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Abstract: This paper is an overview of some recent and ongoing developments of formal logical
systems designed for reasoning about systems of rational agents who act in pursuit of their individual
and collective goals, explicitly specified in the language as arguments of the strategic operators, in
a socially interactive context of collective objectives and attitudes which guide and constrain the
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1. Introduction

The concepts of agency and rationality are fundamental for describing and under-
standing the modern society. Rational agents can be humans, intelligent robots, automated
devices, or other autonomous entities that act and interact in pursuit of their individual and
collective preferences and goals. In accordance with their various essential attributes, such
as beliefs, knowledge, and abilities to observe, learn, remember, reason and communicate,
rational agents plan and execute strategies (in AI, often also called “policies”) to achieve
their goals. The common environment in which agents act and interact is commonly called
a multiagent system. This generic concept covers a variety of entities, including teams of
agents, social groups and networks, organizations, markets, and entire societies. Nowadays,
the modeling and analysis of systems of rational agents is a broad interdisciplinary field
of extensive research, bringing together ideas, approaches, and methods from humanities,
social sciences, artificial intelligence, decision and game theory, mathematics, and computer
science.

Agents and groups (also often called “coalitions”) of rational agents in multiagent
systems typically have competing, sometimes adversarial to each other, interests and goals.
When the goals are purely quantitative, such systems are modeled as multiplayer games,
studied in game theory, where rational players act so as to optimize their payoffs. Agents
may also have purely qualitative (“win–lose”) or combined goals. A fundamental aspect
of reasoning both within and about multiagent systems is the reasoning about abilities of
agents and coalitions to design and execute strategies to achieve their goals, or to prevent
others from achieving theirs, hereafter called (multiagent) strategic reasoning.

Importantly, the behavior of rational agents is usually guided not only by their in-
dividual and group goals, but also by those of the others, as well as by common (e.g.,
societal) goals. Furthermore, their behavior is constrained by various individual, collective,
and societal norms (such as rights, obligations, and prohibitions). The totality of common
goals, attitudes, norms, and other constraints under which agents act and interact I will
call socially interactive context. That context leads to a complex interplay of cooperation and
competition between the agents in the system.

Since the 1980s, formal logic has emerged as a useful and efficient methodological and
technical tool for modeling, analysis, and reasoning about multiagent rational interaction.
A rich variety of logical frameworks for strategic reasoning in, and about, multiagent
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systems have been developed. Early formal logical systems capturing agents’ abilities were
developed with philosophical motivations and applications in mind, including Parikh’s
Game Logic [1], where he also suggested perhaps the first applications of logic to multi-
agent social scenarios, such as cake-cutting, exchanging secrets (see further Example 10),
etc.; Brown’s modal logic of ability [2]; and Belnap and Perloff’s STIT logics [3]. In the
late 1990s–early 2000s, two important logical systems for multiagent strategic reasoning
were introduced independently: Pauly’s coalition logic CL, introduced in [4,5], and Alur,
Henzinger, and Kupferman’s alternating time temporal logic ATL, introduced first in [6], and
then, in its final version, in [7] (cf. [8,9] for more recent and detailed discussion on these
and related works).

Some remarks1 are due on conceptual issues arising in regards to the terminology
used in this paper, and also generally adopted in the literature on the topic. To begin with,
let me emphasize that other, not discussed in the present work important concepts related
to rational agency, such as beliefs, desires, intentions, goals, and commitments have been
extensively explored in the philosophy and AI literature. Among the most influential such
approaches are [10–12], where (especially in the latter) agents’ goals and what they imply
are explicitly indicated in the language. While being important and influential, these works
are not about strategic reasoning regarding the agents’ goals and their achievement which is
the focus of the present paper, so they will not be discussed further here.

Now, let me explain the meaning and use of some key concepts and terms used in this
paper, to avoid possible misunderstandings, especially on the background of the alternative
approaches mentioned above. First, the use of the word “goal” in the context of these logical
frameworks and formal systems should be understood in a precise and possibly somewhat
narrow sense. Agents’ goals are not some intentional objects permanently or temporarily
ascribed to the agents, or intrinsically associated with them. The agents’ goals in the present
work are not explicitly specified as such in the language, but are determined by the context
and identified with properties (respectively, sets) of states in the model—or, more generally,
with properties (respectively, sets) of plays in that model—which the agents are assumed to
pursue to realize with their strategic behavior. These sets of states, or plays, are represented
in the language by formulae which extensionally specify them by means of their formal
semantics. Thus, the logical languages considered here cannot express statements such
as “the agent a has as its goal to realize G”, nor even “the goal of agent a is to realize G”,
but rather “the agent a has a strategy that guarantees (under the assumed interactive context) the
truth of the formula G”, where G is regarded as “a’s goal” in this context. “Coalitional goals”
should be understood likewise. Thus, agents’ goals are only contextually specified and can
freely change, even within the same formalized statement, but this should be taken only as
a terminological choice, rather than a conceptual commitment to what “goal” means. Next,
“rationality” of agents here should also be understood in a concrete and precise sense: once
a goal (in the sense described above) is assigned to a rational agent, that agent is assumed
to act in pursuit of that goal, and that assumption naturally constrains the agent’s behavior.
This is all that “rationality” is assumed to mean here. Lastly, the phrase “socially interactive
context” should also be considered merely as a convenient and sufficiently intuitive term,
rather than a precise social concept. Though not precisely defined, that term is hopefully
well illustrated in the various logical frameworks presented here.

There are other interesting and important approaches to logics for games and strategic
behavior, which—mostly for practical reasons—I will only mention here, but will not be
discussed further in this paper:

• The STIT-based approach, building on the theory of “Seeing To It That” (STIT), originating
from the seminal work of Belnap and Perloff [3]. For exploring the closer links of the
present paper with STIT, the reader is referred to [13] and the overview chapter [14]
on using STIT for strategic reasoning, as well as to [15] for temporal extensions of STIT
and applications to normative reasoning, to [16] for using STIT for reasoning about
social influence, and to [17] for providing semantics of temporal STIT in concurrent
game models used in this paper.
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• The dynamic logic based approach, originating from Parikh’s Game Logic [1], and more
recently explored further in [18,19] and other related works.

For further references and a broader view on logics for analyzing games, I also refer
the reader to [20].

Now, a few words about the main precursors of the logics presented here. The logic
CL was introduced in [4,5] with the explicit intention to formalize reasoning about one-step
(local) strategic abilities of agents and coalitions, i.e., strategic abilities to guarantee the
achievement of their explicitly specified goals in the immediate outcome of their (individual
or collective) action, regardless of the respective actions of all remaining agents. The logic
ATL was initially introduced in [6,7] as a logical formalism for formal specification and
verification of open (interacting with environment) computer systems where the agents
represent concurrently executed processes. Still, it was gradually adopted as one of the
most popular and standard logical systems for reasoning about long-term strategic abilities
of agents and coalitions in extended concurrent multiplayer games. Technically, ATL can be
described as an extension of CL with the long-term temporal operators G, F, and U, which
were previously adopted, inter alia, in the branching-time temporal logic CTL (which can
be regarded as a single-agent fragment of ATL). Both CL and ATL feature a special type of
modal operators, denoted by [C] in CL, respectively by 〈〈C〉〉 in ATL, parameterized with a
coalition of agents C, such that, given a coalitional goal of C formalized as (ensuring the
truth of) a formula φ, the formula [C]φ intuitively says that the coalition C has a collective
strategy σC that guarantees the satisfaction of φ in every outcome state (for CL), respectively,
in every outcome play (for ATL) that can occur when the agents in C execute their strategies
in σC, regardless of the choices (strategic or not) of actions of the agents that are not in C.

Thus, both CL and ATL capture reasoning about unconditional strategic abilities of
agents within coalitions, acting in full cooperation with each other in pursuit of their
coalitional goals, aiming to succeed against any possible behavior of their opponents, which
are thus regarded as their complete adversaries (in the context of CL) or as randomly
behaving environment (in the original context of ATL). This, however, is a rather narrow
and extreme perspective, as agents in the real world are seldom either complete allies or
complete adversaries to each other. In reality, all agents acting in the system (except for
the environment, or absolute adversaries) have their own goals and act in pursuit of their
fulfillment, rather than just to prevent the proponents from achieving their goals. Thus, the
strategic interactions of rational agents usually involve a complex interplay of cooperation
and competition, both driven by the individual and collective goals of all agents, which may
be partly or fully allied or adversarial to each other. To adequately model and capture the
behavior and interactions of rational agents within a socially interactive context requires
much richer and more versatile formal logical frameworks than those provided by the
logics CL, ATL and their close variations. Several richer frameworks have been proposed
more recently, including strategy logics [21–24]; the socially friendly coalitional logic SFCL and
the group protecting coalitional logic GPCL [25], with the latter subsequently extended with
temporal operators for long-term goals to the temporal logic of coalitional goal assignments
TLCGA in [26]; the logic for conditional strategic reasoning ConStR (cf. [27,28]); and several
recently proposed more special-purpose logics for strategic reasoning, focusing on know-
how strategies [29], ethical dilemmas [30], responsibility [31], blameworthiness [32], etc.

This paper aims to provide an accessible and not too technical, yet fairly detailed,
overview of the recent developments in the area and to outline some perspectives and
challenges for further research. To keep the paper within reasonable scope and size, I will
not discuss here the aspects of socially interactive context related to agents’ knowledge,
nor to normative constraints, but will focus on the strategic reasoning guided only by
various patterns of cooperation and competition between agents and coalitions. I will
usually assume here complete knowledge of the agents about the system and their full
observability (with or without memory) and ability to communicate and coordinate during
the “play”. These assumptions are sometimes not justified, and then substantial further
complications arise, both conceptual and computational, with respect to analyzing the
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agents’ strategic abilities and designing their strategies in the context of agents’ incomplete
or imperfect information. For more on these issues, the reader is referred to, e.g., [8,9,33],
and the entire volume [34], where the latter is published.

Structure of the paper:

Section 2 provides some technical preliminaries on concurrent game models, including
plays and strategies in them, and provides an illustrative example. Then, Section 3 presents
a brief informal preview of the main logical systems presented in the next five sections:
the basic coalition logic CL in Section 4, its temporal extension ATL in Section 5, the logic
of conditional strategic reasoning ConStR in Section 6, the socially friendly coalition logic
SFCL in Section 7, and the logic of local coalitional goal assignments LCGA and its temporal
extension TLCGA in Section 8. Eventually, Section 9 proposes a uniform logical framework,
called basic strategy logic, which involves variables over strategies and quantification over
them, and thus enables uniform embedding of all other strategic operators mentioned here.
I end with brief concluding remarks in Section 10.

2. Technical Preliminaries

The reader is expected to have a basic background in propositional classical and
modal logics, within the introductory chapters of, e.g., [35]. In addition, this section
provides technical preliminaries needed for the definitions and understanding of the
formal semantics of the various strategic operators and logics presented and discussed
further. Most of it can be omitted by a reader who is only interested in the informal aspects
of the topics, and can be consulted only if, and when, necessary for understanding the
further content. For more technical details on these preliminaries, the reader is referred to
[8,9], as well as [36] (Chapter 9) on concurrent game models and ATL.

2.1. Concurrent Game Models

Consider a fixed finite nonempty set of agents Agt = {a1, ..., an}, also called here
players, and a fixed countable set of atomic propositions Prop. Subsets of Agt will also be
called coalitions. The Cartesian product of a family of sets {Xa}a∈Agt is the set of tuples
(x1, ..., xn) where xi ∈ Xai or each i = 1, ..., n, denoted, as usual, by Πa∈AgtXa.

Definition 1. Let O be any nonempty set. A (strategic) game form for the set of agents Agt
over the set of outcomes O is a tuple

G = (Act, act,O, out)

where

• Act is a nonempty set of actions;
• act : Agt → P+(Act) is a mapping assigning to each a ∈ Agt a nonempty set act(a) of

actions available to the player a;
• out : Πa∈Agt act(a) → O is a map assigning to every action profile ζ ∈ Πa∈Agt act(a) a

unique outcome in O.

Definition 2. A concurrent game model (CGM) is a tuple

M = (Agt,S,Act, g,Prop, L)

where

• S is a nonempty set of (game) states;
• Act is a nonempty set of actions;
• g is a game map, assigning to each state w ∈ S a strategic game form

g(w) = (Act, actw,S, outw) over the set of outcomes S;
• Prop is a countable set of atomic propositions;
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• L : S → P(Prop) is a labeling function, assigning to every state in S the set of atomic
propositions true at that state.

