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Abstract: The extension of the (ordinary) institution theory of Goguen and Burstall, known as
the theory of stratified institutions, is a general axiomatic approach to model theories where the
satisfaction is parameterized by states of models. Stratified institutions cover a uniformly wide
range of applications from various Kripke semantics to various automata theories and even model
theories with partial signature morphisms. In this paper, we introduce two natural concepts of logical
interpolation at the abstract level of stratified institutions and we provide some sufficient technical
conditions in order to establish a causality relationship between them. In essence, these conditions
amount to the existence of nominals structures, which are considered fully and abstractly.
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1. Introduction
1.1. Stratified Institutions

Institution theory is a general axiomatic approach to model theory that was originally
introduced in computing science by Goguen and Burstall [1]. In institution theory, all three
components of logical systems—namely the syntax, the semantics, and the satisfaction
relation between them—are treated fully abstractly by relying heavily on category theory.
This approach has significantly impacted both theoretical computing science [2] and model
theory as such [3] (both mentioned monographs rather reflect the stage of development of
institution theory and its applications at the moment they were published or even before
that. In the meantime a lot of additional important developments have already taken
place. At this moment, the literature around institution theory that has been developed
over the course of four decades or so is rather vast.). In computing science, the concept of
institution has emerged as the most fundamental mathematical structure of logic-based
formal specifications, and a great deal of theory is being developed at the general level of
abstract institutions. In model theory, the institution theoretic approach meant an axiomatic-
driven redesign of core parts of model theory at a new level of generality—namely, that of
abstract institutions—independently of any concrete logical system. Moreover, there is a
strong interdependency between the two lines of development.

The institution theoretic approach to model theory has also been refined in order to
directly address some important non-classical model theoretic aspects. One such direction is
motivated by models with states, which appear in myriad forms in computing science and
logic. The institution theory answer to this is given by the theory of stratified institutions
introduced in [4,5] and further developed or invoked in works such as [6–10], etc. The
concept of stratified institutions covers at least the following classes of examples:

• a wide variety of Kripke semantics like in [5,6,8,9];
• various automata theories;
• various model theories with partiality for signature morphisms [10], providing mathe-

matical foundations to conceptual blending (see [11]).
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1.2. Institution Theoretic Interpolation

Interpolation is a notoriously important logical property which is easy to under-
stand but difficult to establish. It also has a number of important applications in com-
puting science, especially in formal specification theory [12–17], but also in data bases
(ontologies) [18], automated reasoning [19,20], type checking [21], model checking [22],
structured theorem proving [23,24], etc. Computing science and model theoretical mo-
tivations have led to a very general approach to interpolation [25] within the theory of
institutions proposed by Goguen and Burstall [1,3] that is completely independent of any
concrete logical system. This direction of study and research has produced a substantial
body of results reported in works such as [13,17,25–33].

The goal of the work reported in this paper is to take a first step towards the extension
of institution theory interpolation to stratified institutions by considering the conceptual
specificities of the latter.

1.3. Our Contributions

Interpolation is a property of a consequence relation. Stratified institutions admit two
consequence relations, corresponding to “local” and “global” satisfaction, respectively. On
this basis, we define two corresponding concepts of interpolation at the level of abstract
stratified institution. Our second contribution is a study of the causal relationship between
the two concepts of interpolation. Our main result is a proof that, under some technical con-
ditions formulated at the general level, “local” interpolation causes “global” interpolation.
This set of sufficient conditions essentially refers to the presence of a nominal structure (in
the sense of the hybrid version of modal logic of [34–36], but in our work is considered
axiomatically and abstractly and without any reference to Kripke semantics of any sort).

2. Preliminaries

This section is meant to introduce the reader to the mathematical background of our
work in a way that makes the paper as self-contained as possible while still striking a right
balance between the survey aspect and the developments of new concepts and results. As
such, it can be treated as a basic introduction to the theory of stratified institutions. For this,
we gradually recall from the literature basic concepts and terminology about

• category theory;
• institution theory; and
• stratified institution theory.

The latter part is much more substantial than the former two parts as it contains
presentations of examples and of some more advanced concepts.

2.1. Categories

The mathematical structures in institution theory are category-theoretic. The following
elementary category theory concepts are used in our work: opposite (dual) of a category C
(denoted C�), functor, natural transformation, lax natural transformation, and pushout.
Familiarity with these concepts is a requirement for being able to follow this work.

We usually follow the terminology and notations of [37] with some few notable excep-
tions. One of them is the way we write compositions. Thus, we will use the diagrammatic
notation for compositions of arrows in categories, i.e., if f : A → B and g : B → C are
arrows then f ; g denotes their composition. For an arrow f : A → B we may denote its
domain A by 2 f and its codomain B by f2. Let Set denote the category of sets, CAT
denote the “quasi-category” of categories, and |CAT| the collection of all categories. In
general, for any category C, by |C| we denote its class of objects. We use⇒ rather than .−→
for natural transformations.
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2.2. Institutions

The original standard reference for institution theory is [1]. An institution

I = (SignI , SenI , ModI , |=I )

consists of

• a category SignI whose objects are called signatures,
• a sentence functor SenI : SignI → Set defining for each signature a set whose

elements are called sentences over that signature and defining for each signature
morphism a sentence translation function,

• a model functor ModI : (SignI )� → CAT defining for each signature Σ the cate-
gory ModI (Σ) of Σ-models and Σ-model homomorphisms, and for each signature
morphism ϕ the reduct= functor ModI (ϕ),

• for every signature Σ, a binary Σ-satisfaction relation |=IΣ ⊆ |ModI (Σ)| × SenI (Σ),

such that for each signature morphism ϕ, the satisfaction condition

M′ |=IΣ′ SenI (ϕ)ρ if and only if ModI (ϕ)M′ |=IΣ ρ (1)

holds for each M′ ∈ |ModI (ϕ2)| and ρ ∈ SenI (2ϕ). This can be expressed as the
satisfaction relation |= being a natural transformation:

