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Abstract: Ethanol production wastewater contains high quantities of dark–brown pigments (melanoidin)
that result in low color removal using conventional biological treatments. Advanced oxidation pro-
cesses (AOPs) are the most documented methods for reducing the color associated with melanoidin.
This study examines the degradation of melanoidin using AOPs based on photo–Fenton, sono–Fenton,
and sono–photo–Fenton processes. Their effects on decolorization were investigated based on light
intensity, ultrasonic frequency, and the iron concentration (Fe2+)–to–H2O2 ratio. This study showed
that ultrasonic waves and UV light result in a higher melanoidin decolorization efficiency than Fenton
reactions alone. The initial color values were reduced from 5000–5500 ADMI to below 500 ADMI
for both processes because the ultrasonic waves and ultraviolet light induced H2O2 breakdown into
the •OH radical. Reducing the color of the melanoidin using the photo–Fenton process resulted in a
decolorization rate of 0.1126 min−1, which was higher than the rates of both the sono–Fenton and
sono–photo–Fenton processes. These results provide proof that the photo–assisted Fenton process is
more applicable to treating dye–contaminated water than are other enhancing approaches.
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1. Introduction

Thailand’s ethanol industry is essential to supplying the high demand for ethanol. The
wastewater produced by the ethanol distillation process contains a dark–brown pigment
due to melanoidin (approximately 2%) produced by the reaction between amino acids and
sugar [1]. The melanoidin–generated brown color in wastewater affects photosynthesis
and is toxic to aquatic life, blocking sunlight penetration and eventually decreasing oxygen
dissolution [2,3]. The estimated lethal concentration (LC50) of wastewater from ethanol
distillation was found to be 0.5% toxic to aquatic life [4]. LC50 is the concentration of the
chemical that killed 50% of test animals during an observation period. In recent decades,
melanoidin decolorization using conventional biological treatments, such as activated
sludge systems, only partially eliminated color in wastewater [2]. A decolorization result of
26% was reported for distillery effluent through bio flocculation by Synechocystis sp. [5]. In
addition, other techniques that were applied for melanoidin removal include coagulation,
membrane filtration [6], electrocoagulation [7], and adsorption [8]. In electrocoagulation for
decolorizing melanoidin wastewater using aluminum electrodes, decolorization was found
to be as high as 98% at pH 4.2. The decolorization performance was dependent on pH where
the initial pH of the wastewater was 6.5. Thus, a pH adjustment cost is incurred during this
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process [9], in addition to the cost of sludge disposal [10]. Moreover, studies on melanoidin
adsorption with activated carbon (AC) obtained from bagasse bottom ash (BBA) showed
that it could reduce the melanoidin concentration from 100 mg/m3 to 10 mg/m3 [11]. In a
study on removing melanoidin from molasses effluents via adsorption, it was found that
the adsorption mechanism was physical adsorption, which would occur well in acidic pH
conditions [8]. This may be a disadvantage of this process as it requires the neutralization of
the wastewater and of by–products such as saturated adsorbents, which must be removed
in the next step.

Advanced oxidation processes (AOPs) are the most recognized methods for reducing
the color associated with melanoidin because no undesirable by–products are reported [4].
The Fenton process is one of the most popular advanced oxidation processes (AOPs) for
color removal because •OH radicals arise from the reaction between ferrous ions (Fe2+) and
hydrogen peroxide (H2O2), which has a high oxidation potential [E0 = +2.80 V] [12]. Many
studies investigated the use of the Fenton process for the decolorization of several dyes,
such as Blue 71 azo dye, CI Acid Yellow 23, and Acid Red 66, and even for the decolorization
of wastewater from the baker’s yeast industry [13–16]. H2O2 was found to play a more
critical role in removing color than FeSO4 in decolorization and TOC removal [17]. UV–C
irradiation can be intensified by the Fenton process, as it can amplify the production of
•OH radicals through the Fenton reaction (Equations (1) and (2)) [18]. The photo–Fenton
process was used to decolorize compost leachate [19], for the decolorization of industrial
wastewater containing baker’s yeast [20], and for the decolorization of wastewater from
a distillery [21]. While UV–C radiation increases •OH radical production in the Fenton
reaction, at the same time, using ultrasonic waves can increase •OH radical formation
(Equation (3)) [22]. It was found that using ultrasonic waves in combination with the
Fenton process can increase the efficiency of decolorization more than using the Fenton
process alone, thereby negating the need for chemical addition and reducing contact time
with Reactive Blue 181 [23].