Thus, for each a ∈ Agt and w ∈ S, the set actw(a) consists of the locally available actions
for a in w. We can now define the global action function act : Agt×S → P+(Act) by setting
act(a, w) ::= actw(a). We also define the set Acta ::=

⋃
w∈S actw(a) of possible actions for a.

Given a concurrent game modelM = (Agt, S,Act, g,Prop, L), we define the following.

• An action profile ζ ∈ Πa∈Agt Acta is available at the state w if it consists of locally
available actions, i.e., if ζ ∈ Πa∈Agt actw(a).
The set of all action profiles that are available at w will be denoted by ActProfw.

• outM is the global outcome function assigning to every state w and an action profile
ζ ∈ ActProfw the unique outcome outM(w, ζ) ::= outw(ζ).
WhenM is fixed by the context, it will be omitted from the subscript.

• More generally, given a coalition C ⊆ Agt, a joint action for C in M is a tuple
of individual actions ζC ∈ ∏a∈C act(a). In particular, for any action profile ζ ∈
Πa∈Agt act(a), ζ|C is the joint action obtained by restricting ζ to C. The joint action ζ|C
is locally available at the state w iff every individual action in it is locally available
for the respective agent in w.

• For any w ∈ S, C ⊆ Agt, and joint action ζC that is available at w, we define the set of
possible outcomes from the application of the joint action ζC at the state w:

Out[w, ζC] = {u ∈ S | there exists ζ ∈ ActProfw such that ζ|C = ζC and out(w, ζ) = u}.

In the special case when C = Agt, ζAgt is a full available action profile, so Out[w, ζAgt]
consists of the single outcome out(w, ζAgt).

Remark 3. Note that we only consider deterministic models, where every available action profile
produces a single outcome. This is not an essential restriction, because every nondeterministic
model can be made deterministic by adding a fictitious additional agent (say, nature) that settles
the nondeterminism with its actions which settle the outcome. However, it should be noted that
whether nondeterministic models are considered or not will make a difference on the validities of
coalition logic CL, as shown in Section 4.4, and in the various other logics where strategic abilities
of coalitions can be expressed.

It is sometimes more convenient to eliminate the “local view” from the definition of
concurrent game models, given by the game map assigning the local strategic game forms,
and to redefine these models globally, as follows:

M = (Agt,S,Act, act,Out,Prop, L)

where the components are defined as above. Clearly, the two definitions are equivalent and
will be used interchangeably.

Example 4 (Concurrent game model: Adam and Eve in hotel Life). Figure 1 pictures a
concurrent game model formalizing the following story, which the reader is advised to take at face
value and with a grain of salt. While it has a clearly allegoric flavor, it is not meant to formalize
some meaningful (real or fiction) life story, but just to give an intuitively appealing and sufficiently
nontrivial, yet not too complicated, example of a concurrent game model on which to illustrate the
components of that concept. Thus, questions about the meaning or idea behind this or that state or
transition do not necessarily have good answers.

Two agents, Adam and Eve, live in hotel “Life”. It has (at least) three rooms: R1, R2, and R3.
Initially, both Adam and Eve are in room R1. Every day, each of them is able to choose either to
stay in the same room (action stay, denoted by s), or to move to another room (action move, denoted
by m), with some restrictions described further. Whichever room each of them chooses, they stay
there for the night, and then each chooses again to either stay in the same room, or move to another
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room, as specified in the model. In some cases, they also have the option to “retreat” (action retreat,
denoted by r).

A1E1
{T}

A1E2
{}

A2E1
{}

A2E2
{T,HA ,HE}

A1E3
{HE}

A3E1
{HA}

A2E3
{}

A3E2
{}

(s,s)

(s,m) (m,s)

(m,m)

(s,s) (s,s)

(m,m)

(m,m)

(m,s)(s,r)
(m,r)

(s,m) (r,s)
(r,m)

(m,m)

(s,m)(m,s)

(s,s)

(m,s)(s,m)

(m,m)(m,m)

(s,m)(m,s)

(m,s) (s,m)

(s,s)(s,s)

(s,s)(s,s)

Figure 1. A concurrent game model: Adam and Eve in hotel Life.

Here are the formal components of the model, with some brief explanations:

• The set of agents is Agt = {Adam, Eve}.
• The set of game states is St = {A1E1, A1E2, A2E1, A2E2, A3E1, A1E3, A3E2, A2E3} and the

names of the states represent the current locations of the agents, e.g., A1E2 means that Adam
is in R1 and Eve is in R2, etc. Thus, the names of the states can also be interpreted as pairs
of atomic propositions saying “Adam is in room X” and “Eve is in room Y”. These atomic
propositions, however, will not feature in the example.

• There are three atomic propositions of interest for us: Prop = {T, HA, HE}, where:

– T, which is true in a state iff Adam and Eve are in the same room (“together”), i.e., in
A1E1 and A2E2, as indicated in their labels;

– HA, meaning “Adam is happy”, true in the states where HA is listed in the label;
– HE, meaning “Eve is happy”, true in the states where HE is listed in the label.

• The global set of actions is Act = {stay, move, retreat}, denoted in the figure, respectively, by
s, m, r. The transitions caused by the respective ordered pairs of actions are indicated on the
figure (the first for Adam, and the second for Eve). For example, if at state A1E1 both Adam
and Eve choose to stay, then the transition, labeled with (s,s), is looping back to the same state,
whereas if Adam chooses to stay and Eve chooses to move, the transition, labeled with (s,m),
leads to the state A1E2, etc. These transitions also define the global outcome function Out.

• The global action function act (defining the available actions to every agent at every state) can be
readily extracted from the figure. For example, act(Adam, A1E2) = {s, m}, act(Eve, A1E2) =
{s, m, r}, etc.

• Lastly, the labeling function L : St → P(Prop) is explicitly given in the figure, where the
label of each state is given in {...}.

2.2. Plays and Strategies in Concurrent Game Models

Given a (globally defined concurrent game modelM = (Agt, S,Act, act,Out,Prop, L),
a partial play, or a history inM is either an element of S or a finite word of the form:

h = w0ζ0w1...wn−1ζn−1wn

where w0, ..., wn ∈ S and for each i < n, ζi is a locally available action profile in ActProfwi .
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Some partial plays in Example 4 are:
A1E1; A1E1(s, m)A1E2; A1E1(s, m)A1E2(m, m)A2E1(s, m)A2E2; etc.

The last state in a history h will be denoted by l(h). The set of histories inM is denoted
by Hist(M). The sequence of states w0w1...wn obtained by forgetting the action profiles in
the history h is called the (initial) path induced by h and denoted path(h).

A (memory-based) strategy for player a is a map σa assigning to each history h =
w0ζ0...ζn−1wn in Hist(M) an action σa(h) from act(a, wn). A strategy σa is path-based, if it
assigns actions only based on the path generated by the history (not taking into account the
intermediate action profiles), i.e., σa(h) = σa(h′) whenever path(h) = path(h′). A strategy
σa is memoryless, or positional, if it assigns actions only based on the current (last) state,
i.e., σa(h) = σa(h′) whenever l(h) = l(h′).

Given a coalition C ⊆ Agt, a joint strategy for C in the model M is a tuple ΣC of
individual strategies, one for each player in C. For every joint strategy ΣC and a history h,
we denote by ΣC(h) the joint action prescribed by ΣC on h.

A (global) strategy profile Σ is a joint strategy for the grand coalition Agt, i.e., an
assignment of a strategy to each player. We denote the set of all strategy profiles in
the modelM by StratProfM and the set of all joint strategies for a coalition C inM by
StratProfM(C). Thus, StratProfM = StratProfM(Agt).

Given a strategy profile Σ, the play induced by Σ at w ∈ S is the unique infinite word

play(w, Σ) = w0ζ0w1ζ1w2ζ2...

such that w0 = w and, for each n < ω we have wn+1 = out(wn, ζn), and

ζn+1 = Σ(w0ζ0...ζnwn+1)

The infinite word w0w1w2... obtained by forgetting the action profiles in this infinite play is
called the path induced by Σ at w, denoted path(Σ, w).

Here are some simple, informally described, positional strategy profiles and the plays
induced by them in Example 4:

• Consider the strategy σ1 which prescribes the action s if Adam and Eve are currently
together, or else m, if possible, otherwise, again, s. If both Adam and Eve follow that
strategy starting from A1E1, the induced play is
play(A1E1, (σ1, σ1)) = A1E1(s, s)A1E1(s, s)...
Respectively, the induced play starting from A1E2 is
play(A1E2, (σ1, σ1)) = A1E2(m, m)A2E1(m, m)A1E2(m, m)...

• Consider the strategy σ2 which prescribes the action s if the player is currently happy,
or else r if possible, otherwise m, if possible, otherwise, s.
If both Adam and Eve follow σ2 starting from A1E1, the induced play is
play(A1E1, (σ2, σ2)) = A1E1(m, m)A2E2(s, s)A2E2(s, s)...

• If Adam follows σ1 and Eve follows σ2, the induced play starting from A1E1 is
play(A1E1, (σ1, σ2)) = A1E1(s, m)A1E2(m, r)A1E3(m, s)A2E3(m, s)A1E3(m, s)...

• Lastly, if Adam follows σ1 and Eve follows the strategy σ3 which prescribes the action
s only if both players are currently happy or if no other action is available, or else r if
possible, otherwise m, then the induced play starting from A1E1 is this happy ending:
play(A1E1, (σ1, σ3)) = A1E1(s, m)A1E2(m, r)A1E3(m, m)A2E2(s, s)A2E2(s, s)...

More generally, given a coalition C ⊆ Agt, a state w ∈ S, and a joint strategy ΣC for C,
the set of outcome plays induced by the joint strategy ΣC at w is the set of plays

Plays(w, ΣC) =
{
play(w, Σ) | Σ ∈ StratProfM such that Σ(a) = ΣC(a) for all a ∈ C

}
Given a strategy profile Σ, we also denote Plays(w, Σ, C) ::= Plays(w, Σ|C). We will likewise
use the notation paths(w, Σ, C) for the set of paths obtained from the plays in Plays(w, Σ, C).
Since these only depend on the strategies assigned to players in C, I shall freely use the



Logics 2023, 1 11

notation Plays(w, Σ, C) and paths(w, Σ, C), even when Σ is defined for all members of C,
but not necessarily for all other players.

3. A Variety of Strategic Abilities

This short section is a brief informal preview of the types of strategic abilities and
logical operators and systems formalizing them that will be presented further in the paper.

Most of the natural claims about strategic abilities of agents and coalitions (for conve-
nience, hereafter I will often treat individual agents as singleton coalitions) can be stated
in terms of existence of a strategy profile Σ (in particular, an action profile ζ) that satisfies
certain requirements formalizing these abilities. Here is a natural hierarchy of types of
strategic abilities and associated claims about them, which will be discussed further.

1. Strictly competitive and unconditional, where all agents, respectively, coalitions, act
only in pursuit of their own goals and can be assumed to regard all others either as
adversaries, or as behaving randomly. An alternative way of thinking here is that these
are abilities of a given agent, respectively, coalition, to achieve goals independently of
the actions of all other agents. Both interpretations make good sense in the context of
this paper. The typical claim for such kind of local (immediate, one step) abilities is:

“The coalition A has a joint action to ensure satisfaction of the coalitional
goal of A in every outcome state that may result from that joint action”.

This is the informal semantic reading of the strategic operator [A] in the coalition logic
CL [4,5], which will be presented in Section 4.

Respectively, here is a typical long-term strategic ability claim:

“The coalition A has a joint strategy to ensure satisfaction of the coalitional
goal of A in every outcome play resulting from A following that strategy”.

This is the informal reading of the strategic operator 〈〈A〉〉 in the alternating time
temporal logic ATL and family [7], which will be presented in Section 5.

2. Competitive, but conditional on the other agents’ expected actions, where coalitions (respec-
tively, agents) still act only in pursuit of their own goals, but, when deciding on their
course of action, they take into account the goals and the respective expected actions of
the other players, so they are not treated as adversaries (or, behaving randomly), but
as rational agents pursuing their own goals. Here is a typical such claim expressing
conditional strategic ability:

“For some (or, every) joint action of the coalition A that ensures satisfac-
tion of its goal γA, the coalition B has a joint action of its own to ensure
satisfaction of its goal γB.