2ϕ

ϕ

��

SenI (2ϕ)
|=I2ϕ //

SenI (ϕ)
��

[|ModI (2ϕ)| → 2]

[|ModI (ϕ)|→2](=ModI (ϕ)−1)
��

ϕ2 SenI (ϕ2)
|=Iϕ2

// [|ModI (ϕ2)| → 2]

([|Mod(Σ)| → 2] represents the “set” of the“subsets” of |Mod(Σ)|).
We may omit the superscripts or subscripts from the notations of the components of

institutions when there is no risk of ambiguity. For instance, if the considered institution
and signature are clear, we may denote |=IΣ just by |=. For M = Mod(ϕ)M′, we say that M
is the ϕ-reduct of M′ and that M′ is a ϕ-expansion of M. Another notational simplification
consists, in the case of the sentence translations, of writing ϕ(ρ) instead of Sen(ϕ)ρ.

The literature (e.g., [1–3], etc.) shows a myriad of logical systems from computing or
from mathematical logic captured as institutions. In fact, an informal thesis underlying
institution theory is that any “logic” may be captured by the above definition. While this
should be taken with a grain of salt, it certainly applies to any logical system based on
satisfaction between sentences and models of any kind.

For any signature Σ in an institution if E ⊆ Sen(Σ) and M ∈ |Mod(Σ)| then M |= E
means that M |= e for each e ∈ E. Then the relation |=Σ between any sets of Σ-sentences,
called the semantic consequence relation of the respective institution, is defined by

E |=Σ E′ if and only if for any Σ-model M, M |=Σ E implies M |=Σ E′.

The following are important well-known properties of the semantic consequence that
have a very general nature. Let ϕ : Σ→ Σ′ be a signature morphism and let Γ, Γ′, Γ′′ any
sets of Σ-sentences, and (Γi)i∈ω a family of sets of Σ-sentences. Then

if Γ |=Σ Γi for each i ∈ I then Γ |=Σ
⋃

i∈I Γi union
if Γ′ ⊇ Γ then Γ′ |=Σ Γ monotonicity
if Γ |=Σ Γ′ and Γ′ |=Σ Γ′′ then Γ |=Σ Γ′′ transitivity
if Γ |=Σ Γ′ then ϕΓ |=Σ′ ϕΓ′ translation.
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2.3. Stratified Institutions

Informally, the main idea behind the concept of the stratified institution as introduced
in [4,5] is to enhance the concept of an institution with “states” for the models. Thus, each
model M comes equipped with a set [[M]] that has to satisfy some structural axioms. The
following definition has been given in [6] and represents an important upgrade of the
original definition from [5], with the main purpose of making the definition of stratified
institutions really usable for doing in-depth model theory. A slightly different upgrade,
but very closely related to that of [6], has been proposed in [7].

A stratified institution S is a tuple (SignS , SenS , ModS , [[_]]S , |=S ) consisting of:

• category SignS of signatures,
• a sentence functor SenS : SignS → Set;
• a model functor ModS : (SignS )� → CAT;
• a “stratification” lax natural transformation [[_]]S : ModS ⇒ SET, where

SET : SignS → CAT is a functor mapping each signature morphism to the iden-
tity functor on Set; and

• a satisfaction relation between models and sentences which is parameterized by model
states, M (|=S )w

Σ ρ where w ∈ [[M]]SΣ such that the following satisfaction condition

ModS (ϕ)M′ (|=S )[[M
′ ]]ϕw

Σ ρ if and only if M′ (|=S )w
Σ′ SenS (ϕ)ρ (2)

holds for any signature morphism ϕ, M′ ∈ |ModS (ϕ2)|, w ∈ [[M′]]Sϕ2, ρ ∈ SenS (2ϕ).

As with ordinary institutions, when appropriate we shall also use simplified notations
without superscripts or subscripts that are clear from the context.

The lax natural transformation property of [[_]] is depicted in the diagram below

Σ′′ Mod(Σ′′)
[[_]]Σ′′ //

Mod(ϕ′)
�� ��

,,

Set

[[_]]ϕ′
s{ =

��
Σ′

ϕ′

OO

Mod(Σ′)

Mod(ϕ)

��

[[_]]Σ′ //

��
,,

Set

=

��[[_]]ϕ
s{

Σ

ϕ

OO

Mod(Σ)
[[_]]Σ

// Set

with the following compositionality property for each Σ′′-model M′′:

[[M′′]](ϕ;ϕ′) = [[M′′]]ϕ′ ; [[Mod(ϕ′)M′′]]ϕ. (3)

Moreover the natural transformation property of each [[_]]ϕ is given by the commuta-
tivity of the following diagram:

M′

h′
��

[[M′]]Σ′
[[M′ ]]ϕ //

[[h′ ]]Σ′
��

[[Mod(ϕ)M′]]Σ

[[Mod(ϕ)h′ ]]Σ
��

N′ [[N′]]Σ′
[[N′ ]]ϕ

// [[Mod(ϕ)N′]]Σ

(4)

The satisfaction relation can be presented as a natural transformation

|= : Sen⇒ [[Mod(_)→ Set]]

where the functor [[Mod(_)→ Set]] : Sign→ Set is defined by

– for each signature Σ ∈ |Sign|, [[Mod(Σ) → Set]] denotes the set of all the mappings
f : |Mod(Σ)| → Set such that f (M) ⊆ [[M]]Σ; and
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– for each signature morphism ϕ : Σ→ Σ′

[[Mod(ϕ)→ Set]]( f )(M′) = [[M′]]−1
ϕ ( f (Mod(ϕ)M′)).

