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Abstract: Cancer cachexia is characterized by irreversible muscle loss which is a critical factor
in the prognosis of cancer patients. Myoblasts are myogenic precursor cells that are required to
maintain skeletal muscle tissue. Previous studies reported that cancer-released factors deteriorate
myoblast differentiation, which is one of the causes of cachexia-associated muscle wasting. We
recently identified the myogenetic oligodeoxynucleotide, iSN04, which serves as an anti-nucleolin
aptamer and promotes myogenesis. The present study investigated the effects of iSN04 on human
myoblasts exposed to a conditioned medium (CM) of cancer cells. CM of colon cancer cell lines LoVo
and HCT-116 significantly impaired myogenic differentiation and the myotube formation of human
myoblasts by inducing the expression of inflammatory cytokines such as interleukin (IL)-1β and
tumor necrosis factor-α (TNF-α); however, the CM of the colon fibroblast cell line CCD-18Co did not.
Intriguingly, iSN04 completely reversed the deterioration of myoblast differentiation by LoVo-CM
by upregulating MyoD and myogenin, and downregulating myostatin, IL-1β, and TNF-α. TNF-α,
of which a high level was produced in LoVo, alone inhibited myogenic differentiation and induced
IL-1β, IL-6, and IL-8 transcriptions of myoblasts; however, pre-treatment with iSN04 reversed TNF-α-
induced cachectic phenotypic features. The results indicate that iSN04 protects myoblasts against the
effects of cancer-released factors and maintains their myogenic activity. This study provides a novel
therapeutic strategy to prevent muscle loss associated with cancer cachexia.

Keywords: aptamer; cachexia; inflammatory response; myoblast; myogenetic oligodeoxynucleotide;
myogenic differentiation

1. Introduction

Cancer cachexia is a wasting syndrome characterized by an irreversible loss of adipose
tissue and skeletal muscle mass along with anorexia, asthenia, and anemia [1]. Approxi-
mately 30–80% of cancer patients present with weight loss associated with chronic inflam-
mation, and cachexia accounts for around 20% of cancer deaths [2]. As skeletal muscle is the
primary organ for thermogenesis [3], energy storage [4], and insulin-responsive glucose up-
take [5], a decrease in muscle mass disturbs systemic homeostasis and eventually increases
the mortality risk of cancer patients. For instance, muscle wasting is a survival predictor
for patients with metastatic colorectal cancer underlying chemotherapy [6]. Therefore, the
prevention of muscle loss is a major challenge in cancer therapy. However, no specific
treatments or interventions have been made available for cachectic muscle wasting with
chronic inflammation [7].
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Myoblasts are the principal myogenic precursors involved in muscle formation. My-
oblasts initially differentiate into myocytes, a process that is driven by myogenic transcrip-
tion factors such as MyoD and myogenin [8]. Then, the myocytes fuse to form multinuclear
myotubes by muscle-specific membrane proteins, myomaker and myomixer [9,10]. The
factors released by the cancer cells have been reported to impair the myogenic program.
The conditioned medium (CM) of colon cancer cells, including myostatin, promotes protein
degradation in the C2C12 murine myoblast cell line [11]. Prostate cancer-CM inhibits the
myogenic differentiation of murine myoblasts by upregulating CCAAT/enhancer-binding
protein β and interleukin (IL)-1β [12]. Hsp70 and Hsp90, associated with extracellular
vesicles from lung and colon carcinoma cells, deteriorate murine myotube formation by dis-
rupting catabolism [13]. Exosome microRNAs, miR-125b and miR-195a, in colon cancer-CM
induce atrophy and apoptosis in murine myoblasts [14]. These cancerous factors have been
confirmed to recapitulate muscle wasting in vivo [12–14]. Thus, the exposure of myoblasts
to the factors secreted by cancer cells is considered one of the causes of muscle loss, and the
myogenic ability of the myoblasts needs to be recovered to prevent cancer cachexia.

We recently reported that single-strand short DNAs named myogenetic oligodeoxynu-
cleotides (myoDNs) promote the differentiation of myoblasts and rhabdomyosarcoma [15–18].
One of the myoDNs, iSN04, serves as an anti-nucleolin aptamer to increase p53 transla-
tion [15] and recovers myoblast differentiation attenuated by diabetes mellitus [16], demon-
strating that iSN04 is a potential nucleic acid drug for disease-associated muscle wasting.
The present study investigated whether iSN04 affects myogenesis and inflammation in
human myoblasts cultured in colon cancer-CM mimicking cancer cachexia.