There are (at least) two naturally arising readings of such conditional claims, as
“proactive ability” and as “reactive ability”, and two respective versions of local strategic
operators formalizing them. These were first introduced in [27] (respectively, as “de
dicto” and “de re” abilities) and further studied in [28]. Conditional abilities will be
discussed in more detail in Section 6.

3. Socially cooperating abilities, where agents and coalitions still act in pursuit of their
own goals, but when deciding on their course of action take into account the goals of
other agents in the system and make allowance, if possible, for their satisfaction, too.
Thus, agents and coalitions are assumed, i.e., not only rational but also cooperative,
whenever possible to reconcile their interests with those of the others. Two natural
examples of strategic operators formalizing such abilities are:

(a) the “cooperative ability” operator Oc, again introduced and studied in [27,28],
which, when applied to (disjoint) coalitions A and B with respective goals φ
and ψ, formalizes the statement saying that

“A has a joint action σA which guarantees the satisfaction of φ and
enables B to also apply a joint action σB that guarantees ψ”.
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This will be presented in more detail in Section 6.
(b) The “socially friendly” coalitional operator SF, introduced and studied in [25],

which is a somewhat more general version of Oc, informally says that

“A has a joint action σA that guarantees satisfaction of its goal and
also enables the complementary coalition A to realize any one of
a list of secondary goals by applying a respectively suitable joint
action”.

The operator SF and the logic SFCL built on it will be presented in more detail
in Section 7.

4. Abilities for cooperation, protecting the interests of agents and coalitions. These capture the
idea, complementary to that of SFCL, that, while socially responsible rational agents
and coalitions contribute with their individual and collective actions to the society
of all agents, they wish to perform that in a way that protects their individual and
collective interests and goals. Such abilities are expressed by means of the coalitional
goal assignment operator 〈[·]〉, introduced in [25] as a local operator and extended
with temporalized long-term goals in [26]. A coalitional goal assignment γ is a
mapping which assigns a goal formula to each possible coalition, and the operator
〈[γ]〉 formalizes the claim that there is a strategy profile σ of Agt, the restriction of
which to every coalition C is a joint action σC that guarantees the satisfaction of its goal
γ(C) regardless of any possible behavior of the remaining agents. The coalitional goal
assignment operator and the logics LCGA and TLCGA built on it will be presented in
more detail in Section 8.

4. Coalition Logic and Unconditional Local Strategic Reasoning

The case of strictly competitive (noncooperative) and unconditional abilities, presented in
this section, is the extreme case of strategic abilities, where agents, respectively, coalitions,
act only in pursuit of their own goals and regard all others either as adversaries or as
behaving randomly. In this section, I will present briefly the basic multiagent logic CL
formalizing these abilities and will illustrate its use with some examples.

4.1. The Basic Logic for Coalitional Strategic Reasoning CL

As noted earlier, a typical claim for such kind of local strategic abilities is of the
following type: “The coalition C has a joint action to guarantee satisfaction of the coalitional
goal of C in every outcome state that may occur as a result from that joint action”.

This is the informal semantic reading of the strategic operator [C] in the coalition
logic CL introduced in [4]; cf. also [5,37]. CL extends the classical propositional logic with
coalitional strategic modal operators [C], for any coalition of agents C. The formulae of CL are
defined by the following formal grammar:

ϕ ::= p | >| ¬ϕ | (ϕ ∨ ϕ) | [C]ϕ

All other standard propositional connectives and constants, including ⊥, ∧,→, and↔, are
defined as usual. I will write [i] instead of [{i}].

4.2. Expressing Claims about Strategic Abilities in CL

Here are some examples of formalizing statements about agents’ strategic abilities in
CL, based on the story in Example 4. The reader may wish to check whether they are all
intuitively true in the model in Figure 1, say, at state A1E1.

1.
[Eve]HE → ¬[Adam]¬HE

If Eve has an action ensuring that she becomes happy, then
Adam cannot prevent Eve from reaching a state where she is happy.
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2. The statement above naturally generalizes (with Win being an atomic proposition) to

[i]Win→ ¬[Agt\{i}]¬Win

If the agent i has an action to guarantee reaching a “winning” outcome, then the coalition of
all other agents cannot prevent i from reaching a “winning” outcome.
It should be intuitively clear that this statement expresses a valid principle of CL.
Indeed, we will see shortly that this is the case.

3.
¬[Adam]T ∧ ¬[Eve]T ∧ [{Adam, Eve}]T

Neither Adam nor Eve has an action ensuring that they stay together, but they have a joint
action ensuring that.

4.
¬[Adam]HA ∧ ¬[Eve]HE ∧ [{Adam, Eve}](HA ∧ HE)

Neither Adam nor Eve has an action ensuring happiness for himself / herself but they have a
joint action ensuring happiness for both.

5.
¬[Adam](HA ∧ ¬[Eve] HE)

Adam cannot act so as to ensure at the outcome state that both Adam is happy and Eve does
not have an action to ensure reaching her happiness.

6.
[{Adam, Eve}]([Adam]HA → [Eve] HE)

Adam and Eve can act jointly so that at the outcome state Adam has an action to ensure
reaching his happiness only if Eve has an action to ensure reaching her happiness.

7.
[Adam][Eve](HA ∧ HE ∧ [Adam]HE ∧ [Eve] HA)

Adam can act to ensure (at the outcome state), that Eve can then act to ensure that they are
both happy and that each of them can act so as to keep the other happy.

Thus, we see that the language of CL allows expressing meaningful and nontrivial
claims about agents’ local (immediate) strategic abilities. However, CL does not allow
expressing long-term (temporal) goals and claims, e.g., that Adam and Eve have a joint
strategy to stay together forever, or to eventually reach happiness. For that, a more expressive
logic is needed, also involving temporal operators. It is introduced in Section 5.

4.3. Formal Semantics of CL

The formulae of CL are interpreted in concurrent game models. Consider a CGM
M = (Agt,S,Act, act,Out,Prop, L). Truth of a CL-formula ψ at a state s inM, denoted
M, s |= ψ, as in modal logic, is defined by structural induction on formulae via the clauses:

• M, s |= p iff p ∈ L(s), for p ∈ Prop.
• M, s |= ¬φ iff M, s 6|= φ.
• M, s |= (φ1 ∨ φ2) iff M, s |= φ1 andM, s |= φ2.
• M, s |= [C]φ iff there exists a joint action σC available at s,

such thatM, u |= φ for each u ∈ Out[s, σC].

Note that this definition makes no implicit assumption that the agents in C know the
goals of the remaining agents, nor the actions that they may possibly use to achieve these
goals.

Here are examples of truth of some of the CL formulae listed in Section 4.2 in the CGM
for Example 4, given in Figure 1, which are left for the reader to formally verify.

• M, A1E1|= ¬[Adam]T; M, A1E1|= ¬[Eve]T.
• M, A1E1|= [{Adam, Eve}]T.
• M, A1E1|= ¬[Adam]HA ∧ ¬[Eve]HE ∧ [{Adam, Eve}](HA ∧ HE).
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• M, A1E1|=[{Adam, Eve}]([Eve]HE∧¬[Adam]HA∧[{Adam, Eve}](HA∧HE)).

4.4. Axiomatizing the Validities of CL

A CL formula φ is called:

• (Logically) valid ifM, s |= φ for every CGMM and a state s ∈ M.
• Satisfiable ifM, s |= φ for some CGMM and a state s ∈ M.

Pauly [4,5] obtained a complete axiomatization of the valid formulae of CL, by extend-
ing the classical propositional logic PL with the following axiom schemes and rule:

• Agt-maximality: ¬[∅]¬ϕ→ [Agt] ϕ
This axiom says that the grand coalition Agt can act collectively so as to guarantee any
goal that is satisfied in at least one outcome state. Note that the validity of this axiom
presupposes that the models are deterministic, implying that the coalition of all agents
Agt can enforce any particular possible outcome.

• Safety: ¬[C]⊥
No coalition has the ability to ensure the falsum will become true.

• Liveness: [C]>
Every coalition has the ability to ensure the truth will become true.

• Superadditivity: for any C1, C2 ⊆ Agt such that C1 ∩ C2 = ∅:

([C1] ϕ1 ∧ [C2] ϕ2)→ [C1 ∪ C2] (ϕ1 ∧ ϕ2)

This axiom scheme says that two disjoint coalitions, each of which has a joint action
to guarantee satisfaction of their own goal, can join forces (simply by each of them
following their respective joint action) to guarantee satisfaction of both goals.

• [C] -monotonicity Rule:
ϕ1 → ϕ2

[C] ϕ1 → [C] ϕ2

Some important derivable validities include:

• Outcome Monotonicity: [C] (ϕ1 ∧ ϕ2)→ [C] ϕ1.
This is derived directly by applying the [C] -monotonicity rule.

• Coalition Monotonicity: [C1] ϕ→ [C1 ∪ C2] ϕ.
This is derived by applying the superadditivity axiom scheme to the coalitions C1
and C2 \ C1 with respective goals ϕ and >. Note that this validity together with
Agt-maximality also implies the validity of [Agt] ϕ ∨ [Agt]¬ϕ, for any formula ϕ.

• Coalition complementarity: [C] ϕ→ ¬
[
C
]
¬ϕ, where C = Agt \C.

This is derived by applying the superadditivity axiom scheme to the coalitions C and
C with respective goals ϕ and ¬ϕ, and then the safety axiom scheme.

The problem of deciding whether a given formula in the logic CL is valid, respectively,
satisfiable, is decidable [4,5]. This and other technical results about CL are subsumed by
respective results for the more expressive logic ATL, presented in the next section.

5. Logics for Unconditional Long-Term Strategic Reasoning

The logic CL can only capture strategic reasoning about abilities to achieve local, i.e.,
one-step goals. It can be naturally extended with temporal operators to reason about
long-term unconditional strategic abilities, of the type:

“The coalition C has a joint strategy to guarantee achievement of the coalitional
goal of C in every outcome play resulting from C following that strategy”.

This is the informal reading of the strategic operator 〈〈C〉〉 in the alternating time temporal
logic ATL and family, introduced (independently from the logic CL) in [7].

I will present and illustrate here the family of ATL-related logics. For more detailed
and technically involved surveys on these logics, see [8,9].
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5.1. The Alternating-Time Temporal Logic ATL∗.

The full alternating-time temporal logic ATL∗, introduced in [7], involves long-term
temporal operators, the standard repertoire being “next-time” X , “always” G , and “until” U .

The strategic operator in ATL∗ is 〈〈C〉〉φ, denoting the claim that

“The coalition C has a joint strategy that guarantees the satisfaction of the goal φ
on every outcome play induced by that joint strategy“,

where φ is any formula of ATL∗. The language of ATL∗ is formally defined as follows.
It involves two sorts of formulae: state formulae, that are evaluated at game states, and
path formulae, that are evaluated on game plays. These are, respectively, defined by the
following grammars, where p ∈ Prop and C ⊆ Agt:

State formulae: ϕ ::= p | > | ¬ϕ | (ϕ ∨ ϕ) | 〈〈C〉〉γ.
Path formulae: γ ::= ϕ | ¬γ | (γ ∨ γ) | Xγ | Gγ | (γUγ).

Thus, the path formulae are used to formalize goals.
The language of ATL∗ is too expressive, and that both creates problems with its

intuitive interpretation (see discussions on [38–40]) and raises the complexity cost of
computing the truth of an ATL∗ to 2EXPtime (cf. [7]). To alleviate these, the fragment ATL
was also introduced in [7], which only contains state formulae, defined by the grammar:

ϕ ::= p | ¬ϕ | (ϕ ∨ ϕ) | 〈〈C〉〉X ϕ | 〈〈C〉〉G ϕ | 〈〈C〉〉(ϕUϕ),

Thus, the coalitional goals in ATL only involve simple patterns with a single temporal
operator, which will be called simple temporal goals. We define 〈〈C〉〉F ϕ as 〈〈C〉〉(>Uϕ).

The logic CL embeds into ATL as the fragment where the goals can only be of the type
X ϕ, for a state formula ϕ (cf. [41]), i.e., [C] ϕ ::= 〈〈C〉〉X ϕ.