A straightforward check reveals that the satisfaction condition (2) appears exactly as
the naturality property of |=:

Σ

ϕ

��

Sen(Σ)
|=Σ //

Sen(ϕ)
��

[[Mod(Σ)→ Set]]

[[Mod(ϕ)→Set]]
��

Σ′ Sen(Σ′)
|=Σ′
// [[Mod(Σ′)→ Set]]

Ordinary institutions are the stratified institutions for which [[M]]Σ is always a single-
ton set. In the upgraded definition, we have removed the surjectivity condition on [[M′]]ϕ
from the definition of the stratified institutions of [5] and will, instead, make it explicit when
necessary. This is motivated by the fact that most of the results developed do not depend
upon this condition which, nonetheless, holds in all examples known by us. On the one
hand, in many important concrete situations (Kripke semantics, automata, etc.) [[M′]]ϕ are
even identities, which makes [[_]] a strict rather than a lax natural transformation. However,
on the other hand, there are interesting examples when the stratification is properly lax,
such as in the OFOL example below or the representation of 3/2-institutions as stratified
institutions developed in [10].

The following very expected property does not follow from the axioms of stratified
institutions, hence we impose it explicitly.

Assumption 1. In all considered stratified institutions the satisfaction is preserved by model isomor-
phisms, i.e., for each Σ-model isomorphism h : M→ N, each w ∈ [[M]]Σ, and each Σ-sentence ρ,

M |=w ρ if and only if N |=[[h]]w ρ.

The literature on stratified institutions shows many model theories that are captured
as stratified institutions. Here, we recall some of them in a very succint form; in a more
detailed form one may find them in [6,9,10].

1. In modal propositional logic (MPL) the category of the signatures is Set, Sen(P) is
the set of the usual modal sentences formed with the atomic propositions from P,
and the P-models are the Kripke structures (W, M) where W = (|W|, Wλ) consists
of a set of “possible worlds” |W| and an accessibility relation Wλ ⊆ |W| × |W|, and
M : |W| → 2P. The stratification is given by [[(W, M)]] = |W|.

2. In first order modal logic (MFOL) the signatures are first-order logic (FOL) signatures
consisting of sets of operation and relation symbols structured by their arities. The
sentences extend the usual construction of FOL sentences with the modal connectives
2 and 3. The models for a signature Σ are Kripke structures (W, M) where W is like
inMPL but M : |W| → |ModFOL(Σ)| subject to the constraint that the carrier sets
and the interpretations of the constants are shared across the possible worlds. The
stratification is like inMPL.

3. Hybrid logics refine modal logics by adding explicit syntax for the possible worlds
such as nominals and @. Stratified institutions of hybrid logics upgrade the syn-
tactic and the semantic components of the stratified institutions of modal logics
accordingly. For instance, in the stratified institution of hybrid propositional logic
(HPL) the signatures are pairs of sets (Nom, P), the (Nom, P)-models are Kripke
structures (W, M) like inMPL, but where W adds interpretations of the nominals,
i.e., W = (|W|, (Wi)i∈Nom, Wλ), and at the level of the syntax, for each i ∈ Nom we
have a new sentence i-sen, a new unary connective @i, and existential quantifications
over nominals variables. Then ((W, M) |=w i-sen) = (Wi = w), ((W, M) |=w @iρ) =
((W, M) |=Wi ρ), etc.
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4. Multi-modal logics exhibit several modalities instead of only the traditional 3 and 2

and, moreover, these may have various arities. If one considers the sets of modalities
to be variable then they have to be considered as part of the signatures. Each of the
stratified institutions discussed in the previous examples admit an upgrade to the
multi-modal case.

5. In a series of works on modalization of institutions [38–40] modal logic and Kripke
semantics are developed by abstracting away details that do not belong to modality,
such as sorts, functions, predicates, etc. This is achieved by extensions of abstract
institutions (in the standard situations meant in principle to encapsulate the atomic
part of the logics) with the essential ingredients of modal logic and Kripke semantics.
The result of this process, when instantiated to various concrete logics (or to their
atomic parts only) generate a uniformly wide range of hierarchical combinations
between various flavours of modal logic and various other logics. Concrete examples
discussed in [38–40] include various modal logics over non-conventional structures
of relevance in computing science, such as partial algebra, preordered algebra, etc.
Various constraints on the respective Kripke models, many of them having to do
with the underlying non-modal structures, have also been considered. All of these
arise as examples of stratified institutions like the examples presented above in the
paper. An interesting class of examples that has emerged quite smoothly out of the
general works on hybridization (i.e., modalization including also hybrid logic features)
of institutions is that of multi-layered hybrid logics that provide a logical base for
specifying hierarchical transition systems (see [41]).

6. Open first order logic (OFOL). This is a FOL instance of St(I), the “internal stratifica-
tion” abstract example developed in [5]. AnOFOL signature is a pair (Σ, X) consisting
of FOL signature Σ and a finite block of variables. To any OFOL signature (Σ, X)
it corresponds a FOL signature Σ + X that adjoins X to Σ as new constants. Then,
SenOFOL(Σ, X) = SenFOL(Σ + X), ModOFOL(Σ, X) = ModFOL(Σ), [[M]]Σ,X = MX,
i.e the set of the “valuations” of X to M and for each (Σ, X)-model M, each w ∈ MX ,
and each (Σ, X)-sentence ρ we define (M(|=OFOLΣ,X )wρ) = (Mw |=FOLΣ+X ρ) where Mw

is the expansion of M to Σ + X such that Mw
X = w (i.e., the new constants of X are

interpreted in Mw according to the “valuation” w).
7. Various kinds of automata theories can be presented as stratified institutions. For

instance, the deterministic automata (for regular languages) have the set of the input
symbols as signatures, the automata A are the models, and the words are the sentences.
Then, [[A]] is the set of the states of A and A |=s α if and only if α is recognized by A
from the state s.