2. Results
2.1. iSN04 Recovers Differentiation of Human Myoblasts Aggravated by LoVo-CM

Cancer-CM has been reported to deteriorate myogenesis in murine myoblasts [12–14].
We first investigated the impact of colon cancer-CM on human myoblasts. Colon cancer cell
lines LoVo and HCT-116 (HCT) were used to harvest cancer-CM. The colon fibroblast cell
line CCD-18Co (CCD) was used for control-CM. Non-supplemented Dulbecco’s modified
Eagle medium (DMEM) served as the negative control. Human myoblasts were subjected
to a differentiation medium with 50% CM for 48 h and immunostained for the myosin
heavy chain (MHC) (Figure 1A). Both LoVo-CM and HCT-CM significantly decreased the
ratio of MHC+ cells and multinuclear myotubes compared to that of non-supplemented
DMEM and CCD-CM (Figure 1B). This demonstrated that the colon cancer-released factors
aggravate the myogenesis of human myoblasts. In the following experiments, LoVo show-
ing undifferentiated signatures such as primary tumors [19] was used as a representative
colon cancer cell line.

Next, we investigated whether iSN04 recovers the myogenic differentiation deterio-
rated by LoVo-CM. Human myoblasts were subjected to a differentiation medium with
30% CM and 30 µM iSN04 for 48 h (Figure 2A). Consistent with the previous results, in the
absence of iSN04, LoVo-CM significantly inhibited differentiation into MHC+ myocytes
and myotubes compared to that of non-supplemented DMEM and CCD-CM. Interest-
ingly, iSN04 markedly promoted myogenesis even in the presence of LoVo-CM (Figure 2B).
iSN04 completely restored the differentiation of the myoblasts exposed to LoVo-CM to the
same extent as non-supplemented DMEM and CCD-CM. These results indicate that iSN04
facilitates myoblast differentiation even in the presence of cancer-released factors.

2.2. iSN04 Reverses Gene Expression in the Human Myoblasts Exposed to LoVo-CM

To investigate the mechanism by which LoVo-CM deteriorates and iSN04 recovers
myogenesis, the gene expression patterns in the myoblasts treated with LoVo-CM and
iSN04 were quantified using quantitative real-time RT-PCR (qPCR) (Figure 3). The mRNA
levels of myogenic transcription factors, MyoD (MYOD1) and myogenin (MYOG), were
significantly upregulated by iSN04 in LoVo-CM-treated myoblasts. Similarly, myomixer
(MYMX) expression tended to increase under the same condition. iSN04-induced muscle
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gene expression is considered to cause the recovery of myogenesis in myoblasts cultured
with LoVo-CM. However, it is still unclear how LoVo-CM impairs myoblast differentiation
because LoVo-CM did not alter myogenic gene expression. qPCR revealed that LoVo-CM
significantly elevated the mRNA levels of myostatin (MSTN), IL-1β (IL1B), and tumor
necrosis factor-α (TNF-α) (TNF) in myoblasts, which are the cytokines inhibiting myogene-
sis [20–22]. iSN04 completely reversed LoVo-CM-induced transcription of the cytokines.
These data demonstrate that iSN04 recovers myoblast differentiation by inducing myogenic
genes and suppressing anti-myogenic cytokines.
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munofluorescent images of the human myoblasts differentiated in differentiation medium with
50% CM for 48 h. Scale bar, 200 µm. (B) Quantification of the ratio of MHC+ cells and multinuclear
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2.3. iSN04 Reverses Inflammation and Differentiation of TNF-α-Treated Human Myoblasts

