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Abstract: All possible configurations of a chaotic map without fixed points, called “nfp1”, in its
implementation in fixed-point arithmetic are analyzed. As the multiplication on the computer does
not follow the associative property, we analyze the number of forms in which the multiplications
can be performed in this chaotic map. As chaos enhanced the small perturbations produced in the
multiplications, it is possible to built different pseudorandom number generators using the same
chaotic map.
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1. Introduction

The multiplication inside a computer does not follow the associative property, that
is, for the three different numbers a, b, and c, a(bc) 6= (ab)c 6= (ac)b. This fact is produced
because of using fixed-point arithmetic; the multiplication of two numbers, i. f , with i bits in
the integer part and f bits in the factional part, produces a number (2i + 1).2 f . This resulted
number must be returned to the same used representation, then the result is shifted f bits to
the right. Moreover, to avoid the increasing size of the bits in the integer part, the number
of bits in this part is chosen large enough to keep all the results of the multiplications within
i bits. Fixed-point arithmetic is mostly used in the hardware implementation of chaotic
circuits because of its simplicity [1–3].

The dynamics of a chaotic system are highly sensitive to small changes in its initial
conditions. In this work, a map without fixed points to generate pseudorandom numbers
by changing the order in the multiplications is studied, which also produces small changes
that are increased by the chaos. In [4], the authors study the sensitivity of a chaotic system
more as a problem. In this work, the sensitivity of a chaotic map is taken as an advantage
to generate more maps by changing the order in the multiplications of the map terms.

Random numbers are very important in simulations [5], video games, in Monte Carlo
methods, in cryptography [6], and in evolutionary algorithms [7] as the genetic algorithms,
because these kind of algorithms can be considered a guided (intelligent) random search.

In the next Section 2, the chaotic map used and the generation of random sequences
are described. In Section 3, the process to generate new sequences by changing the order of
the multiplication is described. In this section, it is also shown that generated sequences
are uncorrelated and random. Finally, in Section 4, the conclusion of this work is given.

2. Chaotic Map

The map nfp1 in [8] is used in this work. This map is defined as

x(i + 1) = a
[
y2(i)− 1

]
x(i) + c,

y(i + 1) = x(i) + y(i),
(1)
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with parameters values a = 1.78 and c = 0.001. These parameters values are the suggested
in [8].

The domain of attraction for Equation (1) is shown in Figure 1. The gray zone in
Figure 1 represents where the initial values take the shown values on the x and y axes, and
the maps converge to the behavior shown as the black points. The white zone in Figure 1
represents where, with the shown initial values, the map’s dynamic behavior is destroyed.
Thus, from this figure, it is possible to choose the initial values for x(0) and y(0) within
the interval [−0.5, 0.5]. Moreover, from Figure 1, it possible to see that the range of values
for x(i + 1) is the interval [−2, 2] and [−1, 1] for y(i + 1), then 2 bits in the integer part are
necessary for the calculations. For the fractional part, we decided to use 61 bits, plus the
sign bit, then numbers of 64 bits are used. Then, the initial values can be expressed as the
interval [−0.5 + u,−0.5 + v], where u, v ∈ [0, 1), and 1 = 261 with the used representation.
Thus, the possible values for the initial values are (261)2 = 2122. These values can also be
seen as the different possible values for the seed of the pseudorandom number generator
(PRNG). A PRNG gives the same output sequence if the same seed is used. A PRNG is a
deterministic process that generates a sequence of binary numbers that looks random.
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Figure 1. The domain of attraction of the map in Equation (1). This domain was obtained in floating
point arithmetic. Moreover, 40,000 points obtained with initial conditions (x(0), y(0)) = (−0.5, 0.4)
are shown.

An output binary sequence of 16 bits can be generated by concatenating two itera-
tions of

b[i + 1] = x[i + 1] mod 256, (2)

that is, the last 8 bits of the value of x variable are consider random. The value of the y
variable cannot be used because it can be obtained easily from the previous values. In
Equation (2) brackets are used due the sequences now being discrete binary values. This
same technique was applied in [9] using a 2D map.

3. Analysis of the Map

The Equation (1), for the calculation of the x(i + 1) term can be expressed as

x(i + 1) = ay2(i)x(i)− ax(i) + c, (3)
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point arithmetic. Moreover, 40,000 points obtained with initial conditions (x(0), y(0)) = (−0.5, 0.4)
are shown.

An output binary sequence of 16 bits can be generated by concatenating two itera-
tions of

b[i + 1] = x[i + 1] mod 256, (2)

that is, the last 8 bits of the value of x variable are consider random. The value of the y
variable cannot be used because it can be obtained easily from the previous values. In
Equation (2) brackets are used due the sequences now being discrete binary values. This
same technique was applied in [9] using a 2D map.