8. In [10], there is a development of a general representation theorem of 3/2-institutions
as stratified institutions. The theory of 3/2-institutions [11] is an extension of ordinary
institution theory that accommodates the partiality of the signature morphisms and
its syntactic and semantic effects, motivated by applications to conceptual blending
and software evolution. The representation theorem is based, for each ϕ2-model M,
on setting [[M]] to the set its ϕ-reducts. This is possible because in 3/2-institutions,
unlike in ordinary institution theory, a model may have more than one reduct with
respect to a fixed signature morphism, this being the semantic effect of the (implicit)
partiality of the signature morphisms.

2.4. Flattening Stratified Institutions to Ordinary Institutions

We have already seen that ordinary institutions are trivial stratified institutions (i.e.,
with singleton stratifications). The other way around, meaning reducing proper stratified
institutions to ordinary institutions as a non-trivial enterprise, can be achieved in two different
ways as will be described.

The following construction from [6] was later on presented in [9] in the form of
an adjunction. Its importance resides in the possibility of transferring and interpret-
ing concepts and results from ordinary institution theory to stratified institution theory.
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Given any stratified institution S = (Sign, Sen, Mod, [[_]], |=) we define an institution
S ] = (Sign, Sen, Mod], |=]) (called the local institution of S) by:

– the objects of Mod](Σ) are the pairs (M, w) such that M ∈ |Mod(Σ)| and w ∈ [[M]]Σ;
– the Σ-homomorphisms (M, w) → (N, v) are the pairs (h, w) such that h : M → N

and [[h]]Σw = v;
– for any signature morphism ϕ : Σ→ Σ′ and any Σ′-model (M′, w′)

Mod](ϕ)(M′, w′) = (Mod(ϕ)M′, [[M′]]ϕw′);

– for each Σ-model M, each w ∈ [[M]]Σ, and each ρ ∈ Sen(Σ)

((M, w) |=]
Σ ρ) = (M |=w

Σ ρ). (5)

The following second interpretation of stratified institutions as ordinary institutions
has already been given in [5]. Note that unlike S ] above, S∗ below shares with S the
model functor. However, this comes with a slight technical cost. For any stratified insti-
tution S = (Sign, Sen, Mod, [[_]], |=) we say that [[_]] is surjective when for each signature
morphism ϕ : Σ → Σ′ and each Σ′-model M′, [[M′]]ϕ : [[M′]]Σ′ → [[Mod(ϕ)M′]]Σ is sur-
jective. Then each stratified institution S = (Sign, Sen, Mod, [[_]], |=) with [[_]] surjective
determines an (ordinary) institution S∗ = (Sign, Sen, Mod, |=∗) (called the global institution
of S) by defining

(M |=∗Σ ρ) =
∧
{M |=w

Σ ρ | w ∈ [[M]]Σ}.

From now on whenever we invoke an institution S∗ we tacitly assume that [[_]]S

is surjective.
The institutions S ] and S∗ represent generalizations of the concepts of local and global

satisfaction, respectively, from modal logic (e.g., [42]). While S∗ “forgets” the stratification
of S , S ] fully retains it (but in an implicit form). This is the reason why S ] rather than S∗
can be used for reflecting concepts and results from ordinary institution theory in stratified
institutions. It is important to avoid a possible confusion regarding S ], namely that through
the flattening represented by the ] construction, stratified institution theory gets reduced to
ordinary institution theory. This cannot be the case, because although S ] is an ordinary
institution it retains a particular character induced by the stratified structure of S . This
means that many general institution theory concepts are not refined enough to properly
reflect the stratification aspects.

2.5. Nominals in Stratified Institutions

The abstract nominals structures introduced in [6] and subsequently used in [8,9] play
an important role in our work. Nominals are a distinctive feature of the hybrid variations
of modal logics [34–36], but in principle, they can be defined for any logic that has models
with states, not necessarily in a Kripke semantics context. In [6] this has been achieved
axiomatically at the level of abstract stratified institutions. In what follows, we recall the
corresponding definitions from there.

Let SETC denote the “sub-institution” of first order logic that is determined by the signatures
that contain only symbols of constants (hence no sentences and the empty satisfaction relation).
Given a stratified institution S, a nominals extraction is a pair (N, Nm) consisting of a functor
N : SignS → SignSETC and a lax natural transformation Nm : ModS ⇒ Nop; ModSETC such
that for each signature Σ the following diagram commutes:

Mod(Σ)
[[_]]Σ //

NmΣ ''

Set

ModSETC(N(Σ))

forgetful (|_|)

OO
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More explicitly, for each signature Σ, N(Σ) is a signature of constants while NmΣ maps
each Σ-model M to a model of that signature such that its underlying set is just [[M]]. So
the constants of N(Σ) are interpreted as elements of [[M]]. We can say that the constants of
N(Σ) are the “nominals of Σ” which are interpreted as elements of [[M]].

In [6], there are several concrete examples of nominals extraction. For instance inHPL
we may define N(Nom, P) = Nom and Nm(Nom,P)(W, M) = (|W|, (Wi)i∈Nom).

Let S be a stratified institution endowed with a nominals extraction N, Nm. For
any i ∈ N(Σ)

• a Σ-sentence i-sen is an i-sentence when

(M |=w i-sen) = ((NmΣ M)i = w);

• for any Σ-sentence ρ, a Σ-sentence @iρ is the satisfaction of ρ at i when

(M |=w @iρ) = (M |=(NmΣ M)i ρ)

for each Σ-model M and for each w ∈ [[M]]Σ.