Cancer-CM contains a variety of cancer-released factors, which include multiple in-
flammatory cytokines [23]. qPCR indicated that LoVo expressed an inflammatory transcrip-
tion factor, nuclear factor-κB (NF-κB) p50 subunit (NFKB1), and its downstream cytokines,
IL-1β, IL-8 (CXCL8), and TNF-α, at significantly high levels compared to CCD (Figure 4A).
These cytokines present in LoVo-CM were speculated to initiate inflammatory responses
and attenuate the differentiation of myoblasts. TNF-α is a typical cytokine contained in
cancer-CM [23] and was reported to induce inflammation and impair the myogenesis of my-
oblasts [20,24]. To investigate the effect of iSN04 on TNF-α-induced inflammation, human
myoblasts were pre-treated with iSN04 for 3 h and then treated with 10 ng/mL TNF-α. The
mRNA levels of IL-1β, IL-6, and IL-8 in the myoblasts were markedly increased by TNF-α,
but significantly suppressed by pre-treatment with iSN04 (Figure 4B). Correspondingly,
pre-treatment with iSN04 completely reversed the attenuation of myoblast differentiation
by TNF-α (Figure 4C). These results demonstrate that iSN04 reverses the inflammation and
differentiation of myoblasts deteriorated by TNF-α.
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treated with 10 ng/mL TNF-α for 1 h. ** p < 0.01 vs. control; † p < 0.05, †† p< 0.01 vs. TNF-α
(n = 3. (B) qPCR results of gene expression in human myoblasts pre-treated with 30 µM iSN04 for 3 h
Tukey–Kramer post hoc test with one-way ANOVA). n = 3. (C) Representative immunofluorescent
images of human myoblasts pre-treated with 30 µM iSN04 for 3 h and then treated with 10 ng/mL
TNF-α in differentiation medium for 48 h. Scale bar, 200 µm. The ratio of MHC+ cells was quantified.
* p < 0.05 vs. control; †† p < 0.01 vs. TNF-α (Tukey–Kramer post hoc test with one-way ANOVA).
n = 5. Abbreviations in the figure are: CCD, CCD-18Co; CXCL8, interleukin-8; IL1B, interleukin-1β;
IL6, interleukin-6; MHC, myosin heavy chain; NFKB1, nuclear factor-κB p50 subunit; TNF-α and
TNF, tumor necrosis factor-α.

3. Discussion

The present study indicated that iSN04 rescued myogenic differentiation and reversed
inflammatory responses in human myoblasts exposed to colon cancer-CM. Cancer-released
factors, including cytokines and miRNAs, have been reported to impair myogenesis, one of
the mechanisms of cachexia-associated muscle loss [12–14]. In this study, the colon cancer
cell line LoVo showed a high-level expression of IL-1β, IL-8, and TNF-α. As previously
reported, TNF-α disturbed myoblast differentiation and evoked inflammatory responses;
however, iSN04 treatment successfully reversed TNF-α-induced cachectic phenotypic
features in myoblasts. The protective effect of iSN04 against cancer secretions is expected
to prevent deteriorated differentiation and inflammation in myoblasts of cancer patients.
The myogenic and anti-inflammatory effects of iSN04 were also reported in diabetic human
myoblasts [16]. These studies support that iSN04 may be a potential nucleic acid drug
that can be used to prevent disease-associated muscle wasting along with systemic chronic
inflammation such as cancer cachexia. Although this study examined the effect of iSN04
on myoblasts during myogenic differentiation, it needs to be confirmed on differentiated
myotubes and matured myofibers. As myofibers represent the majority of muscle tissue and
significantly contribute to systemic inflammation [25], the pharmacological actions of iSN04
on myotubes and myofibers should be examined in further studies for clinical application.

It is well known that inflammatory cytokines, particularly TNF-α, activate NF-κB,
which not only enhances inflamed gene expression but also impairs the myogenic differenti-
ation of myoblasts [20,24]. Myostatin is downstream of NF-κB [26] and a critical inhibitor of
myogenesis [21]. As iSN04 reverses cancer-CM-induced upregulation of NF-κB-dependent
genes (myostatin, IL-1β, and TNF-α), iSN04 is predicted to interfere with the NF-κB sig-
naling pathway. iSN04 serves as an anti-nucleolin aptamer [15], and nucleolin mediates
the NF-κB-dependent expression of IL-1β and TNF-α in monocytes [27]. AS1411, another
anti-nucleolin aptamer that promotes myogenesis as well as iSN04 [15], forms a complex
with nucleolin and NF-κB essential modulator (NEMO) to block the NF-κB signaling, and
eventually suppresses TNF-α-induced inflammation in cancer cells [28]. Although the
anti-inflammatory mechanism of iSN04 is speculated to be identical to that of AS1411, this
needs to be further investigated using myoblasts.