Hereafter, in this section, I will focus on the logic ATL.

5.2. Formal Semantics of ATL

Similar to CL, the formulae of ATL∗ are interpreted in concurrent game models. To
keep the presentation less technical, I will only give the formal semantics for the fragment
ATL, which consists only of state formulae; for full details of the semantics of ATL∗, see,
e.g., [8].

Consider a CGMM = (Agt,S,Act, act,Out,Prop, L). Truth of an ATL-formula ψ at
a state s inM, denotedM, s |= ψ, is defined by structural induction on formulae. The
propositional cases are similar to in CL, and the only new clauses are those for the strategic
operators. They all follow the same pattern, which is essentially the semantic clause for
〈〈· · ·〉〉 in ATL∗:

M, s |= 〈〈C〉〉γ iff there exists a joint strategy ΣC for C such that γ is true on every
play in Plays(s, ΣC), i.e., every play starting at s and induced by ΣC.

The specific clauses for the temporal operators defining the goal γ are as follows,
where s0 = s:

• M, s |= 〈〈C〉〉X ϕ iff there exists a joint strategy ΣC such thatM, s1 |= ϕ for every play
s0, s1, ... ∈ Plays(s, ΣC).

• M, s |= 〈〈C〉〉G ϕ iff there exists a joint strategy ΣC such thatM, si |= ϕ for every play
s0, s1, ... ∈ Plays(s, ΣC) and i ≥ 0.

• M, s |= 〈〈C〉〉(ϕUψ) iff there exists a joint strategy ΣC such that for every play
s0, s1, ... ∈ Plays(s, ΣC) there is i ≥ 0 for which M, si |= ψ and M, sj |= ϕ for all
j such that 0 ≤ j < i.

Satisfiability and validity in ATL are defined similar to in CL.
It can be shown (cf., e.g., [36]) that memoryless strategies suffice for the semantics of

ATL formulae, but that is no longer the case even when conjunctions of simple temporal
goals are allowed. Indeed, consider the ATL∗ formula φ = 〈〈a〉〉(F p ∧ F q) and a concurrent
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game model in Figure 2 for the only agent a. Clearly, there is no positional strategy to
satisfy φ at s0, as it must always prescribe the same action, L or R, there, so either s1 or s2,
but not both, will always be visited. On the other hand, there is a simple strategy for a
using a bit of memory that can satisfy φ, e.g., prescribing the first time when s0 is visited
the action L, and the next time—the action R.

s0

s1
{p}

s2
{q}

L R

AA

Figure 2. The formula 〈〈a〉〉(F p ∧ F q) is true at state s0 only if the agent a can use some memory.

5.3. Expressing Claims about Strategic Abilities in ATL

Here are some examples of formalizing in ATL statements about agents’ long-term
strategic abilities.

1.
〈〈Eve〉〉F HE → ¬〈〈Adam〉〉G¬HE

If Eve has an action ensuring that she eventually becomes happy, then Adam cannot prevent
Eve forever from reaching a state where she is happy.
It should be intuitively clear that this statement expresses a valid principle of ATL.
Indeed, this is the case.

2.
(〈〈Yin〉〉G Safe∧ 〈〈Yin〉〉F Goal)→〈〈Yin〉〉(Safe U Goal)

If Yin has a strategy to keep the system in safe states forever and has a strategy to eventually
achieve its goal, then Yin has a strategy to keep the system in safe states until it achieves
its goal.
The formula above is not logically valid. Indeed, the strategies of Yin to keep the
system in safe states forever and to eventually achieve its goal may be incompatible.

3.
(〈〈Yin〉〉G Safe ∧ 〈〈Yang〉〉F Goal)→〈〈{Yin, Yang}〉〉(Safe U Goal)

If Yin has a strategy to keep the system in safe states forever and Yang has a strategy to
eventually reach a goal state, then Yin and Yang together have a strategy to stay in safe states
until a goal state is reached.
Assuming that Yin and Yang are distinct agents, the formula above is logically valid,
unlike the previous one. Indeed, this is due to the independence of the actions of the
two agents, and hence of their abilities to execute their respective strategies.

4.
〈〈A〉〉F 〈〈B〉〉G¬ϕ

The coalition A has a joint strategy to eventually ensure that the coalition B has a strategy to
prevent ϕ from ever happening.
This example raises the question of how the semantics works in the case of nested
strategic operators. Suppose, the coalitions A and B intersect and a is an agent in both
of them. Then, the claim of the external strategic operator 〈〈A〉〉 requires, inter alia,
existence of a strategy for the agent a within a joint strategy σA for A that guarantees
the eventual satisfaction of the subformula 〈〈B〉〉G¬ϕ. However, when evaluating
that subformula, to justify its truth, one has to identify a respective joint strategy
σB for 〈〈B〉〉. Now, the question arises whether the strategy of a within σB should
not be assumed to be already fixed by σA or, conversely, whether the strategy of a
within σA should not be assumed to be already fixed by σB. Note that the standard
formal semantics for ATL∗ (in particular, of ATL) presented here does not impose
any such constraints, but, rather, treats these strategies independently. That is, the
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standard semantics of ATL∗ does not commit the agents in A to the strategies they adopt
in order to bring about the truth of the formula 〈〈A〉〉γ. That creates some conceptual
issues with the very concept of “strategy”, independently addressed in different ways
in [38,39,42,43], where several proposals were made in order to incorporate strategic
commitment or uncommitment and persistent strategies in the syntax and semantics
of ATL∗. These raise a number of still open technical problems regarding constructing
provably complete axiomatizations, proving decidability, and designing decision
procedures for the variations of ATL and ATL∗ mentioned above.

6. The Logic of Conditional Strategic Reasoning ConStR

Let us now look at the reasoning of (and about) an agent, conditional on that agent’s
knowledge of the goals and choices of actions of the other agents. Note that, while knowledge
is not explicitly included in the syntax of the logics considered here, it is implicit in their
reasoning, or in the reasoning of the external observers reasoning about the agents’ abilities,
and it is also implicitly assumed in the formal semantics.

6.1. Conditional Strategic Reasoning: An Informal Discussion

I first focus on a simple case: two agents, Alice and Bob, acting independently, and
possibly concurrently with other agents. Alice has a goal, γA, to achieve. Suppose that
Alice has several possible choices of action that would possibly, or certainly, ensure the
achievement of her goal. Bob also has a goal, γB, of his own and has several possible
actions (there may be other agents, besides Alice and Bob, also acting in pursuit of their
own goals, but we will ignore them here). Now, based on his knowledge about Alice’s goal
and possible choices of actions she may take towards that goal, Bob decides on his own
choice of action in pursuit of his goal.

Here is a simple illustrating scenario, discussed in [27]. Alice and Bob are students
at Downtown University. Alice is coming to campus today, to meet with her supervisor.
Bob wants to meet with Alice somewhere on campus today. Alice may not know that, and
they may have no direct communication. In turn, Bob may, or may not, know what Alice is
going to do on campus. Now, using his knowledge of what, where, and when Alice intends
to do, Bob wants to come up with a plan of where and how to meet her.

This calls for a conditional strategic reasoning with statements of the type:

For some/every action of Alice that guarantees achievement of her goal γA,
Bob has/does not have an action of his own to guarantee achievement of his goal γB.

I will focus here on local conditional strategic reasoning, which only refers to the
immediate actions of the agents, not to their long-term global strategies.

As we will see further, the standard logics for multiagent strategic reasoning, such as
CL and ATL, cannot capture this type of conditional reasoning. A more expressive logic for
conditional strategic reasoning is needed here.

Depending on Bob’s knowledge about Alice’s goal and of her possible or expected
choices of action, there can be several possible cases for Bob’s reasoning.

6.1.1. Case 1: Bob Does Not Know Alice’s Goal or Actions

The simplest case is when Bob does not know Alice’s goal, or her available actions, and
therefore has no a priori expectations about her choice of action. Then, Bob can only ensure
that γB will occur if he has an action to make γB true, regardless of how Alice (and all others)
act. For instance, in our scenario, suppose the campus has only one entrance. If Bob is
standing by the only entrance of the campus, then he is sure to meet Alice when she comes,
no matter what she will do there. This can be simply expressed in coalition logic as [B]γB.

6.1.2. Case 2: Bob Knows Alice’s Goal and Possible Actions

Suppose now, that Bob knows Alice’s goal, as well as all possible actions of Alice that
can ensure the satisfaction of her goal. Thus, Bob knows that Alice will perform one of
these actions, but possibly does not know which one. For instance, in our scenario, Bob knows
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that Alice is coming to campus to meet with her supervisor and she can meet with him
either in his office, or in the lecture room, or in the café.

We can express Bob’s conditional ability to achieve his goal as follows:

“Whichever way Alice acts towards achieving her goal γA,
Bob can act so as to ensure achievement of his goal γB”.

This claim can no longer be expressed in coalition logic, except in the special case when
the satisfaction of Alice’s goal guarantees satisfaction of Bob’s goal, too (thus, Bob need not
do anything about that). That can again be simply expressed in CL as [∅](γA → γB).

6.1.3. Reactive and Proactive Ability

This case above admits two essentially different readings, discussed further: as a reactive
ability, and as a proactive ability. (In [27], these were called ability de dicto and ability de re.)

Bob’s reactive ability. Suppose first, that Bob will know Alice’s choice of action when he
is to choose his action. Then, Bob’s ability to achieve his goal is reactive, meaning that for
every action of Alice that ensures her goal γA, Bob has an action of his, possibly dependent on
Alice’s action, that would also ensure his goal, γB. For instance, in our scenario, suppose
that Alice’s supervisor tells Bob where and when he is going to meet with Alice. Then Bob
can wait for Alice at the respective place. This claim cannot be expressed in CL, so a new
operator is needed for it.

Bob’s proactive ability. Suppose now that Bob will not know Alice’s action when he is to
choose his. For instance, in our scenario, suppose all that Bob knows is that Alice will meet
with her supervisor either in his office, or in the lecture room, or in the café, but does not
know where. Now, for Bob to ensure that his goal will be achieved, he must have a uniform
choice of action to make γB true, when applied with any action of Alice that ensures the
truth of her goal, γA. For instance, in our scenario, suppose that all meeting places for Alice
and her supervisor are in the same building, so Bob can wait for her at the only entrance of
that building. That is, Bob must have a proactive ability to achieve his goal.

This cannot be expressed in CL, either, so a new operator is needed again.

Remark 5. The notions of proactive and reactive ability, respectively, generalize the notions of
α-effectivity and β-effectivity in game theory (cf., e.g., [44]). Indeed, in the context of the Alice
and Bob story above, proactive and reactive ability of Bob correspond precisely, respectively, to α-
effectivity and β-effectivity when either γA ≡ > (so, any action of Alice is equally good for achieving
γA) or when Bob does not know γA and hence can expect any action from Alice. Furthermore, one
can still associate proactive and reactive ability with α-effectivity and β-effectivity if one explicitly
assumes individual rationality of Alice, implying that she would only choose actions that would
ensure γA. Thus, one can regard proactive and reactive ability, respectively, as conditional
α-effectivity and β-effectivity, terminology which will be used further.

Lastly, an important point: even though knowledge of the agent (here, Bob) about
the other’s goals and possible actions is essential, it will not feature in our formal logical
language, nor in the formal semantics, but only in the external reasoner’s analysis, in which
case conditional strategic ability applies.

6.1.4. Case 3: Assuming Alice’s Cooperation

Suppose now that Alice also knows Bob’s goal and can choose to cooperate with Bob
by selecting a suitable action σA, that would not only guarantee achievement of her goal
γA, but will also enable Bob to supplement σA with an action σB of his, which would then
also guarantee achievement of his goal γB (we also assume that Alice knows enough about
Bob’s possible actions). This scenario cannot be formalized in CL, either.

6.2. Modal Operators for Conditional Strategic Reasoning

I will now present three new binary modal operators for conditional strategic rea-
soning, for any coalitions A and B, with intuitive semantics corresponding to the three
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reasoning cases in Section 6.1, i.e., formalizing, respectively, reactive abilities, proactive
abilities, and abilities under cooperation.

Below, A and B are coalitions and γA and γB are their respective goals. In the special
case when A and B are singletons, they are assumed to be different agents.

(Oα) [A]α(γA; 〈B〉γB) means that the coalition B \A of agents who are in B but not in A has
a joint action σB\A such that if A applies any joint action that guarantees the truth of γA,
then B \A can ensure the truth of γB by applying σB.