The stratified institution S has explicit local satisfaction when there exists a satisfaction at
i for each sentence and each appropriate i. For instance,HPL has explicit local satisfaction
as i-sen and @i inHPL are examples of i-sentences and of satisfaction at i, respectively.

2.6. Quantifications in Stratified Institutions

The institution theoretic approach to quantifications (introduced in [43]; see also [3], etc.)
crucially exploits the multi-signature aspect of the concept of institution. The quantification
variables are assimilated to the signature extensions obtained by adding the variables as new
syntactic entities to the respective signature, and consequently the valuations of the variables
are assimilated to model expansions. Thus, for any signature morphism χ : Σ → Σ′ and
any Σ′-sentence ρ′, a Σ-sentence ρ is a universal χ-quantification of ρ′ if and only if for each
Σ-model M,

M |=Σ ρ if and only if M′ |=Σ′ ρ′ for each χ-expansion M′ of M.

In [6], this has been extended to stratified institutions as follows. For any signature
morphism χ : Σ→ Σ′, a Σ-sentence ρ is a universal χ-quantification when for any Σ-model
M and each w ∈ [[M]]Σ,

(M |=w
Σ ρ) =

∧
Mod(χ)(M′)=M

( ∧
w′∈[[M′ ]]−1

χ (w)

(M′ |=w′
Σ′ ρ′)

)
.

In [6], it has also been noted that ρ is a universal χ-quantification of ρ′ in a stratified
institution S if and only if it is in S ] in the ordinary institution theoretic acceptation.
Designated universal χ-quantifications ρ are usually denoted as (∀χ)ρ′.

2.7. Concepts of Model Amalgamation in Stratified Institutions

Model amalgamation is one of the most important concepts and properties in in-
stitution theory, the corresponding literature containing numerous works where model
amalgamation is used decisively. References [2,13] are representative for computing science
works, especially in the area of foundations of software modularization, while in [3], and
many articles, one may find an abundance of uses of model amalgamation in institution-
independent model theory. In particular, works on interpolation, many of them collected
in the dedicated chapter of [3], reveal a strong causality relationship between model amal-
gamation and interpolation. This is also the case in our work.

The following definition from [9] extends the concept of model amalgamation [2,3,13,44–47],
etc., from ordinary institution theory to stratified institutions. This introduces two concepts.
The first one represents just the ordinary institution theoretic concept of model amalgamation
formulated for stratified institutions (it does not involve the stratification structure). The second
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one is specific to stratified institutions. Consider a stratified institution S and a commutative
square of signature morphisms like below:

Σ
ϕ1 //

ϕ2

��

Σ1

θ1
��

Σ2
θ2

// Σ′

(6)

Then this square:

• is a model amalgamation square when for each Σk-model Mk, k = 1, 2 such that
Mod(ϕ1)M1 = Mod(ϕ2)M2 there exists an unique Σ′-model M′ such that
Mod(θk)M′ = Mk, k = 1, 2, and

• is a stratified model amalgamation square when for each Σk-model Mk and each wk ∈ [[Mk]]Σk ,
k = 1, 2, such that Mod(ϕ1)M1 = Mod(ϕ2)M2 and [[M1]]ϕ1 w1 = [[M2]]ϕ2 w2 there exists
an unique Σ′-model M′ and a unique w′ ∈ [[N′]]Σ′ such that Mod(θk)M′ = Mk and
[[M′]]θk w′ = wk, k = 1, 2.

The model M′ is called the (stratified) amalgamation of M1 and M2. When all pushout
squares of signature morphisms are (stratified) model amalgamation squares we say that S
is (stratified) semi-exact.

The following straightforward fact reduces stratified model amalgamation to ordinary
model amalgamation.

Fact 1 ([9]). A commutative square of signature morphisms like Equation (6) is a stratified model
amalgamation square in S if and only if it is a model amalgamation square in S ].

Note also that when the stratification is strict (as natural transformation), then any
model amalgamation square is a trivially a stratified model amalgamation square.

3. Two Concepts of Interpolation

In this section, we clarify the concept of interpolation in stratified institutions. Interpo-
lation is a property of the semantic consequence relation on (sets of) sentences, and stratified
institutions admit two different semantic consequence relations that correspond to the
two possible flattenings of the stratified institutions to ordinary institutions. This means
that there are two concepts of interpolation that emerge from the respective concepts of
semantic consequence. In what follows, we will discuss the two concepts of semantic
consequence in stratified institutions and the general relationship between them, and then
we will define the two concepts of Craig interpolation.

3.1. Two Semantic Consequence Relations

Definition 1. For any stratified institution S
• the local semantic consequence relation |=] is the semantic consequence relation of the

institution S ], and
• the global semantic consequence relation |=∗ is the semantic consequence relation of the

institution S∗.

Fact 2. For any stratified institution S , any S-signature Σ, any set E of Σ-sentences, and any
Σ-sentence e

• E |=] e if and only if for each Σ-model M and each w ∈ [[M]]Σ,

M |=w E implies M |=w e,

• E |=∗ e if and only if for each Σ-model M,

for each w ∈ [[M]]Σ, M |=w E implies that for each w ∈ [[M]]Σ, M |=w e.
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If we interchanged Fact 2 and Definition 1 then we gain more theoretical generality for
the definition of the semantic consequence relation |=∗ because we do not rely anymore
on the institution S∗, which means that we do not have to assume the surjectivity of [[_]].
However, this higher generality would come at the expense of the loss of the translation
property of |=∗, namely that for each signature morphism ϕ : Σ→ Σ′

E |=∗ e implies ϕE |=∗Σ′ ϕe.

Since this property is very important for interpolation we cannot afford to lose it.
The following result shows that local semantic consequence is stronger than the global

semantic consequence.

Proposition 1. E |=] e implies E |=∗ e.