In myoblasts, NF-κB downregulates the myogenic transcription factors MyoD and
myogenin [20,24,29]. The present study indicated that iSN04 significantly induces MyoD
and myogenin in myoblasts cultured with cancer-CM. In our previous study, we demon-
strated that iSN04 upregulates MyoD and myogenin expression by improving the p53
protein level in myoblasts [15]. Nucleolin binds to the 5′ untranslated region of p53 mRNA
and interferes with its translation [30,31]; however, antagonizing nucleolin by iSN04 recov-
ers p53 translation [15]. Numerous studies reported that p53 promotes myogenesis [32,33];
consequently, iSN04 accelerates myoblast differentiation by activating the p53 signaling
pathway [15]. Intriguingly, NF-κB and p53 antagonize each other’s activity by competing
with p300 [34]. This might explain why iSN04 upregulated myogenic gene expression even
in the presence of cancer-CM.

The present study revealed the dual role of iSN04, specifically its myogenic activity and
anti-inflammatory effect, that restores the myoblasts exposed to cancer-CM. iSN04 is there-
fore anticipated to maintain myoblast activity in cancer patients by promoting myogenesis
and suppressing inflammation, and eventually preventing cachectic muscle loss. Clini-
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cally, cachexia is complex muscle atrophy that includes dysregulated protein metabolism,
apoptosis, and the impaired regeneration of muscle cells [1]. These pathological changes
accompany those of the various types of cells that make up the microenvironment in muscle
tissue. For example, immune cells producing numerous cytokines for inflammation and
muscle repair, fibroblast that remodel the extracellular matrix and fibrosis, and endothelial
cells associated with vascularization during muscle regeneration [35]. They are closely and
intricately related to each other in the progression of cachectic muscle wasting. Thus, the
beneficial effects of iSN04 on cancer cachexia need to be examined in vivo using animal
models to establish a concrete therapeutic strategy.

4. Materials and Methods
4.1. Chemicals

Phosphorothioated iSN04 (5′-AGA TTA GGG TGA GGG TGA-3′) was synthesized
and purified using HPLC (GeneDesign, Osaka, Japan) and dissolved in endotoxin-free
water [15–18,36]. Recombinant mouse TNF-α (Fujifilm Wako Chemicals, Osaka, Japan) was
rehydrated in phosphate-buffered saline. Equal volumes of the solvent were used as the
negative control.

4.2. CM Preparation

The human colon fibroblast cell line CCD-18Co (CRL-1459; ATCC, Manassas, VA,
USA) was used as a non-cancer cell line. The human colon adenocarcinoma cell line LoVo
(IFO50067; JCRB Cell Bank, Osaka, Japan) and the human colon carcinoma cell line HCT-116
(EC91091005-F0; ECACC, Salisbury, UK) were used as colon cancer cells. The cells were
cultured in DMEM (Nacalai, Osaka, Japan) supplemented with 10% fetal bovine serum
(GE Healthcare, Salt Lake City, UT, USA) and a mixture of 100 units/mL penicillin and
100 µg/mL of streptomycin (P/S) (Nacalai) at 37 ◦C under 5% CO2. The culture medium
was replaced with non-supplemented DMEM when the cells became confluent. After 48 h,
the DMEM was harvested as CM, filtered through 0.22-µm filters, and stored at −80 ◦C.
The remaining cells after CM preparation were subjected to qPCR.

