognitive decline [33]. Developing a strategic
system is essential to understand the relationship between confined space, anxiety, and cogni-
tion [42]. The behaviour pattern of zebrafish inside a confined space and its relationship with
escape memory has been assessed in the present study, thereby correlating the relationship
between anxiety and memory concerning habituation.

In the present study, the behaviour responses for learning, memory, and space confine-
ment were assessed to understand their relationship using zebrafishes. Novel tank studies
on zebrafish maintained in cylinder-based confinement for a short period exhibited a rapid
increase in exploratory behaviour to rapidly habituate to the environment, showing that
zebrafish can easily habituate to an environment [43]. These results suggest that the effect
of confinement cannot be assessed directly by the novel tank test, but rather the assessment
effect must be studied in the confined environment only. The system was designed to
evaluate both space confinement and memory, in which the fish was allowed to swim in a
Petri dish as part of a confined space, and the study continued for six days to assess the
learning capacity of the zebrafish.

The current study showed that the travelled duration in the experiment area gradually
decreased, showing a total reduction of 58% at the end of 6-day trial. This provides an insight
into the memory of zebrafish during the 6-day trial period, considering the confinement for
15 min as acute stress. The distance gradually decreased each day, and the fish’s memory was
improved by increasing the possibility of escaping from the obstacle sooner.

There was no significant variation or correlation between distance travelled and
swimming speed during the study period. The standard deviation was also taken into
consideration to rule out the possibility of the impact of acclimatisation in the initial period
and the later period of the study. There was a higher deviation of 9.0 s and 4.4 s on day
6, showing an increase in consistency and a decrease in standard deviation. These results
imply that the learning and memory capacity of the fish to escape from the Petri dish
at their earliest increased during the study period, and was not influenced by distance
travelled and velocity.

Anxiety in zebrafish is observed as freezing bouts and erratic movement [44,45].
Freezing is defined as a total absence of movement, except for the gills and eyes, for 2 s
or longer. The freezing bout, as a form of anxiety, was significantly observed in zebrafish
when they were confined to space in a white background [12]. The fish remained in the
freeze state for a longer time on day 1, but gradually, the freezing period was reduced. A
significant decrease in exploration or elevated erratic movements represents the behavioural
profile indicative of high stress and anxiety [46,47]. Acute stress can increase the movement
and aggressiveness of zebrafish [48]. The cause of erratic movement and its influence is
observed between day 1 and day 4, showing the anxiety-like erratic movement effect, with
no influence on days 5 and 6. When comparing the study duration with anxiety (erratic
movement and freeze bout) behaviour, there is a significant negative correlation between
them, with a decrease in anxiety-like conditions by 83%.

Studying the counter-clockwise and clockwise turning frequencies helps to determine
the impact of anxiety on movement [36]. The turning frequency is positively correlated
with the anxiety of the zebrafish, with increased erratic movement due to anxiety. The
increase in turning frequency is directly proportional to the erratic movement. Further
analysis also shows that when the erratic movement is reduced on days 5 and 6, the turning
frequency also decreases, showing anxiety reduction. From these results, days 1–4 can be
considered as the training period for the fish, and days 5–6 are considered as the resultant
behaviour of learning. Therefore, habituation facilitates a reduction in anxiety of the fish
during the 6-day trial.
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5. Conclusions

In conclusion, this study implied that a decrease in stress and anxiety may lead to better
habituation, even under stressed conditions. The confinement of isolated fish increases
their stress level by a higher percentage than do other stressors. The learning and memory
of the fishes in the 6-day trial were observed within 4 days of the training period, and
exhibited habituation behaviour on the next two days, in order to overcome the confined
environment for survival. Training over the 4 days facilitated the reduction in anxiety of
the fish, which is implied by the decrease in freezing bouts and erratic movement during
the duration of the study. The turning frequency also decreased, showing the relationship
between learning, memory, and anxiety. With the present study, we have developed a
simple system for demonstrating the behaviour paradigm for cognitive-related studies.
In addition, this study shows the relationship between a confined space, anxiety, and the
habituation of the fish in a controlled condition. The study can further be developed for
different time segments of acclimation to understand the learning curve under a degree
of stress and anxiety. Changes in stress levels influence memory and learning, and thus,
there are many possibilities for investigating new learning behaviours, social interactions,
predator encountering, etc., in the context of confinement.
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