Proof. Let us suppose that E |=] e and consider a model M such that M |=∗ E. Let
w ∈ [[M]]. From E |=] e it follows that M |=w e. Since w has been considered arbitrary, we
conclude that M |=∗ e.

The implication of Proposition 1 is proper as shown by the following very simple
example. Let S consists of only one signature, only one model M such that [[M]] = {w1, w2}
and only two sentences ρ1 and ρ2 such that

M |=wi ρj if and only if i = j.

Then ρ1 |=∗ ρ2 but ρ1 6 |=]ρ2.

3.2. Local Versus Global Interpolation in Stratified Institutions

The interpolation concepts in stratified institutions are based on classical institution
theoretic interpolation. Yet, the former concepts refine the latter.

Proposition 2. Consider any institution I and a commutative square of signature morphisms
like below:

Σ
ϕ1 //

ϕ2

��

Σ1

θ1
��

Σ2
θ2

// Σ′

(7)

Let Ek be sets of Σk-sentences, k = 1, 2. If there exists a set E of Σ-sentences such that

E1 |= ϕ1E and ϕ2E |= E2

then θ1E1 |= θ2E2.

Proof. By the translation property θ1E1 |= θ1(ϕ1E) and θ2(ϕ2E) |= θ2E2. Since
θ1(ϕ1E) = θ2(ϕ2E) (by the functoriality of Sen because ϕ1; θ1 = ϕ2; θ2), by transitivity
it follows that θ1E1 |= θ2E2.

The conclusion of Proposition 2 is simple and general. Its reversal represents the
interpolation property. The following definition formulates it directly for abstract strati-
fied institutions.

Definition 2 (Craig interpolation in stratified institutions). Let S be any stratified institution.
A commutative square of signature morphisms like in diagram (7) is a local/global Craig interpo-
lation square when the reversal of the implication of Proposition 2 holds in S ] / S∗, respectively,
by assuming that E, Ek are finite.

Given classes of signature morphisms L andR we say that S has local/global Craig (L,R)-
interpolation when each pushout square like in diagram (7) with ϕ1 ∈ L and ϕ2 ∈ R is a
local/global Craig interpolation square.
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Note that when S is an ordinary institution, i.e., for each model M its stratification
[[M]] is a singleton set, both concepts of local and global interpolation collapse to the well-
established ordinary concept of institution theoretic interpolation. It is possible to have
an infinitary version of interpolation by dropping the finiteness condition on the sets of
sentences E, Ek. However in the applications finitary interpolation is more meaningful.

The relationship between institution theoretic interpolation and the common concept
of logical interpolation has been explained extensively in many publications. Institution
theoretic interpolation has been introduced in [25] and further refined in [13,17,29]. Even
when instantiated to concrete logics it introduces several new layers of generality with
respect to the common concept of interpolation. In essence, these have much to do with how
interpolation is used in formal specification theory, but they may be highly relevant from
a logic perspective. Let us recall here briefly some of the main aspects of the relationship
between the institution theoretic and common interpolation.

1. With ordinary interpolation, the diagram (7) is restricted to an intersection-union
square consisting of signature inclusions, i.e., Σ = Σ1 ∩ Σ2 and Σ′ = Σ1 ∪ Σ2.

2. Concrete interpolation considers single sentences rather than sets of sentences. In the
presence of logical conjunctions, there is no difference between these two approaches.
However, there are important logics that lack conjunctions, such as equational and
Horn logics, and many more. In these logics, interpolation is traditionally considered
as failed. But works such as [29,48,49] show that this is a misunderstanding due to
the rather faulty import of the single-sentence formulation of interpolation from some
very prominent logics (such as classical propositional or first order logic) to other
logical systems.

4. When Local Interpolation Causes Global Interpolation

In general, it is not possible to establish any causality relationship between local
and global interpolation. In the light of the sharpness of Proposition 1, there is hope for
establishing a set of general sufficient conditions only for the former to be a cause of the
latter. This is what we will achieve in this section.

4.1. Signature Extensions with Nominals

The main envisaged condition is the presence of a nominals extraction. However this
needs an enhancement with a slight technicality that, in the applications, amounts to the
possibility of extending signatures with nominals in a way that enables quantifications over
nominals at the level of abstract stratified institutions. The following definition does that.

Definition 3 (signature extensions with nominals). Any stratified institution has signature
extensions with nominals when it has a nominals extraction (N, Nm) and for each signature Σ
there exists a signature morphism ι : Σ → Σ′—called the signature extension of Σ with the
nominal i—such that

1. N(ι) : N(Σ) → N(Σ′) = N(Σ) ∪ {i} is the extension of N(Σ) with one new constant
i, and,

2. for each Σ-model M and each w ∈ [[M]]Σ there exists a ι-expansion M′ of M such that

[[M′]]ι(NmΣ′M
′)i = w.

3. For each signature morphism θ1 : Σ1 → Σ′ and each signature extension ι′ : Σ′ → Σ′′

with one nominal i′ there exists a signature extension ι1 : Σ1 → Σ′1 with one nominal i and
signature morphism θ′1 : Σ′1 → Σ′′ such that

Σ1
ι1 //

θ1
��

Σ′1

θ′1
��

Σ′
ι′
// Σ′′

(8)
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is a stratified model amalgamation square.

These are the three specific conditions/properties that makes Definition 3 have the
following informal meaning. The former two conditions say that it is possible to achieve a
signature “extension” with a single nominal only, both syntactically and semantically. The
latter condition is more technical and says that, in the case of a codomain of a signature mor-
phism such “extensions” with nominals can be traced back to a signature “extension” of the
domain in a way that is “stable” under model amalgamation. In many concrete situations
of interest, we can substitute in Definition 3 “model amalgamation” with “pushout”, which
would give this “stability” aspect a purely syntactic meaning since in stratified semi-exact
institutions the latter implies the former. The following is a most typical example for the
abstract concept of signature extensions with nominals introduced by Definition 3.