This operator formalizes the notion of a coalition’s proactive ability, discussed in
the special case of single-agent coalitions in Section 6.1.3, respectively, to the game-
theoretic notion of conditional α-effectivity, hence the notation. Note that the agents in
B∩A (if any) are assumed to act on behalf of A in its pursuit of γA.

(Oβ) [A]β(γA; 〈B〉γB) means that for any joint action σA of A that guarantees the truth of γA,
when applied by A there is a joint action σB\A that guarantees γB when additionally applied
by B \A. Note that [A]β(⊥; 〈B〉γB) is vacuously true for any A, B, and γB, as then there
cannot be such joint actions σA that enable satisfying ⊥. This may sounds odd, but it is no
special phenomenon in ConStR, as the same effect occurs in FOL with universal quantification
over an empty set of objects.

This operator formalizes a claim of the ability of the coalition B to choose a suitable
joint action so as to achieve the goal γB assuming that A acts so as to achieve the goal
γA, if B is to choose their joint action after B learns the joint action of A. In this case,
the actions of the agents in B∩A (if any) are assumed to be already fixed by γA.

This corresponds to the notion of agents’ reactive ability discussed in Section 6.1.3,
respectively, to the game-theoretic notion of conditional β-effectivity, hence the notation.

(Oc) 〈A〉c(γA; 〈B〉γB) means that A has a joint action σA which, when applied, guarantees
the truth of γA and enables B \A to apply a joint action σB\A that guarantees γB when
additionally applied by B \A.

This operator formalizes Case 3 discussed in Section 6.1, where A knows the goal of
B and can choose to cooperate with B by selecting an action among those that ensure
satisfaction of γA which is also suitable for B.

6.3. The Logic ConStR: Language and Some Definable Operators

We fix a finite nonempty set of agents Agt and a countable set of atomic propositions
Prop. The formulae of ConStR, where p ∈ Prop and A, B ⊆ Agt are defined as follows:

φ ::= p | > | ¬φ | (φ ∨ φ) | [A]α(φ; 〈B〉φ) | [A]β(φ; 〈B〉φ) | 〈A〉c(φ; 〈B〉φ)

Here are some definable operators and expressions in ConStR, which can be easily
seen from the informal semantics above, and can also be easily verified with the formal
semantics introduced further.

• The coalitional operator from CL is definable by means of each of Oc, Oα, Oβ as follows:

(Oα) [C]φ ::= [∅]α(>; 〈C〉φ).
This claims an unconditional ability of C to choose an action that guarantees φ.

(Oβ) [C]φ ::= [∅]β(>; 〈C〉φ), or [C]φ ::= [C]β(>; 〈C〉φ).
The only strategy of the empty coalition guarantees the satisfaction of >.

(Oc) [C]φ ::= 〈C〉c(φ; 〈C〉φ) or [C]φ ::= 〈C〉c(φ; 〈C〉>).
• 〈A〉c(γA; 〈B〉γB) is equivalent to 〈〈A〉〉(γA ∧ 〈〈B \A〉〉γB) in ATL∗.
• The negated Oc operator ¬〈A〉c(φ; 〈B〉ψ) says that every joint action of A that, when

applied, guarantees the truth of φ, would prevent B from acting additionally so as to
guarantee ψ. This formalizes the conditional reasoning scenario where the goals of A
and B are conflicting, so whichever way A acts towards its goal would block B from
acting to guarantee achievement of B’s goal.
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• [A]β(>; 〈B〉ψ) essentially formalizes the case when the agents in B are not informed
about the goal of A, but have to choose their action after learning the action of A.

• On the other hand, [A](φ|ψ) ::= [A]β(φ; 〈∅〉ψ), also equivalent to [A]α(φ; 〈∅〉ψ), says
that any joint strategy of A that guarantees φ to be true also guarantees ψ to be true.
That formalizes the claim of an observer who knows both the goal φ and the possible
joint actions of A, that the outcome from the joint action of A will also satisfy ψ.

• 〈A〉(φ|ψ) ::= ¬[A](φ|¬ψ) says that there is a joint strategy of A that ensures the truth
of φ and also enables the satisfaction of ψ.
〈A〉(φ|ψ) is also definable as 〈A〉c(φ; 〈A〉ψ), where A = Agt \A.

• The coalitional operator [A] from CL is a special case of the above: [A]φ ::= 〈A〉(φ|>).

6.4. Formal Semantics of ConStR

Given coalitions A, B ⊆ Agt and joint actions σA for A and σB for B, we define the
ordered join of σA and σB to be the joint action σA ] σB for A ∪ B which equals σA when
restricted to A and equals to σB when restricted to B \A. Thus, in particular, σA ] σB = σA
for any B ⊆ A ⊆ Agt and σA ] σB = σA ∪ σB when A and B are disjoint.

Now, letM = (Agt,S,Act, g,Prop, L) be a concurrent game model.
The formal semantics of ConStR extend the semantics of CL to the new operators as

follows (recall the definition of Out[s, σ] from Section 2):

M, s |= [A]α(φ; 〈B〉ψ) iff
B has a joint action σB such that for every joint action σA of A,
ifM, u |= φ for every u ∈ Out[s, σA], thenM, u |= ψ for every u ∈ Out[s, σA ] σB].

M, s |= [A]β(φ; 〈B〉ψ) iff
for every joint action σA of A such thatM, u |= φ for every u ∈ Out[s, σA],
B has a joint action σB (generally, dependent on σA) such that
M, u |= ψ for every u ∈ Out[s, σA ] σB].

M, s |= 〈A〉c(φ; 〈B〉ψ) iff
A has a joint action σA, such thatM, u |= φ for every u ∈ Out[s, σA] and
B has a joint action σB such thatM, u |= ψ for every u ∈ Out[s, σA ] σB].

Remark 6. The semantics of each of the operators above can be restated to consider joint actions
for B \A rather than the whole B. For instance, it can be easily verified for the latter operator, that
M, s |= [A]α(φ; 〈B〉ψ) iff B \A has a joint action σB\A such that for every joint action σA of A, if
M, u |= φ for every u ∈ Out[s, σA], thenM, u |= ψ for every u ∈ Out[s, σA ] σB\A].

As usual, formula φ of ConStR is called valid in ConStR, denoted |=ConStR φ, iff
M, u |= φ for every concurrent game model M and state u ∈ M; φ is satisfiable in
ConStR, iffM, u |= φ for some concurrent game modelM and state u ∈ M.

Here are some easy observations on the relationships between the operators in ConStR:

Proposition 7. The following validities and nonvalidities in ConStR hold:

1. |=ConStR [a]α(p; 〈b〉q)→ [a]β(p; 〈b〉q).
2. 6|=ConStR [a]β(p; 〈b〉q)→ [a]α(p; 〈b〉q).
3. 6|=ConStR 〈a〉c(p; 〈b〉q)→ [a]β(p; 〈b〉q).
4. 6|=ConStR 〈a〉c(p; 〈b〉q)→ [a]α(p; 〈b〉q).
5. 6|=ConStR [a]α(p; 〈b〉q)→ 〈a〉c(p; 〈b〉q).
6. 6|=ConStR [a]β(p; 〈b〉q)→ 〈a〉c(p; 〈b〉q).
7. |=ConStR ([A]p ∧ [a]β(p; 〈b〉q))→ 〈a〉c(p; 〈b〉q).

Proof.

1. Immediately from the semantic definitions, as ∃∀ implies ∀∃.
2. A counter-model is shown further, in Example 8.
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3. A counter-model is shown in Example 8.
4. Follows from 1 and 3 above.
5. This holds for the trivial reason that if in a given model the agent a has no action

that ensures the truth of p in the given state, then the antecedent is vacuously true,
whereas the consequent is false there.

6. Likewise.
7. An easy semantic exercise.

Example 8. Consider the game modelM in Figure 3, with two players, a and b, where at state s0
a has 3 actions, a1, a2, anda3, and b has 2 actions, b1andb2.

s0
{p}

s1
{p}

s2
{p}

s3
{p,q}

s4
{p,q}

s5
{p}

s6
{}

(a3, b1)

(a1, b1)

(a1, b2)

(a2, b1)

(a2, b2)

(a3, b2)

Figure 3. The concurrent game modelM in Example 8.

Note that:

1. M, s0 6|= [b]q, whereasM, s0 |= 〈a〉c(p; 〈b〉q).
Thus, an agent may have only conditional ability to achieve its goal.

2. M, s0 6|= [a]α(p; 〈b〉q). Indeed, neither b1 nor b2 ensures q against both choices a1 and a2 of
a. Thus, b does not have a uniform action to ensure q against any action of a that ensures p.

3. M, s0 |= [a]β(p; 〈b〉q). Indeed, a has two actions at state s0 to ensure p: a1 and a2. For each
of them, b has an action to ensure q: choose b2 if a chooses a1, and choose b1 if a chooses a2.
Therefore, 6|=ConStR [a]β(p; 〈b〉q) → [a]α(p; 〈b〉q). Thus, the claim made by the proactive
ability operator Oα is stronger than the claim made by the reactive ability operator Oβ.

4. On the other hand, if the outcomes of (a2, b1) and (a2, b2) are swapped, then [a]α(p; 〈b〉q)
becomes true at s0 in the resulting model.

5. Furthermore, clearly, [a]α(p; 〈b〉q)→ [a]β(p; 〈b〉q) is a valid formula in ConStR.
6. If the model is modified by making p true also at s6, then in the resulting modelM′ we have

M′, s0 |= 〈a〉c(p; 〈b〉q) andM′, s0 6|= [a]β(p; 〈b〉q).
Therefore, 6|=ConStR 〈a〉c(p; 〈b〉q)→ [a]β(p; 〈b〉q).

7. Note also that (M, s0) does not satisfy the ATL formula [[a]](Xp→ 〈〈b〉〉Xq) (where [[C]]φ ::=
¬〈〈C〉〉¬φ); hence, it is not equivalent to [a]β(p; 〈b〉q).
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For more examples and observations on the mutual nonexpressiveness of the operators
in ConStR, see [28]. Moreover, using the notions of bisimulation defined there for each of
these operators, one can show that none of the three binary operators in ConStR can be
defined in terms of the other two.

6.5. On the Axiomatization and Decidability for ConStR

A system of axioms AxConStR for ConStR is presented in [28]. It involves lists of axioms
for each of the operators Oc, Oα, and Oβ, as well the following two interaction axiom
schemes:

(ConStR 1) [A]α(φ; 〈B〉ψ)→ [A]β(φ; 〈B〉ψ).
(ConStR 2) ([A]φ ∧ [A]β(φ; 〈B〉ψ)→ 〈A〉c(φ; 〈B〉ψ).

These schemes are generated by uniform substitutions in the respective validities 1
and 7 in Proposition 7. Notably, the only axiom scheme identified there which distinguishes
the operators Oα and Oβ is the following antimonotonicity (with respect to A) scheme:

[A∪C]α(φ; 〈B〉ψ)→ [A]α(φ; 〈B〉ψ) for any C ⊆ Agt,
which is valid for Oα but not Oβ. For proof of this claim, and for the other axiom schemes
and inference rules for each of the operators of ConStR, see [28].

The only additional (to modus ponens) inference rules are the O-monotonicity rules,
for O being each of Oα, Oβ, and Oc. For instance, here is the Oc-monotonicity rule:

φ→ φ′, ψ→ ψ′

〈A〉c(φ; 〈B〉ψ)→ 〈A〉c(φ′; 〈B〉ψ′)

The completeness proof for AxConStR is currently still under development, so its complete-
ness is currently still a conjecture, and so is even the completeness of each of the three main
subsystems, one for each of the respective operators. For all that I currently know, these
seem to be quite challenging problems.

Another conjecture is the decidability of satisfiability in ConStR, even in each of its
three main subsystems. Here, I only claim that it can be proved by a model-theoretic
argument, based on the bounded tree-model property, meaning that every satisfiable formula
of SFCL is satisfiable in a finite tree-like model of height and branching factor effectively
bounded above in terms of the size of the formula. (Detailed proof of this claim is currently
under construction, so the claim is, at present, still a working conjecture.)