H2O2 + hv → •OH + HO− (1)

Fe3+ + H2O2 + hv → •OH + Fe2+ + H+ (2)

H2O2 + Ultrasonic wave→ 2•OH (3)

To date, no studies focused on melanoid decolorization using the Fenton process and
UV irradiation nor on using ultrasonic waves in combination with the Fenton process for
the decolorization of melanoidin. The highlight of this study is its innovative application
of various combination processes of the Fenton method to solve the longstanding practical
production problem of melanoidin decolorization, which overcomes the lower treatment
efficiency of biological treatments and has practical significance. The present study aims to
use the Fenton process with ultrasonic waves at varying ultrasonic frequencies and UV–C
irradiation to reduce the brown color of melanoidin–contaminated water.

2. Materials and Methods
2.1. Materials and Reagents

In this study, melanoidin wastewater was synthesized using D–glucose (Carlo Erba,
France, AR grade), glycine (LOBA Chemie, Boisar, Maharashtra, India, AR grade), and
sodium bicarbonate (Uni Lab, Auburn, Australia, AR grade). The solution was mixed with
DI water type II, which has conductivity <1 µs/cm, resistivity >1 MΩ.cm, and total organics
<50 ppb. The reagents for the Fenton process, photo–Fenton process, and sono–Fenton
process used ferrous sulfate heptahydrate (FeSO4·7H2O, LOBA Chemie, Maharashtra,
India), and 30% hydrogen peroxide (QRëC™, Gillman, Australia, AR grade). Additionally,
the addition of 96% sulfuric acid (RCI Labscan, Bangkok, Thailand, AR grade) or 99%
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sodium hydroxide (Micropearl) (RCI Labscan, Bangkok, Thailand, AR grade) was used to
adjust pH.

2.2. Melanoidin Wastewater Synthesis

Synthetic melanoidin wastewater was prepared from 100 mL of deionized water
mixed with D–glucose (4.5 g), glycine (1.88 g), and sodium bicarbonate (0.42 g). Then,
the solution was heated in an oven for 7 h at 95 ◦C. During heating, the Maillard reaction
between proteins and sugars occurred, which led to the formation of brown nitrogenous
polymers and co–polymers, leading to the formation of the melanoidins responsible for the
solution’s dark–brown color [24]. The proposed carbohydrate–based melanoidin structure
is shown in Figure 1 [25]. After 7 h, the mixture was removed from the oven and cooled in a
desiccator before 100 mL of deionized water was added. The resulting synthetic wastewater
had a concentration of 25.5 g/L [8,26]. This experiment studied decolorization based on
the Fenton process in combination with ultrasonic waves and UV–C light, using 1000 mL
of synthetic melanoidin wastewater with an initial synthetic wastewater concentration of
approximately 10,000 mg/L. The synthetic wastewater was diluted to a concentration close
to that of actual wastewater from ethanol production.
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2.3. Fenton Process Experiment

In the Fenton process experiment, 5 mL of Fe2+ was added to wastewater. Fe2+

concentration was studied at 0.005, 0.0075, 0.01, 0.025, 0.05, and 0.075 mol/L, while
H2O2 = 0.375 mol/L and pH 3 were fixed. Then, H2O2 concentration was studied at 0.06,
0.125, 0.25, 0.375, 0.5, and 0.75 mol/L, while Fe2+ = 0.05 mol/L and pH = 3 were controlled.
The pH of the wastewater was studied at 3, 4, 5, 6, 7, and 8, while H2O2 = 0.375 mol/L and
Fe2+ = 0.01 mol/L were fixed. The solution was then stirred at 150 rpm with a reaction time
of 90 min. The effects of the initial pH, initial ferrous sulfate concentration, and initial hy-
drogen peroxide concentration on decolorization in the Fenton process (Fe2+/H2O2) were
investigated. For the sono–Fenton experiment (Ultrasonic/Fe2+/H2O2), ultrasonic waves
were combined with the Fenton process for decolorization using frequencies of 20, 28, and
40 kHz with a self–made ultrasonic processor with an electrical power of 100 W. During the
experiment, ultrasonic waves were emitted in an alternating pulse mode for 5 min and then
stopped for 5 min over a 90 min period. The photo–Fenton (UV/Fe2+/H2O2) experiment
used an ultraviolet germicidal lamp (Dako T5, 10 W, GL). The UV–C light intensity was
studied at 0 W, 10 W, 30 W, and 60 W for a reaction time of 90 min using a self–made
UV–c processor. For the sono–photo–Fenton experiment (Ultrasonic/UV/Fe2+/H2O2), a
60 W light intensity was used with ultrasonic waves at 40 kHz emitted in pulse mode for a
reaction time of 90 min. The samples collected were color analyzed using a spectropho-
tometric model comprising a PG Instruments UV/VIS spectrophotometer and an ADMI
model UV/VIS spectrophotometer with a 1.8 nm spectral bandwidth (Spectroquant® Prove
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600, Merck KGaA, Darmstadt Germany). Decolorization efficiency was calculated using
Equation (4) where C0 and Ce were the initial and final melanoidin concentrations.