Let us consider HPL, the stratified institution of hybrid propositional logic dis-
cussed in Section 2.3. Recall that in HPL, the nominals extraction (N, Nm) is defined
by N(Nom, P) = Nom and NmNom,P(W, M) = (|W|, (Wi)i∈Nom). Then, for any signature
(Nom, P) and i 6∈ Nom the inclusion signature morphism ι : (Nom, P)→ (Nom∪ {i}, P)
satisfies the axioms of Definition 3 as follows:

1. N(ι) is the set inclusion Nom ⊆ Nom∪ {i}.
2. Let (W, M) be any (Nom, P)-model. For any w ∈ |W| we define the ι-expansion

(W ′, M) of (W, M) by W ′i = w.
3. Let θ1 : (Nom1, P1)→ (Nom′, P′), ι′ : (Nom′, P′)→ (Nom′ ∪{i′}, P′). Then we con-

sider ι1 : (Nom1, P1) → (Nom1 ∪ {i}, P1), i 6∈ Nom1, and θ′1 : (Nom1 ∪ {i}, P1) →
(Nom′,∪{i′}, P′) that just extends θ1 by letting θ′1i = i′. Note that in this case the
commutative square Equation (8) yields a pushout square in SignHPL. SinceHPL is
semi-exact (cf. [9]) this is a model amalgamation square. Furthermore, sinceHPL is
strictly stratified this is also a stratified model amalgamation square.

4.2. Interpolation in Stratified Institutions with Universal Nominals

With the following definition we give a name to the collected conditions that are
sufficient for local interpolation to be a cause for global interpolation.

Definition 4 (Universal nominals). We say that a stratified institution S has universal nomi-
nals when:

• it has signature extensions with nominals;
• it has universal quantifications corresponding to the signature extensions with nominals; and
• it has explicit local satisfaction.

Notation 1. Consider a stratified institution S with universal nominals. For any signature
extension ι : Σ → Σ′ with a nominal i and for each Σ-sentence e, the Σ-sentence (∀ι)@i(ιe) is
denoted by eι. Moreover, this convention extends to sets of sentences, i.e., Eι = {eι | e ∈ E}.

The following list of semantic properties of eι constitute technical support for the
subsequent results leading to the concluding result of this section.

Proposition 3. Let S be any stratified institution with universal nominals. Let M be any Σ-model,
w ∈ [[M]]Σ be any “state” of M, and E be any set of Σ-sentences and e be any Σ-sentence. Let ι be
an extension of Σ with a nominal i. Then:

1. M |=∗ e if and only if (M, w) |=] eι.
2. M |=∗ e if and only if M |=∗ eι.
3. E |=∗ e implies Eι |=] eι.
4. Eι |=∗ e implies E |=∗ e.
5. E |=∗ eι implies E |=∗ e.
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Proof.

1. For the implication from the left to the right we consider that M |=∗ e. Let M′ be any
ι-expansion of M and let w′ ∈ [[M′]]Σ′ such that [[M′]]ιw′ = w. We have to prove that
M′ |=w′ @i(ιe). We have that

M′ |=w′ @i(ιe) = M′ |=(NmΣ′M
′)i ιe definition of local explicit

satisfaction

= M |=[[M′ ]]ι(NmΣ′M
′)i e satisfaction condition in S .

The latter satisfaction holds because M |=∗ e.
For the implication from the right to the left we assume M |=w (∀ι)@i(ιe). Let
v ∈ [[M]]Σ be arbitrary. We have to prove that M |=v e. Let us consider M′ a ι-
expansion of M such that

[[M′]]ι(NmΣ′M
′)i = v.

Then

M |=w (∀ι)@i(ιe)⇒ M′ |=w′ @i(ιe) for any w′ ∈ [[M′]]−1
ι definition of univ.

quantification

= M′ |=(NmΣ′M
′)i ιe definition of local explicit satisfaction

= M |=v e satisfaction condition.

2. Follows from 1. because w ∈ [[M]]Σ is arbitrary.
3. Let M |=v Eι. By 1. it follows that M |=∗ E hence M |=∗ e. By 1. (again) we obtain

M |=v eι.
4. Let M |=∗ E. By 2. it follows that M |=∗ Eι. Hence M |=∗ e.
5. Let M |=∗ E. Then M |=∗ eι. By 2. it follows M |=∗ e.

The following technical result is instrumental in proving the main result of this section
that relates local to global interpolation in stratified institutions.

Proposition 4. Let S be any stratified institution with universal nominals and let

Σ1
ι1 //

θ1
��

Σ′1

θ′1
��

Σ′
ι′
// Σ′′

(9)

be a stratified model amalgamation square such that both ι1 and ι′ are signature extensions with one
nominal. Then for each Σ′-model M′ and each w′ ∈ [[M′]]Σ′ , for each Σ1-sentence e1 we have that

(M′, w′) |=] (θ1e1)
ι′ if and only if (M′, w′) |=] θ1(e

ι1
1 ).

Proof. This proof involves some heavy formulas. In order to support its readability we
adopt the following notational simplification: if ζ : Ω→ Ω′ is a signature morphism and
N′ is a Ω′-model then by ζN′ we denote its reduct Mod(ζ)N′.

Let N(Σ′1) = N(Σ1) ∪ {i1} and N(Σ′′) = N(Σ′) ∪ {i′}.