7. The Socially Friendly Coalition Logic SFCL

The “socially friendly coalition logic” SFCL was introduced in [25] with the aim to
capture and formalize the idea that, while socially responsible (or, “friendly”) rational
agents and coalitions act in pursuit of their own goals, when deciding on their course of
action they can take into account the goals of other agents in the system and make allowance
for cooperation enabling their satisfaction, too, whenever it is possible, to reconcile their
goals with those of the others. Formally, the idea is implemented by introducing in the
formal language a “socially friendly coalitional operator”, presented here.

7.1. Socially Friendly Coalitional Operators

SF The socially friendly coalitional operator SF takes any positive number of formulae
φ, ψ1, . . . , ψk as arguments and places them together into a single formula as follows:

[C](φ; ψ1, . . . , ψk).

I will call the formula φ above the primary goal of the formula (and of the coalition
C) and the formulae ψ1, . . . , ψk—the secondary goals of the formula.

The intuitive meaning of the formula [C](φ; ψ1, . . . , ψk) is that
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“C has a joint action σC that guarantees satisfaction of φ and also enables the
complementary coalition C to satisfy any one of the goals ψ1, . . . , ψk by applying a
respectively suitable joint action”.

The operator SF is a multiagent extension of the modal operator 2(ψ1, . . . , ψk; φ)
(note the different order of the arguments) in the instantial neighborhood logic (INL)
introduced and studied in [45].

The special case of the “socially friendly coalitional operator” with a single secondary
goal [A](φ; ψ) is equivalent to the operator 〈A〉(φ|ψ) defined in Section 6.

In particular, the strategic operator of CL is also definable here, as [C]φ ::= [C](φ;>).
SF1 A refinement of SF: [C; C1, . . . , Cn](φ; φ1, . . . , φn), meaning:

“C has a collective action σC that guarantees φ, and is such that, when fixed,
each Ci has a collective action that guarantees φi”.

This definition presumes that if C intersects with Ci, then the agents in C ∩ Ci are
already committed to σC. On the other hand, the collective actions claimed to
exist for each Ci need not be compatible, similar to in the intuitive semantics of
[C](φ; ψ1, . . . , ψk), which is a special case of SF1, where C1 = . . . = Cn = Agt \C.

SF2 [〈C1〉φ1; . . . ; 〈Ck〉φk] meaning: “C1 has a collective action to guarantee φ1, and given that
action ... Ck has a collective action to guarantee φk”.

This is a sequential version of SF1 where the coalitions C1, ..., Ck are arranged in
decreasing priority order.

Hereafter, I will consider SF only.

7.2. Syntax and Semantics of the Logic SFCL

The formulae of SFCL are defined by the following grammar:

φ ::= p | > | ¬φ | (φ ∨ φ) | [C](φ; φ, . . . , φ) (p ∈ Prop)

The standard definitions of the other propositional connectives apply.
In addition, I define [C]φ := [C](φ;>). Given a finite list of formulae Ψ = ψ1, . . . , ψk, I

will write [C](φ; Ψ).
The fragment of SFCL containing only formulae [C](φ; ψ) where ψ is a single formula

will be denoted by SFCL1.
The formal semantics of SFCL is given in terms of truth of an SFCL-formula at a state

s of a concurrent game modelM inductively, as in CL, with the following main clause:

M, s |= [C](φ; Ψ) iff
there exists a joint action σC of C available at s,
such thatM, u |= φ for each state u in its outcome set O[s, σC],

and for each ψ ∈ Ψ there is a state v ∈ O[s, σC] such thatM, v |= ψ.

7.3. Example 1: Negotiating the Family Budget

Example 9. This example is an adapted and extended version of one from [25]. Consider the family
couple Ann and Bill and their son Charlie. Each of them has saved some money. Now, they are
sitting in a family meeting and negotiating on how to spend their savings. Ann wishes for a complete
kitchen renovation, Bill wants a new car, and Charlie dreams of a holiday trip to Disneyland.

Ann considers two options for a kitchen: a cheaper IKEA version, or a designer’s luxury
version. Bill thinks of three options for a car: a cheap used black Ford, a more expensive new green
Tesla, or an even more expensive, vintage pink Cadillac. As for Charlie, he would prefer the whole
family to go for an expensive week-long family excursion to Disneyland in Paris, but could also
settle for a cheaper 2-day car trip to Disneyland Park in California.
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The possible actions of every family member or a group are to pay for any option of their wish
that they can afford, and then leave the rest of their savings in the family money pool for the other(s)
to use. Let us denote the respective goals by:

• CK (cheap kitchen), EK (expensive kitchen), K = CK ∨ EK (any kitchen);
• CC (cheap car), AC (average car), EC (expensive car), C = CC ∨ AC ∨ EC (any car);
• CT (cheap trip), ET (expensive trip), T = CT ∨ ET (any trip).

Calculations show that Ann’s choices and money produce the following strategic powers:

• Ann can afford to pay for an expensive kitchen and then let the others choose some car or some
trip, formally: [Ann](EK; C, T).

• Alternatively, Ann can settle with a cheap kitchen, and then let the others choose between
some car plus some trip, or an expensive car, or an expensive trip; formally: [Ann](CK; CC ∧
CT, EC, ET).

• However, if Ann opts for an expensive kitchen, then the family cannot afford an average car
plus a trip; formally: ¬[Ann](EK; AC ∧ T).

Likewise, it turns out that Bill has the following strategic powers:

• [Bill](C; K, T);
• [Bill](CC; EK, ET).
• However, ¬[Bill](EC; AK ∧ T).

Charlie alone cannot afford to pay in full for any trip, but can only leave his savings in the
family pool and try to negotiate some trip with his parents. Formally: ¬[Charlie](T;>).

Lastly, here are some coalitional powers:

• [{ Ann, Bill}](C ∧ EK; CT);
• [{ Ann, Charlie}](CK ∧ ET; CC);
• [{ Bill, Charlie}](AC ∧ CT; K).

Now, one may ask, for instance, whether it can be derived from all of the above whether the
whole family can afford to buy the pink Cadillac and also drive with it to Disneyland in California,
i.e., whether [{Ann, Bill, Charlie}](EC ∧ CT;>); or whether Ann can obtain her dream designer’s
kitchen and still enable Bill to buy a new Tesla or the family to go to Disneyland in Paris, i.e.,
[Ann](EK; AC, ET), etc.

7.4. Example 2: Job Applicants

Consider four job candidates, Alice, Bob, Carl, and Diana, who have applied to three
companies: Banana, Megasoft, and Fakebook, each advertising one position.

Suppose no candidate has strong preferences between these jobs.
All candidates have been interviewed by each of the companies.
Each company has selected and ranked in a priority order some of them, in which

order they are offered the job and have to accept it or not. If an offer is not accepted, it goes
to the next-ranked candidate, until the position is filled (if at all).

The rankings have been communicated to the candidates, as follows:

Banana: Megasoft: Fakebook:
1. Alice, 2. Bob, 3. Carl. 1. Diana, 2. Bob. 1. Alice, 2. Diana.

Each of the candidates must now make their strategic choice of which offer to accept,
if and when given the option. Suppose the candidates can communicate with each other.

Here are some true statements formalized in SFCL, where Alice, Bob, Carl, and Diana
are labeled as A, B, C, D and eX means “X obtains a job”:

• [A](eA; eB ∧ eD, eC ∧ eD, eB ∧ eC)
Indeed, Alice can take the offer from Fakebook and leave it to the others to decide on
the other two positions. Note that Bob can then choose either offer and enable either
Carl or Diana to obtain a job, but can also decline both offers and thus enable both of
them to obtain a job.
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• [A](>; eB ∧ eC ∧ eD)
Alternatively, Alice can act selflessly by declining both offers, and thus enable all
others to obtain a job (by Bob choosing Fakebook).

• ¬[C](eC;>) ∧ [C](>; eC)
Carl cannot be sure to obtain a job, but all others can be sure of this.

• ¬[D](eD; eB ∧ eC) ∧ [D](eD; eB, eC)
Diana cannot be sure to obtain a job and enable the others to see to it that both Bob
and Carl obtain a job, but she can ensure that she obtains a job (by accepting the offer
from Megasoft) and then the others ensure that either Bob or Carl obtains a job, too.

• [{A, D}](eA ∧ eD; eB, eC)
Alice and Diana together can ensure that they both obtain a job and then either of the
other two can obtain a job, too, up to their choice.

• [{A, D}](eA ∧ eD ∧ ¬eB ∧ ¬eC)
Alice and Diana can also be mean and act together so that only they obtain jobs, by
accepting the respective offers from Banana and Megasoft and leaving the Fakebook
position unfilled.

7.5. Socially Friendly Coalition Logic SFCL: A System of Axioms

The system of axioms AxSFCL for SFCL, proposed in [25], combines AxCL with a
multiagent extension of the axiomatization of the instantial neighborhood logic (INL) [45],
plus some additional axiom schemes. Here is just one of these additional schemes from
AxSFCL, where Ψ is a finite list of SFCL-formulae and Ψ, θ is the list obtained by appending
θ to Ψ:

(INL5) [C](φ; Ψ)→ [C](φ ∧ ¬θ; Ψ) ∨ [C](φ; Ψ, θ)

This is a valid scheme. Indeed, for any formula θ, the strategy for C that ensures φ
and enables each formula in the list Ψ either also ensures ¬θ, in which case it can
be added conjunctively to φ, or else enables θ, in which case it can be added to the
list Ψ.

The only additional (to modus ponens) inference rule is [C]-monotonicity:

φ→ φ′, ψ1 → ψ′1, . . . , ψk → ψ′k
[C](φ; ψ1, . . . , ψk)→ [C](φ′; ψ′1, . . . , ψ′k)

.

Note that the rule RE in the axiomatic system for INL in [45] is an admissible rule here,
and that can be proved by a routine induction on the structure of ϕ in that rule. For the
Boolean cases, that is due to the completeness of the purely propositional fragment (where
MP suffices), and the case of ϕ = [C](...) is handled by using the [C]-monotonicity rule.

A completeness proof for AxSFCL was presented in [25], but an error was subsequently
found in it (on which an erratum has been posted). The correct proof of completeness is
currently still under development, and therefore the completeness claim is currently only a
working conjecture.

Another conjecture is the decidability of satisfiability in SFCL. Here, I only claim
that it can be proved by a model-theoretic argument, similar to the decidability of ConStR,
based on the bounded tree-model property, meaning that every satisfiable formula of SFCL is
satisfiable in a finite tree-like model of height and branching factor effectively bounded
above in terms of the size of the formula. A proof of this claim, which is, at present, formally
still a working conjecture, will be presented in a subsequent work.

Further open problems and directions for further research are related to various
natural generalizations of SF, including SF1 and SF2. To my knowledge, they have not
been explored and no technical results are even conjectured for them yet, except for some
special cases explored in the context of conditional strategic reasoning in Section 6.
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8. The Logic of Local Coalitional Goal Assignments (LCGA)

The logic LCGA was introduced in [25] as the “group protecting coalition logic (GPCL)”,
with the aim to formalize the idea, complementary to that of SFCL, that, while socially
responsible rational agents and coalitions contribute with their individual and collective
actions to the society of all agents, they wish to achieve that in a way that protects their indi-
vidual and collective interests and goals. Formally, the idea is implemented by introducing
in the formal language a “coalitional goal assignment operator” (called “group protecting
coalitional operator” in [25]), presented here.

8.1. The Coalitional Goal Assignments Operator

The coalitional goal assignments operator takes a list of coalitions C1, ..., Ck and a list
of formulae representing their goals φ1, ..., φk and produces a formula of the type:

〈[C1 . φ1, ..., Ck . φk]〉.

The intuitive meaning of the claim formalized by the formula above is that there is an
action profile σ of Agt, such that for each i, the restriction of σ to the coalition Ci is a joint
action σi that guarantees the satisfaction of φi, even if some, or all, other agents deviate
from the action profile σ. In particular, [C]φ is equivalent to 〈[C . φ]〉.

Now, I will define a more general and succinct representation of that operator. First,
a coalitional goal assignment is a mapping γ : P(Agt) → Γ, where Γ is a set of goal
formulae (which may, but need not be, the full logical language under consideration). Thus,
for every coalition C, γ(C) expresses the goal of C.

Usually, most of the possible coalitions do not have coalitional goals and hence do not
form. That can be formalized by assigning the “truth” > as a goal to each of them.