Decolorization efficiency = (C0 − Ce)/C0 × 100 (4)

3. Results

3.1. Effect of Initial Fe2+ Dosage

An optimal ferrous (Fe2+) concentration is essential to the Fenton process. In this experi-
ment, Fe2+ concentrations were studied from 0.005 to 0.075 mol/L while H2O2 = 0.375 mol/L
and pH 3 were fixed. Figure 2 shows that color removal efficiency increased with increasing
Fe2+ concentration in the range 0.005–0.075 mol/L. A Fe2+ concentration of 0.0075, 0.01,
or 0.025 mmol/L produced a color removal efficiency superior to other concentrations of
more than 90%, while at higher Fe2+ concentrations, the decolorization capacity decreased
because excessive Fe2+ content affects the degradation efficiency of color. With an exces-
sive dosage of Fe2+, the decolorization rate dropped because •OH was reduced by Fe2+

(Equation (5)) [27], which was perhaps due to the reaction leading to Fe2+ and •OH recom-
bination. Thus, the oxidation of pollutants was inhibited at high Fe2+ concentrations [28].
Consequently, Fe2+ higher than 0.025 mol/L was not recommended. A Fe2+ concentration
of 0.01 mol/L was, therefore, chosen for the following study.

•OH + Fe2+ → Fe3+ + HO− (5)
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3.2. Effect of Initial H2O2 Concentration

The effect of the H2O2 concentration (in the range 0.060–0.750 mol/L) on the decol-
orization of melanoidin was studied using a concentration of ferrous of 0.05 mol/L at pH
3 (Figure 3). It was found that the decolorization capacity increased with an increase in
the H2O2 concentration, indicating that more available H2O2 initiated the generation of
•OH. The color removal efficiency was greater than 80% with a concentration of H2O2 at
0.375, 0.500, or 0.750 mol/L. The hydrogen peroxide reaction with ferrous could produce
more •OH radicals (Equation (6)). However, an increase in H2O2 necessarily affects the
cost of color removal [29]. Thus, an H2O2 concentration of 0.375 mol/L was chosen for the
following study.

Fe2+ + H2O2 → Fe3+ + OH− + •OH (6)
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Figure 3. Effect of initial H2O2 concentration on decolorization of melanoidin wastewater (ini-
tial melanoidin = 10,000 mg/L, Fe2+ = 0.05 mol/L, pH = 3, reaction time = 90 min). (a) Color
removal efficiency vs. reaction time where • is H2O2 = 0.06 mol/L, N is H2O2 = 0.125 mol/L, � is
H2O2 = 0.25 mol/L, � is H2O2 = 0.375 mol/L, # is H2O2 = 0.5 mol/L, × is H2O2 = 0.75 mol/L, and
∆ is only H2O2 (0.375 mol/L). (b) Color removal efficiency vs. initial H2O2 concentration at 90 min.

3.3. Effect of Initial pH

Solution pH is a critical controlling parameter influencing melanoidin elimination effi-
ciency in AOP. Because a change in the pH can result in variation in the Fe2+ concentration,
it directly impacts the mechanism of melanoidin oxidation. Thus, the production rate of
•OH radicals accountable for the oxidation of melanoidin is limited [30]. The effects of pH
on the decolorization rate of melanoidin based on evaluation at 6 initial pH values (3, 4, 5,
6, 7, or 8) were investigated (Figure 4). The color removal efficiency was higher than 85%
at all pH values. In this experiment, the Fenton oxidation process at pH 3 produced the
highest color removal efficiency consistent with the research of Ertugay [14]. Initially, the
melanoidin wastewater had a neutral pH that resulted in the decolorization of 518 ADMI
after 90 min, accounting for 89%. The experiments with initial pHs of 3, 4, 5, and 6 yielded
a slightly better decolorization efficiency. Thus, it was not necessary to adjust the initial pH
of the wastewater to pH 3.
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Figure 4. Effect of solution pH on decolorization of melanoidin wastewater (initial
melanoidin = 10,000 mg/L, H2O2 = 0.375 mol/L, Fe2+ = 0.01 mol/L, reaction time = 90 min). (a) Color
removal efficiency vs. reaction time where • is pH 3,
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3.2. Effect of Initial H2O2 Concentration 
The effect of the H2O2 concentration (in the range 0.060–0.750 mol/L) on the decolori-