4.3. Human Myoblast Culture

The commercially available human myoblast stock isolated from a healthy subject (CC-
2580; Lonza, Walkersville, MD, USA) was used [15–17,37]. The myoblasts were cultured on
dishes coated with collagen type I-C (Cellmatrix; Nitta Gelatin, Osaka, Japan) at 37 ◦C under
5% CO2. Undifferentiated myoblasts were maintained in Skeletal Muscle Growth Media-2
(CC-3245; Lonza). Subcultured myoblasts grown to 70% confluency were dissociated using
0.25% trypsin with 1 mM EDTA; then, 7.5× 104 myoblasts were seeded on 30 mm dishes for
immunocytochemistry and 1.5× 105 myoblasts were seeded on 60 mm dishes for qPCR. The
next day, confluent myoblasts were used to induce myogenic differentiation by replacing the
medium with a differentiation medium consisting of DMEM supplemented with 2% horse
serum (GE Healthcare) and P/S. Myoblasts in the differentiation medium were immediately
treated as follows. For CM experiments, the myoblasts were simultaneously treated with
30 µM iSN04 and 30–50% of CM for 24 h (qPCR) or 48 h (immunocytochemistry). Non-
supplemented DMEM filtered through 0.22-µm filters was used as a negative control for CM.
For TNF-α experiments, the myoblasts were pre-treated with 30 µM iSN04 for 3 h and then
subsequently treated with 10 ng/mL TNF-α for 1 h (qPCR) or 48 h (immunocytochemistry)
without medium replacement.

4.4. Immunocytochemistry

The myoblasts were fixed with 2% paraformaldehyde, permeabilized with 0.2% Tri-
ton X-100 (Nacalai), and immunostained with 0.5 µg/mL mouse monoclonal anti-MHC
antibody (MF20; R&D Systems, Minneapolis, MN, USA) overnight at 4 ◦C and then with
0.1 µg/mL of Alexa Fluor 488-conjugated donkey polyclonal anti-mouse IgG antibody
(Jackson ImmunoResearch, West Grove, PA, USA) for 1 h at room temperature. Cell nuclei



Muscles 2022, 1 118

were stained with DAPI (Nacalai). Fluorescent images were captured using an EVOS FL
Auto microscope (AMAFD1000; Thermo Fisher Scientific, Waltham, MA, USA). The ratio
of MHC+ cells was defined as the number of nuclei in all MHC+ cells divided by the total
number of nuclei, and the fusion index was defined as the number of nuclei in multinuclear
MHC+ myotubes divided by the total number of nuclei, which was calculated using the
ImageJ software version 1.52a (National Institutes of Health, Bethesda, MD, USA).

4.5. qPCR

Total RNA was isolated using NucleoSpin RNA Plus (Macherey-Nagel, Düren, Ger-
many) and reverse transcribed using the Revera Trace qPCR RT Master Mix (TOYOBO,
Osaka, Japan). qPCR was performed using GoTaq qPCR Master Mix (Promega, Madi-
son, WI, USA) with the StepOne Real-Time PCR System (Thermo Fisher Scientific). The
amount of each transcript was calculated using the 2−∆∆Ct method and normalized to
that of the 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta gene
(YWHAZ) [15]. The results are presented as fold-changes. Primer sequences (5′-3′) were
as follows: myomaker (MYMK), CCC TGA TGC TAC GCT TCT TC and TCC AGC CTT
CTT GTT GAC CT; myomixer (MYMX), ATC CAG CCA GAG ACT GAT TC and AGG
ACA GCA GCA ATC GAA G. Primer sequences of IL-1β (IL1B), IL-6 (IL6), IL-8 (CXCL8),
MyoD (MYOD1), myogenin (MYOG), myostatin (MSTN), NF-κB p50 subunit (NFKB1), and
TNF-α (TNF) were described previously [15,16].

4.6. Statistical Analysis

The results are presented as the mean ± standard error. Normality of the data was
tested by performing a chi-squared test for goodness of fit. Statistical comparison between
two groups was performed using unpaired two-tailed Student’s t-test and among multiple
groups using the Tukey–Kramer post hoc test following a one-way analysis of variance
(ANOVA). Statistical significance was set at p < 0.05.

5. Conclusions

This study revealed that an anti-nucleolin aptamer, iSN04, restores the differentiation
and inflammation of myoblasts exposed to a cancer-conditioned medium. iSN04 reversed
the TNF-α-dependent expression of inflammatory cytokines in myoblasts, resulting in a
protective effect for myogenesis. It demonstrated that iSN04 could be beneficial for muscle
wasting along with chronic inflammation such as cancer cachexia. Further studies of the
anti-inflammatory effect of iSN04 could provide a novel therapeutic strategy for cachexia
using nucleic acid drugs.

6. Patents

Shinshu University was accredited with the invention of myoDNs by T.T., Koji
Umezawa, and T.S. Japan Patent Application 2018-568609 was filed on 15 February 2018.
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