Now, the operator defined above naturally generalizes to one expressed simply as
〈[γ]〉, which is a concise representation of 〈[C1 . γ(C1), ..., C2n . γ(C2n)]〉, where C1, ..., C2n is
a (fixed) canonical enumeration of the set P(Agt) of all subsets (coalitions) of Agt.

8.2. Syntax and Semantics of the Logic LCGA

The formulae of LCGA are given by the following grammar:

φ ::= p | > | ¬φ | (φ ∨ φ) | 〈[γ]〉 (p ∈ Prop)

where p ∈ Prop and γ is a coalitional goal assignment. All other standard propositional
connectives are defined as usual.

I will use the notation 〈[C1 . φ1, ..., Ck . φk]〉 as an explicit record of 〈[γ]〉 where γ is the
(unique) coalitional goal assignment defined by γ(C1) = φ1, ..., γ(Ck) = φk, and γ(C) = >
for every other C ∈ P(Agt). Clearly, both notations for the coalitional goal assignment
operator are expressively equivalent. Furthermore, while the alternative option seems
generally more succinct, that gain vanishes if 〈[γ]〉 is defined as a partial goal assignment,
assigning only the nontrivial goals.

The semantics of LCGA is given in terms of truth of an LCGA-formula at a state s of a
concurrent game modelM. The only new semantic clause is the one for 〈[·]〉:

M, s |= 〈[γ]〉 iff there exists an action profile σ ∈ ΣAgt, available at s
and such thatM, u |= γ(C) for every C ⊆ Agt and every u ∈ O[s, σ|C].

The intuitive reading is spelled out in more detail as follows:

“There is a strategy profile of the grand coalition in which all agents participate with their
individual strategies in such a way that, each agent or coalition guarantees the satisfaction
of its own goal against any possible deviations of all other agents, thus protecting its
individual (respectively, coalitional) interests.”

The clause for 〈[γ]〉 can also be given in terms of extensions, where ΣAgt = ∏a∈Agt Σa:

[[〈[γ]〉]]M=
{

s∈S | ∃σ ∈ ΣAgt :O[s, σC]⊆ [[γ(C)]]M for all C⊆Agt
}
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8.3. Some Observations and Examples of the Expressiveness of LCGA

1. The operator 〈A〉c(φ; 〈B〉ψ), introduced in Section 6, is definable in terms of 〈[·]〉:
〈A〉c(φ; 〈B〉ψ) = 〈[A . φ, A ∪ B . ψ]〉. Nevertheless, it has a different motivation and
intuitive interpretation there.

2. The fragment SFCL1 of SFCL (subsuming CL) embeds into LCGA by defining [C](φ; ψ)
equivalently as 〈[C . φ,Agt .ψ]〉.
However, this does not generalize to [C](φ; ψ1, . . . , ψk) for k ≥ 2.
Conversely, the operator 〈[C1 . φ1, ..., Cn . φn]〉 cannot be expressed in terms of the
SFCL operators [C](φ; ψ1, . . . , ψk), either.
These nonexpressiveness claims can be proved by using the respective notions of
bisimulations introduced for each of these operators in [25].

3. 〈[C1 .φ1, C1 ∪C2 .φ2, ..., C1 ∪ ...∪Ck .φk]〉 is equivalent to the sequential version SF2 of
the operator SF, mentioned in Section 7.1 as [〈C1〉φ1; . . . ; 〈Ck〉φk], where the coalitions
C1, ..., Ck and their goals are arranged in decreasing priority order.

4. On the other hand, 〈[C1 . φ1, C1 . φ2, ..., Ck . φk]〉 is essentially expressible, up to a natu-
ral transformation of the models and semantics, in the group strategic STIT (cf. [13,14]),
as 3([C1 stit]X φ1 ∧ ... ∧ [Ck stit]X φk). This observation (suggested by a reviewer)
leads to a new computationally well-behaved fragment of the group strategic STIT,
which is known to be not only undecidable, but even nonaxiomatizable; cf. [14].

The following example is from [25], where it was adapted from [1].

Example 10. [password protected data sharing] Consider a scenario involving two players, Alice
(A) and Bob (B). Each of them owns a server storing some data, to which access is password-
protected. The two players want to exchange passwords, but neither player is sure whether to trust
the other. Thus, their common goal is to successfully cooperate and exchange passwords, but each
player also has the private goal not to give away their password in case the other one turns out to be
untrustworthy and refuses access to their data (a side remark: nowadays, such deals are arranged by
smart contracts).

Let us write HA for “Alice has access to the data on Bob’s server” and HB for “Bob has access
to the data on Alice’s server”. Thus, the best possible outcome for Alice is HA ∧ HB and the worst
possible outcome is ¬HA ∧ HB; symmetrically for Bob. Therefore, can the two players cooperate
to exchange passwords in a way that satisfies the provisos above? Clearly, we cannot answer that
question in any definitive way without having the precise details of the actual setup.

For example, suppose we define the game as follows: each player chooses a password, which may
or may not be the correct one, and sends it to the other player, and they perform that simultaneously.
Then, the game ends. In this game, the coalition {A, B} can certainly force an outcome where each
player has the other’s password, i.e., the LCGA-formula

〈[{A, B}(HA ∧ HB)]〉

holds true. However, the strategy profile satisfying this goal assignment does not satisfy the players’
individual private goals, since each runs the risk of giving away their password without obtaining
the other’s in return, if the other deviates. Therefore, the problem is more correctly described by the
following stronger formula of LCGA:

〈[{A, B} . HA ∧ HB, A . HB → HA, B . HA → HB]〉

Clearly, in the simple setup above, such a strategy profile does not exist, but suppose we add
a second round to the game, in which each player can first verify the other’s password received in
the first round (without being able to access the data yet) and then can either confirm their own
password they have sent, if the other’s password is correct, or else change their password (thus
making the shared one useless) if the other’s is not correct. Then, there is a strategy profile that
satisfies the specification above, and thus enables the players to exchange passwords in a way that
protects their individual interests, too.
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8.4. Axiomatic System for LCGA

The axiomatic system AxLCGA for the logic LCGA presented here was first proposed
in [25] (for the logic GPCL) and then refined in the present form in [26]. Note, however, that
the notation 〈[C . φ]〉 here corresponds to the notation used in [25], not the one in [26].

In addition, I will use further the following notation from [26]:
γ[C . ψ], to denote the coalitional goal assignment obtained from γ by reassigning the

goal of the coalition C to be ψ, and
γ|C, to denote the coalitional goal assignment obtained from γ by “restricting it to C”,

meaning reassigning the trivial goal > to all coalitions not included in C.
Here are the axiom schemes of AxLCGA with brief explanations:

(Triv) 〈[γ>]〉, where γ> is the trivial goal assignment, mapping each coalition to >.

(Safe) ¬〈[Agt .⊥]〉
Even the grand coalition of all agents cannot ensure the falsum to become true.

(Merge) 〈[C1 . θ1]〉 ∧ ...∧ 〈[Cn . θn]〉 → 〈[C1 . θ1, ..., Cn . θn]〉,
where C1, ..., Cn are pairwise disjoint.
This axiom scheme generalizes the superadditivity axiom of coalition logic (cf. Section 4.4.)
It is valid, because, if the coalitions C1, ..., Cn are pairwise disjoint, then they can join together
their collective strategies for their respective coalitional goals into one strategy profile that
ensures satisfaction of all these collective goals.

(GrandCoalition) 〈[γ]〉 → (〈[γ[Agt .(ϕ ∧ ψ)]]〉 ∨ 〈[γ[Agt .(ϕ ∧ ¬ψ)]]〉), where γ(Agt) = ϕ.
This axiom scheme is valid because any strategy profile for Agt generates a unique successor
state. If a state formula ψ is true in it, then it can be added to the coalitional goal of Agt,
otherwise its negation can be added to it.

(Case) 〈[γ]〉 → (〈[γ[C . (ϕ ∧ ψ)]]〉 ∨ 〈[γ|C[(Agt .¬ψ]]〉), where γ(C) = ϕ.
This scheme says that for any coalition C, state formula ψ, and a strategy profile Σ, either
its projection ΣC to C ensures the truth of ψ in all successor states enabled by ΣC—in which
case ψ can be added to the goal of C enforced by Σ—or, otherwise, ¬ψ is true in some of
these successor states, in which case it can be added to γ|C as the goal of the grand coalition
Agt enforced by Σ.

(Con) 〈[γ]〉 → 〈[γ[C . (ϕ ∧ ψ)]]〉 where γ(C) = ϕ and γ(C′) = ψ for some C′ ⊆ C.
Given any coalition C and subcoalition C′, this scheme says that the goal of C′ can be added
for free to the goal of C. Indeed, if there is any strategy profile Σ that ensures that C and
C′ can force their respective goals, then Σ also ensures that C can force the conjunction of
these goals.

The rules of inference are modus ponens (MP) and goal monotonicity (G-Mon):

γ(C)→ ψ

〈[γ]〉 → 〈[γ[C . ψ]]〉

The axiomatic system AxLCGA was first proved sound and complete in [25] (for the
logic GPCL) and in the present form in [26]. Moreover, the satisfiability problem for LCGA is
decidable, which follows from completeness results together with the finite model property,
as shown in [25,26].

8.5. The Temporal Logic of Coalitional Goal Assignments TLCGA

LCGA can only express local goals, referring to the immediate outcomes states. Usu-
ally, however, agents and coalitions have long-term goals, which need explicit temporal
operators to be formalized. This was the motivation to introduce and study the temporal
extension TLCGA of LCGA in [26]. It uses the standard temporal operators X,U,G to express
temporalized goals, similarly to ATL (Section 5).

It is convenient to classify the formulae of TLCGA in two sorts, state formulae and
path formulae, and to define their sets by mutual induction, as follows:

StateFor : ϕ ::= p | > | ¬ϕ | (ϕ ∨ ϕ) | 〈[γ]〉
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PathFor : θ ::= Xϕ | (ϕUϕ) | Gϕ
where p ∈ Prop and γ : P(Agt)→ PathFor is a coalitional goal assignment.
Thus, the path formulae are auxiliary, used to express temporalized goals. As before, I

will use 〈[C1 . φ1, ..., Ck . φk]〉 as an explicit notation for 〈[γ]〉 with support {C1, ..., Ck}.
Note the change in the notation from LCGA: the goals φ1, ..., φk from now on, refer to

the current state, not to a successor. Thus, LCGA is embedded in TLCGA as its X-fragment
XCGA, where the path formulae are only of the type Xϕ.

TLCGA also extends ATL: 〈〈C〉〉θ ≡ 〈[C . θ]〉, for any θ ∈ PathFor.

8.6. An Aside: Equilibria and Co-Equilibria

The logic TLCGA can be used to express (see [26]) the fundamental game-theoretic
concept of Nash equilibrium: a strategy profile ensuring that no player can deviate to improve
the outcome with respect to his/her private goal. This concept is good for quantitative
goals, but not for qualitative (win/lose) ones, because rational players whose goals are
not satisfied (the “losers”) can still deviate in weak equilibria. Thus, the arguably more
suitable for qualitative goals concept of co-equilibrium was proposed in [26], meaning
a strategy profile ensuring that every player (and coalition) achieves their private goal, even if
all other agents deviate. Existence of a co-equilibrium is expressed precisely by the TLCGA
formula 〈[a1 . φ1, ..., ak . φk]〉.

8.7. An Example

The following example, illustrating the use of TLCGA to express natural statements, is
adapted from [26].

Example 11. Three sheep and three wolves are standing on a river bank and all animals want to
cross the river (say, because a pride of lions is approaching). There is just one boat, which takes up to
two animals. There is no boatman, but the animals can sail the boat across the river. However, if on
either side of the river, at any time the wolves outnumber the sheep, then they eat them up there. Of
course, the sheep do not want that to happen. Therefore, do the animals have a “safe” strategy to
cross the river without any being eaten?

Let us first look at a simple specification in ATL of the claim that such strategy exists:

〈〈Sheep∪Wolves〉〉(¬eUc)

where

• c is the atomic proposition “all animals have crossed the river”.
• e is the atomic proposition “some sheep are eaten”.