zation of melanoidin was studied using a concentration of ferrous of 0.05 mol/L at pH 3 
(Figure 3). It was found that the decolorization capacity increased with an increase in the 
H2O2 concentration, indicating that more available H2O2 initiated the generation of OH. 
The color removal efficiency was greater than 80% with a concentration of H2O2 at 0.375, 
0.500, or 0.750 mol/L. The hydrogen peroxide reaction with ferrous could produce more 
OH radicals (Equation (6)). However, an increase in H2O2 necessarily affects the cost of 
color removal [29]. Thus, an H2O2 concentration of 0.375 mol/L was chosen for the follow-
ing study. 

is pH 4, N is pH 5, × is pH 6, � is pH 7, and #
is pH 8. (b) Color removal efficiency vs. initial pH at 90 min.
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3.4. Optimization for Decolorization of Melanoidin Wastewater Using Sono–Fenton
(Fe2+/H2O2/US) Process

These experiments varied the ultrasonic frequencies at 20, 28, or 40 kHz with a power
of 100 W. In the experiment, ultrasonic waves were applied every 5 min, alternating in
pulse mode until the end of the investigation. The results showed that the color removal
efficiency increased by using ultrasonic waves combined with a Fenton reaction (Figure 5).
At a frequency of 20 kHz, the melanoidin color was reduced from 4500 ADMI to 627 ADMI
with a removal efficiency of 86%; at 28 kHz, the melanoidin color was reduced to 247 ADMI
with a removal efficiency of 94%; and at 40 kHz, the melanoidin color was reduced to 366
ADMI with a removal efficiency of 91% (Figure 5). This increase in removal efficiency
was due to the acceleration of the H2O2 dissolution to form •OH (Equation (3)) [12]. The
•OH radical is generated by the cavitation phenomenon caused by the release of ultrasonic
waves into the liquid phases [22]. The frequency of the ultrasonic waves results in the
cavitation phenomenon [31]. By increasing the frequency, smaller and evenly distributed
bubbles are produced [32,33]. Thus, an increased frequency has a more significant effect on
•OH radical formation [34].
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Figure 5. Effect of ultrasonic waves combined with Fenton process on decolorization of melanoidin
wastewater (initial melanoidin = 10,000 mg/L, Fe2+ = 0.005 mol/L, H2O2 = 0.1875 mol/L, pH = 7,
reaction time = 90 min) (where SF is sono–Fenton process).

3.5. Optimization for Decolorization of Melanoidin Wastewater Using Photo–Fenton
Fe2+/H2O2/UV–C) Process

The decolorization of melanoidin was studied using a photo–Fenton process with a
253.7 nm UV–C lamp (Figure 6). These experimental conditions were selected based on
former optimization experiments carried out with melanoidin wastewater. The effect of UV–
C for the photo–Fenton (Fe2+/H2O2/UV) process was assessed using UV–C light power
at 0 W, 10 W, 30 W, or 60 W for 90 min of irradiation. It was found that the UV–C power
enhanced the decolorization rate of melanoidin wastewater. Adding UV–C light intensity
up to 60 W for the photo–Fenton process increased the decolorization from 5467.99 ADMI
to 285.53 ADMI (95.32%) (Figure 6). The decolorization in the Fe2+/H2O2/UV process was
due to the generation of the hydroxyl radical by (i) a Fenton reaction (Equation (6)), (ii) the
direct photolysis of H2O2 (Equation (1)), and (iii) the photoreduction of the Fe3+ formed
during the irradiation (Equation (2)) [3,35].
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ter (initial melanoidin = 10,000 mg/L, Fe2+ = 0.005 mol/L, H2O2 = 0.1875 mol/L, pH = 7, reaction
time = 90 min) (where PF is photo–Fenton process).