• On the one hand, (M′, w′) |=] (θ1E1)
ι′ means

(M′, w′) |=] (∀ι′)@i′(ι
′(θ1E1))

which by the definition of universal ι′-quantification means that for all ι′-expansions
(M′′, w′′) of (M′, w′)

(M′′, w′′) |=] @i′(ι
′(θ1E1))

which is successively equivalent to:
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1 (M′′, (NmΣ′′M′′)i′) |=] ι′(θ1E1) definition of explicit local
satisfaction

2 (θ1; ι′)(M′′, (NmΣ′′M′′)i′) |=] E1 satisfaction condition in S ]

3 (θ1M′, [[M′′]]θ1;ι′(NmΣ′′M′′)i′) |=] E1 definition of reducts in S ]

4 (θ1M′, [[M′′]]ι1;θ′1
(NmΣ′′M′′)i′) |=] E1 θ1; ι′ = ι1; θ′

5 (θ1M′, [[θ′1M′′]]ι1([[M
′′]]θ′1

(NmΣ′′M′′)i′)) |=] E1 definition of reducts in S ].

Because Nmθ′1
M′′ : N(θ′1)(NmΣ′′M′′) → NmΣ′1

(θ′1M′′) is a homomorphism of SETC-
models, because its underlying function is [[M′′]]θ′1 , and because N(θ′1)i1 = i′, we
have that

[[M′′]]θ′1(NmΣ′′M
′′)i′ = (NmΣ′1

(θ′1M′′))i1

which makes the satisfaction 5 above equivalent to

6 (θ1M′, [[θ′1M′′]]ι1(NmΣ′1
(θ′1M′′))i1) |=

] E1.

• On the other hand, (M′, w′) |=] θ1(Eι1
1 ) is equivalent to the following satisfactions:

7 θ1(M′, w′) |=] Eι1
1 satisfaction condition in S ]

8 (θ1M′, [[M′]]θ1 w′) |=] E1
ι1 definition of reducts in S ]

9 (θ1M′, [[M′]]θ1 w′) |=] (∀ι1)@i1(ι1E1) definition of Eι1
1 .

By the definition of universal ι1-quantifications the satisfaction 9 means that for all
ι1-expansions (M′1, w′1) of (θ1M′, [[M′]]θ1 w′)

10 (M′1, w′1) |=] @i1(ι1E1)

which is successively equivalent to the following satisfactions:

11 (M′1, (NmΣ′1
M′1)i1) |=

] ι1E1 definition of explicit local satisfaction

12 ι1(M′1, (NmΣ′1
M′1)i1) |=

] E1 satisfaction condition in S ]

13 (ι1M′1, [[M′1]]ι1(NmΣ′1
M′1)i1) |=

] E1 definition of reducts in S ].

The satisfactions 6 and 13 above are both universally quantified by the respective model
expansions, i.e., the ι′-expansions (M′′, w′′) of (M′, w′) and the ι1-expansions (M′1, w′1) of
θ1(M′, w′). By the stratified model amalgamation property of Equation (9) there is a bijective
correspondence between the two sets of expansions, which is determined by the relation
(M′1, w′1) = θ′1(M′′, w′′). Note also that in this case we have that

(ι1M′1, [[M′1]]ι1(NmΣ′1
M′1)i1) = (θ1M′, [[θ′1M′′]]ι1(NmΣ′1

(θ′1M′′))i1).

Hence, the satisfaction relations 6 and 13 are equivalent, which completes the proof of
the proposition.

The following is the main result of the paper.

Theorem 1. Let S be any stratified institution with universal nominals. Then any local Craig
interpolation square is a global Craig interpolation square too.

Proof. Let us consider a commutative square of signature morphisms

Σ1
ι1 //

θ1
��

Σ′1

θ′1
��

Σ′
ι′
// Σ′′
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that is a local Craig interpolation square and let Ek ⊆ Sen(Σk), k = 1, 2, such that
θ1E1 |=∗ θ2E2. By Proposition 3, it follows that (θ1E1)

ι′ |=] (θ2E2)
ι′ for some signature

extension with one nominal ι′ : Σ′ → Σ′′. For each k = 1, 2 let ιk : Σk → Σ′k be a signature
extension with one nominal such that

Σk
ιk //

θk
��

Σ′k

θ′k
��

Σ′
ι′
// Σ′′

is a stratified model amalgamation square. By Proposition 4, from (θ1E1)
ι′ |=] (θ2E2)

ι′ we
have that, it follows

θ1(Eι1
1 ) |=

] θ2(Eι2
2 ).

According to the local Craig interpolation hypothesis there exists an interpolant
E ⊆ Sen(Σ) such that

E1
ι1 |=] ϕ1E and ϕ2E |=] E2

ι2 .

By Proposition 1, it follows that

E1
ι1 |=∗ ϕ1E and ϕ2E |=∗ E2

ι2 .

By Proposition 3, it follows that

E1 |=∗ ϕ1E and ϕ2E |=∗ E2

hence E is an interpolant for E1 and E2 with respect to |=∗.

Based on the examples above of how some of our concepts apply to HPL, which
can be easily extended to other forms of Kripke semantics with nominals and universal
quantifications over those we can formulate the following concrete consequence of our
main result.

Corollary 1. HPL and its first order, multi-modal extensions enjoy the property that local Craig
interpolation implies global Craig interpolation.

5. Conclusions

In this paper, we first extended the concept of ordinary institution-theoretic interpo-
lation to stratified institutions by interpreting it for the local and for the global semantic
consequence relations. Then, we formulated a set of applicable sufficient conditions such
that local interpolation implies global interpolation. These conditions imply a certain
nominal infrastructure that also includes universal quantifications over nominals, but not
necessarily a Kripke relational structure. All of these developments have been achieved at
the level of fully abstract stratified institutions.

Our work can be regarded as a first step towards a more elaborated theory of in-
terpolation for stratified institutions. On this basis, we plan a further in-depth study of
interpolation in this context similar to what has been achieved in ordinary institution theory,
but which addresses the general specificity given by the “models with states” paradigm.
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