Thus, the formula above says that all animals have a strategy to eventually all cross the river
and meanwhile no sheep are eaten. Is this what we want? Not quite, as the strategy may be such
that the wolves can deviate from it at an opportune moment and eat some of the sheep. Thus, here is
a better specification, in TLCGA:

〈[Sheep∪Wolves . Fc, Sheep . G¬e]〉,

saying “all animals have a collective goal to cross the river, but the coalition of sheep have their
coalitional goal that no sheep is ever eaten”, and this is what we really want. Therefore, is there a
solution—a strategy profile—satisfying this specification? Well, it depends on a subtle but crucial
detail: if all animals act simultaneously, where each animal can either stay on the river bank or board
the boat (but if more than two animals board the boat, the boat cannot sail), then it is not difficult
to see that such strategy does not exist. However, if at every round the wolves act first, and then
the sheep act, then such strategy exists, and I leave the fun to the reader to design such strategy.
Note that the strategy of each sheep will now depend also on how the wolves have just acted, so any
deviation of the wolves from the agreed-upon “safe” strategy can be counteracted by the strategies of
the sheep, and this is the key point.
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9. Basic Strategy Logic: A Unifying Formalism for Strategic Reasoning

The semantics of all strategic operators introduced here are defined in terms of quan-
tification in the metalanguage over actions and strategies of the agents and coalitions
involved. Thus, the natural idea arises to add explicit quantification over strategies in the
object language and have all these operators definable there. That idea was realized in the
family of strategy logics, the first (two-agents) version of which was introduced in [21], and
later extended and further studied in [22–24]. The common feature of these strategy logics
is that they formally treat strategies as primitive objects, similar to elements of standard
structures for first-order logic. I will refer to these generically as standard strategy logic,
denoted SSL.

Since quantification over strategies is essentially a second-order quantification over
functions, the language of SSL is very expressive and it should not be surprising that the
standard systems of SSL are not recursively axiomatizable in general. Still, even some
restricted fragments of SSL are quite expressive and enable specifying important properties
of non-zero-sum games in a simple and natural way. In particular, the “one-alternation”
fragment of SSL already subsumes, by expressiveness, the logic ATL∗ and is strong enough
to express, inter alia, the existence of Nash equilibria and secure equilibria (cf. [21]).

I will define and use here a simple generic version of a strategy logic, which I call
basic strategy logic, further denoted BSL. It builds on some temporalized language for
expressing goals, such as LTL (cf., e.g., [36] (Chapter 6)) that defines a set of goal formulae
Γ which are evaluated on plays in concurrent game models. BSL extends Γ with standard
Boolean connectives, with variables associated with agents and ranging over strategies for
them, by means of strategy assignments, and with quantification over such variables within
the formulae. More precisely, with each agent a, the language of BSL associates a strategy
variable for a, denoted by xa. Let StrVar be the set of strategy variables for all agents. Then,
for every nonempty coalition of agents C = {c1, ..., cm}, I will use xC to denote the tuple of
variables (xc1 , ..., xcm). Furthermore, I will write ∀xC as a shorthand for the string ∀xc1 ...∀xcm ,
and likewise for ∃xC.

Formally, the language of BSL involves two sets of formulae: a set of goal formulae Γ
and a set of state formulae StateFor, defined as follows:

StateFor : ϕ ::= p | > | ψ | ¬ϕ | (ϕ ∨ ϕ) | ∃xaϕ,

where p ∈ Prop, ψ ∈ Γ, and xa ∈ StrVar. All other standard propositional connectives and
constants, including ⊥, ∧,→,↔, are defined as usual. In addition, ∀xa ::= ¬∃xa¬.

The semantics of BSL is given in concurrent game models, using, additionally, strategy
assignments, which are functions defined on StrVar and assigning to every strategy variable
xa a strategy of the respectively specified in the semantics type (e.g., memory-based or
positional) for the agent a. Given such strategy assignment v and a strategy σa for agent a, I
will denote by v[xa ::= σa] the modified strategy assignment which reassigns the value of
xa to be σa. Likewise, v[xC ::= σC] is defined for any coalition C.

Given a state s in a CGMM, every strategy assignment v inM defines the strategy
profile Σ(v), where Σ(v)a = v(xa), and therefore determines the unique play in M,
generated by Σ(v), which will be denoted by play(s, v). Then, the truth of any goal formula
can be evaluated on that play.

The semantics of BSL can now be defined in terms of truth of a formula at a state s in
a given CGMM, for a given strategy assignment v, through the clauses:

• M, s, v |= ψ, for ψ ∈ Γ iff M, play(s, v) |= ψ
(assuming that truth of the goal formulae in Γ on plays has already been defined).

• M, s, v |= ∃xaϕ iff M, s, v[xa ::= σa] |= ϕ for some strategy σa for a.

The latter clause extends in a straightforward way to ∃xC ϕ and ∀xC ϕ, for any coalition C.
Note that, similar to the classical first-order logic, every bound occurrence of a variable

xa is bound by the innermost occurrence of a quantifier binding xa, so in quantification
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patterns such as Q1xa...Qkxa...φ, where each Qi is ∃ or ∀, all occurrence of Qixa containing
the innermost one in its scope are vacuous.

Now, one can uniformly translate the semantic conditions of the various strategic
operators introduced here into formulae in the language of BSL, by using a uniform
compositional translation τ, as follows:

CL/ATL∗

τ([C]ϕ) ::= ∃xC∀xCτ(ϕ),

where C = Agt \C; likewise, for 〈〈C〉〉ϕ.

ConStR (Oα)
τ([A]α(φ; 〈B〉ψ)) ::= ∃xB\A∀xA(∀xAτ(φ)→ ∀xA∪Bτ(ψ)).

Note that the joint strategy for B \A assigned to xB\A is supposed to ensure, together
with the joint strategy for A assigned to xA, the truth of the (translation of the) goal
formula ψ whenever the joint strategy for A assigned to xA ensures the truth of
the (translation of the) goal formula φ against any joint strategy of the agents in A,
including those in B \A.

ConStR (Oβ)
τ([A]β(φ; 〈B〉ψ)) ::= ∀xA(∀xAτ(φ)→ ∃xB\A∀xA∪Bτ(ψ)).

Note the difference with the previous translation, reflecting the difference between
the semantics of (Oα) and (Oβ): the joint strategy for B now depends on the joint
strategy for A, and the strategies of the agents in B ∩A may not differ from those
already fixed in the latter.

ConStR (Oc)
τ(〈A〉c(φ; 〈B〉φ)) ::= ∃xA(∀xAτ(φ) ∧ ∃xB\A∀xA∪Bτ(ψ)).

This formula captures the semantics of Oc in a straightforward way.

SFCL (SF)

τ([C](φ; ψ1, . . . , ψk)) ::= ∃xC
(
∀xCτ(φ) ∧

k∧
m=1

∃xCτ(ψm)
)
.

Likewise, the formula above formalizes precisely the semantic definition of SF.

SFCL (SF1)

τ([C; C1, . . . , Ck](φ; φ1, . . . , φk)) ::= ∃xC
(
∀xCτ(φ) ∧

k∧
m=1

∃xCm\C∀xC∪Cm
τ(φm)

)
.

This formula says that C has a collective strategy (in particular, a collective action)
assigned to xC that guarantees (the translation of) φ, and is such that, when fixed,
each Cm has a collective action (already fixed for the agents in Cm ∩C) that guarantees
(the translation of) φm against any behavior of the noncommitted agents, i.e., those in
C∪Cm. This is precisely the semantics of SF1, defined in Section 7.1.

SFCL (SF2) τ([〈C1〉φ1; . . . ; 〈Ck〉φk]) ::=
(for simplicity, assuming that C1, ..., Ck are pairwise disjoint)

∃xC1

(
∀xC1

τ(φ1)∧∃xC2\C1

(
∀xC1∪C2

τ(φ2)∧ . . .∧∃xCk\(C1∪...∪Ck−1)
∀xC1∪...∪Ck

τ(φk)
)

. . .
)
.

This formula likewise expresses the semantics of the sequential version SF2 of SF1,
defined in Section 7.1. To achieve this, every time it claims existence of a joint strategy
of Ci it assumes that the strategies of all agents in the already previously mentioned
coalitions are already fixed, and that joint strategy must succeed against any behavior
of the not-yet-committed agents only.
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LCGA
τ(〈[γ]〉) ::= ∃xAgt

∧
C⊆Agt

∀xCτ(γ(C)).

Again, this formula captures the formal semantics of 〈[γ]〉 in a straightforward way.

Thus, the logic BSL is more expressive than any of the other logics introduced here.
Still, it is not as expressive as the versions of SSL introduced in [23,24], which decouple
the strategy variables and quantification over them from the agents to which they are
assigned, and thus enable assigning the same strategy to different agents, which (in my
view, is unnatural and) BSL cannot do. Still, the second-order quantification over strategies
is fully enabled in BSL, so it is to be expected that BSL is not recursively axiomatizable
in general. However, in the natural special case where only finite models over a fixed
finite set of agents and with positional strategies are considered, there are clearly only
finite such strategies in the model, so model checking of BSL in such models is decidable,
whereas satisfiability is recursively enumerable. The complexity of model checking, as well
as the questions of axiomatizability and decidability, of the validities of BSL in semantics
restricted to such models are left to future work.

10. Concluding Remarks: Outlook and Perspectives

Logic-based strategic reasoning in socially interactive context is still in its relatively
early stage of development, and the logical systems presented in this paper are just a
representative sample of such special-purpose driven developments. While these systems
were introduced with different motivations, they share the common purpose of formalizing
natural and important patterns of strategic interaction between rational agents. Further-
more, as seen in the previous section, these can all be treated as fragments of the basic
strategy logic BSL, so the natural question arises: why, instead of the many bespoke alter-
natives presented here, is BSL not adopted as a uniform logical language for formalizing
strategic reasoning? Of course, that can be achieved, and the study of some fragments of
strategy logic have shown that to be a viable approach. However, as I indicated earlier,
there are computational reasons in favor of staying within the purely modal framework
of the logics introduced here, where actions and strategies are not explicitly referred to
and quantified over in the language, but are only present in the semantics. There are many
aspects of strategic reasoning, and a logical language that can adequately capture them all
would be too heavy to use, so if one only wants to reason about some such specific aspects,
then one can naturally look for a minimal language that suffices for that purpose. The
standoff between the two approaches—propositional modal logics vs. quantified strategy
logics—is quite analogous to the standoff between plain modal logic and first-order logic,
and the pros and cons for one over the other approach in both cases are very similar. Still,
it would be interesting and useful to compare in deeper detail the expressiveness and
the tradeoff between it and the computational complexity of these two approaches in the
case of logics for strategic reasoning, to a degree closer to the very-well-explored parallels
between modal logic and first-order logic (cf. relevant chapters in [46] for ample details
and further references.)

Some major open problems and directions of further exploration of the logic-based
strategic reasoning in socially interactive context include:

• Adding agents’ knowledge in the semantics, and explicitly in the language, by assuming
that the agents reason and act under imperfect information.

• Taking into account the normative aspects and constraints of the socially interactive con-
text, including obligations, permission, and prohibitions, which socially responsible
rational agents must respect in their strategic behavior.

• Analysis of the expressiveness and computational complexity of the basic strategy
logic BSL which should eventually determine whether and to what extent BSL may
be regarded as a viable alternative to the propositional modal approach behind the
logical systems for strategic reasoning presented here.
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• In particular, an interesting currently open question is whether there is a finite set of
modal strategic operators with semantics that can be translated to BSL which provide
expressive completeness, if not for the full language of BSL, then at least for natural
and reasonably expressive fragments of it.

• Completeness results for some of the systems of axioms mentioned here, including the
three main fragments of ConStR, the entire ConStR, and SFCL. Ultimately, a complete
axiomatic system for BSL, if possible, or for substantially rich fragments of it.

• Finite tree-model property and decidability results for the logical systems presented
here, as well as other fragments of BSL. In particular, it would be tableaux-based
deductive systems and decision methods for the logics studied here, by adapting such
systems developed in, e.g., [47,48].

From a more general perspective, this work can be regarded as a step towards devel-
oping a unifying and optimally rich, yet computationally feasible, technical framework for
logic-based strategic reasoning of rational agents in a socially interactive context.
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Notes
1 These remarks are prompted by an exchange and apparent disagreement with an anonymous reviewer of this paper, who argues

that the logical frameworks discussed here do not really deal with goals, rationality, or sociality. In my understanding, the core of
that disagreement is in the essentially different perspectives which we apparently have on the topic and on some basic concepts
in this paper, as explained further in the text.
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