3.6. Optimization for Decolorization of Melanoidin Wastewater Using Sono–Photo–Fenton
(Fe2+/H2O2/UV–C/US) Process

The Fenton process combined with ultrasonic waves and UV–C light was studied
at a frequency of 40 kHz. In these experiments, ultrasonic waves were applied with
pulse mode alternation every 5 min using 60 W UV–C irradiation. The color removal
efficiency of the Fenton process was 81%, with the use of ultrasonic waves and UV–C
irradiation with the Fenton process increasing the efficiency of color removal by 8.287%
and 13.091%, respectively (Figure 7). Ultrasonic waves and UV–C irradiation decreased
the color to 286 ADMI and 285 ADMI, respectively (Figure 7). Color removal using the
Fenton process in combination with ultrasonic waves and UV–C irradiation was more
than 90% effective in decolorization for 60 min. Using ultrasonic waves and UV–C light
significantly increased •OH radical formation in the reactions [12]. However, the color
removal efficiency decreased after 60 min, which was perhaps because H2O2 disintegrated
into the •OH radical via ultrasonic waves (sonolysis) and UV–C (photolysis) [Equations (1)
and (3)]. Due to the limitation of available H2O2, further reaction with Fe2+ was unlikely.
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Figure 7. Effect of ultrasonic waves and UV–C in combination with Fenton process (initial melanoidin
= 10,000 mg/L, Fe2+ = 0.005 mol/L, H2O2 = 0.1875 mol/L, pH = 7, reaction time = 90 min) (where
SF@40 kHz is sono–Fenton process at 40 kHz and PF@60 W is photo–Fenton process at 60 W).

3.7. Kinetic Experiments

Figure 8a shows a plot of the linear equation between ln C/C0 and time, with m being
the slope and b being the intercept. The slope in an equation can describe the reaction rate
(k) of the process. The Fenton process had an R2 of 0.9659, while the sono–Fenton process
had an R2 of 0.9853, which was closer to 1 than the R2 for the photo–Fenton and sono–photo–
Fenton processes (0.8967 and 0.7343, respectively) (Figure 8). In Figure 8b, the plot between
1/(C/C0) against time showed that the Fenton process, the sono–Fenton process, and the
photo–Fenton process had R2 in the range 0.93 to 0.99, which were closer to 1 than the R2 for
the sono–photo–Fenton process (0.4969), indicating a far poorer correlation compared with
those of other processes. The plot of t/(1 − (C/C0)) versus time was used for the linearized
equation of the BMG kinetic model (Figure 8c) and indicated that the Fenton, sono–Fenton,
photo–Fenton, and sono–photo–Fenton processes had R2 greater than 0.95 (0.9889, 0.9798,
0.9839, and 0.9643, respectively) and closer to 1 than those of the other models (the first-
and second-order kinetic models). This is because decolorization via the Fenton process
takes place through a two–stage operation, with the first stage occurring rapidly due to
the oxidation of the •OH radical and the second stage due to oxidation from other radicals
occurring from the accumulation of Fe3+ and H2O2, which have a lower oxidative capacity
and thus react more slowly [36]. According to past research, this behavior was observed
in decolorization via Fenton process reactions in a two–stage pattern [37,38]. The BMG
kinetic model can, therefore, better explain the decolorization than first- and second-order
kinetic models, since it explains the initial reduction by Equation (14) and considers the
rapid decolorization and second–stage decolorization of Equation (15), describing the
decolorization that occurs over time.
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As seen in Table 1, the correlation coefficient values for the BMG model were mostly
higher than those of the first –order and second–order models. Thus, the BMG kinetic model
was the best model for describing the decolorization of melanoidin using the Fenton, sono-
Fenton, photo–Fenton, and sono–photo–Fenton oxidation processes. The decolorization
rates of the four methods were in the order photo–Fenton >sono–photo–Fenton >sono–
Fenton >Fenton with decolorization rates of 0.1126, 0.0914, 0.0415, and 0.0374 min−1,
respectively. It was clear that UV–C light played an important role in the decolorization
of melanoidin. The •OH radical for chemical oxidation was generated from the UV–C
irradiation of H2O2, while the iron (Fe2+) reaction with H2O2 induced the generation of a
hydroxyl intermediate [3,35]. Decolorization occurred during the •OH radical oxidation
of melanoidin.
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Table 1. Kinetic values for Fenton, sono–Fenton, photo–Fenton, and sono–photo–Fenton decoloriza-
tion of melanoidin wastewater.

Process

First-Order Second-Order BMG

k1
1

(min−1) R2 k1
1

(min−1) R2 m 2 b 3 R2 1/m 4 1/b 5

Fenton 0.0182 0.9659 0.0470 0.9974 26.7650 1.3434 0.9889 0.0374 0.7444
SF @ 40 kHz. 0.0270 0.9853 0.1108 0.9544 24.1070 1.1608 0.9798 0.0415 0.8615

PF @ 60 W 0.0296 0.8967 0.1998 0.9313 8.8821 1.3816 0.9839 0.1126 0.7238
SPF @ 40 kHz

and 60 W 0.0242 0.7343 0.1206 0.4969 10.9350 1.4390 0.9643 0.0914 0.6949

1 k1 is rate constant of the first– and second–order models (slope). 2 m is constant in the linear equation related to
the reaction rate (y–intercept). 3 b is constant in the linear equation related to the oxidative capacity (slope). 4 1/m
is reaction rate when t is short or moves toward zero. 5 1/b is maximum oxidation capacity when t is large and
approaching infinity.

In the current research, first–order, second–order, and Behnajady–Modirshahla–Ghanbery
(BMG) reaction kinetics were used to examine the decolorization kinetics of melanoidin
using the Fenton, sono–Fenton, photo–Fenton, and sono–photo–Fenton oxidation processes.
The individual terms are presented in the equations below:

First–order kinetic model [3,35]:

dc/dt = k1C1 (7)

1/Ct = kt (8)

Second–order kinetic model [3,35]:

dc/dt = −k2C2t (9)

ln (C0/Ct) = kt (10)

BMG kinetic models
The BMG kinetic model can be stated as follows [1,3]:

Ct/C0 = 1 − (t/(m + b)) (11)

t/(1 − (Ct/C0)) = m + bt (12)

where C0 and Ct are the initial and final melanoidin concentrations (mg/L); k is the rate
constant of the first–order model (min−1); t is the reaction time (min); and b and m are two
characteristic constants concerning the reaction kinetics and oxidation capacities.

A straight line with an intercept of m and a slope of b was obtained by plotting
t/(1 − (Ct/C0)) versus t. The terms m and b can be defined by taking the derivation of
Equation (11):

d(Ct/C0)/dt = −(m/(m + bt)2) (13)

When t is very short or moves toward zero, Equation (13) can be written as

d(Ct/C0)/dt = −(1/m) (14)

A higher 1/m value indicates a faster initial decolorization rate. When t is large and
approaching infinity, Equation (14) can be written as

1/b = 1 − (C→∞/C0) (15)
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The 1/b value indicates the theoretical maximum decolorization fraction equal to
the maximum oxidation capacity of the Fenton or photo–Fenton process at the end of
the reaction.

4. Discussion

This study investigated the decolorization of melanoidin wastewater using Fenton,
sono–Fenton, photo–Fenton, and sono–photo–Fenton processes. The sono–Fenton process
at 28 kHz produced the highest color removal efficiency of 93%. The sono–Fenton process
clearly produced slightly higher melanoidin decolorization than did the Fenton process.
The photo–Fenton process using a UV–C light intensity up to 60 W increased the decol-
orization from 5467.99 ADMI to 285.53 ADMI (95.32%). The power of the UV–C light and
the ultrasonic wave enhanced the decolorization rate of melanoidin wastewater due to the
ultrasonic wave and the UV–C light stimulating the generation of •OH from the Fenton
reaction. The decolorization of melanoidin wastewater using the sono–photo–Fenton pro-
cess had an efficiency of more than 90% during the 60 min of the experiment. The kinetic
study showed that the correlation coefficient values for the BMG model were mostly higher
than those for the first-order and second-order models. The decolorization rates of the four
processes were in the order photo–Fenton > sono–photo–Fenton > sono–Fenton > Fenton
with decolorization rates of 0.1126, 0.0914, 0.0415, and 0.0374 min−1, respectively. Notably,
this research may not only be applied to wastewater treatment in the ethanol production
industry but can also be extended to other wastewater treatment applications such as the
treatment of palm oil mill effluent, which has similar wastewater characteristics, being
dark brown and possessing a high concentration of organic matter [39]. The photo–Fenton
processes can also be applied in the decolorization of wheat straw black liquor, which is
not easily biodegradable [40].
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