3. Analysis of the Map

The Equation (1), for the calculation of the x(i + 1) term can be expressed as

x(i + 1) = ay2(i)x(i)− ax(i) + c, (3)

where the first term in the right part can be also expressed as the calculation of three
terms: (ay)(y)(x) or as (a)(y2)(x). Each one of these two triplets of terms can be multiplied
in three forms as (t1t2)t3, t1(t2t3), or (t1t3)t2; therefore, with the map in Equation (1),
3× 3 = 9 different forms of multiplying the terms to obtain x(i + 1) in Equation (3) are
possible. This can be seen as, if three more bits are added to the possible initial values, then
now (23 + 1)× 2122 = 2125 + 2122 different initial values could be possible.
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As a test of this idea, eight sequences are generated, four sequences with the values
shown in Table 1, and another four sequences with the codes 10, 10, 11, and 12 named
as sequences s5, s6, s7, and s8. The first number in the code selects between the terms
(ay)(y)(x) or (a)(y2)(x). The second number in the code selects among the three possible
forms of multiplying the three previous terms: 0 for (t1t2)t3, 1 for t1(t2t3), and 2 for (t1t3)t2.

Table 1. Initial values and codes for the first four generated sequences.

Seq. Name x(0) y(0) Code

s1 −0.5 −0.5 00
s2 −0.5 −0.5 + 2−61 00
s3 −0.5 −0.5 01
s4 −0.5 −0.5 02

The correlations between the pair of sequences (s1, s2), (s1, s3), and (s1, s4) are show in
the graph of Figure 2a; the correlations between the sequences (s5, s6), (s5, s7), and (s5, s8)
are show in the graph of Figure 2b. The correlation is calculated with the overlapped
pairs of five samples of the sequences. The values of the each of the four nibbles ranging
from the most significant to the least significant at the output of the PRNG are used as the
samples values.
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Figure 2. In (a) is shown the three correlations between the sequences (s1, s2), (s1, s3), and (s1, s4),
and in (b), between sequences (s5, s6), (s5, s7), and (s5, s8).

From Figure 2, it is possible to see that sequences are uncorrelated if the initial values
are change in a single bit (as sequences s2 and s6 are generated) or by changing the order of
the multiplication around the nibble 10, or 40 bits, except for the correlation of sequences
(s5, s8). This last case, in which the sequence s8 is calculated with the code 12, is when
the term (a)(y2)(x) is calculated as (ax)y2. If the value of the constant a in Equation (1) is
changed from 1.78 to 1.7777777, or as 0x38e38e38e38e38e3 in hexadecimal, the correlations
change, as shown in Figure 3.
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Figure 3. In (a) is shown the three correlations between the sequences (s1, s2), (s1, s3), and (s1, s4),
and in (b), between sequences (s5, s6), (s5, s7), and (s5, s8); by now, the value of a in Equation (1) is
changed to 1.7777777.

From Figure 3, the first 40 bits of each sequence must be discharged to consider them
as uncorrelated sequences when the order in the multiplications in the map is changed.

To demonstrate that the generated sequences are random, three tests of TestU01 suite,
Rabbit, Alphabit, and BlockAlphabit are applied on 100 sequences of 106 bits. These tests
were designed for bits stored in a file (or a physical device). Rabbit and Alphabit apply 40
and 17 different statistical tests, respectively. BlockAlphabit applies the Alphabit battery
of tests repeatedly to a binary file after reordering the bits by blocks of different sizes
(with sizes of 2, 4, 8, 16, and 32 bits) [10]. Applying the TestU01 to the eight generated
sequences from s1 to s8 gives the results shown in Table 2. All the sequences passed the
tests, except the sequence s7. This sequence is generated as the multiplication of the terms
a(y2x). It looks as though multiplication by the constant a does not give enough variability
to generate a random sequence by obtaining the last 8 bits of each iteration on the map
calculation.

Table 2. Results of applying the TestU01 to the generated sequences.

Test Name Seqs. s1, s2, s3, s4, s5, s6, s8 Seqs. s7

1 Rabbit All 40 tests passed 17/40
2 Alphabit All 17 tests passed 1/17
3 Block Alphabit All 6 repetitions of Alphabit tests passed 8/102

As a configuration does not give random sequences, the number of possible initial
values is 23 × 2122 = 2125.

Discussing the number of bits used in the number representation, the number of bits in
the integer part is clear: they are necessary to perform the calculations of Equation (1). The
number of bits for the fractional part is not so clear: they must be necessary to maintain the
map behavior shown in Figure 1 and to keep a random behavior in the eight less significant
bits. The used representation of 64 bits is more precise than real numbers (doubles in C
programming language) that have around 52 bits of precision. Lesser bits in the fractional
part could keep the map behavior but, at the same time, stop the random behavior of the
less significant bits.
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4. Conclusions

A map without a fixed point was used to generate random numbers by changing the
association in the multiplication of a term with three variables. Fixed-point arithmetic
was used with numbers with 2 bits for the integer part and 61 bits for the fractional part.
The value of a constant used by the map was changed slightly (from 1.78 to 1.7777777) to
generate uncorrelated sequences. One of the configuration multiplies the constant values
by the other terms; this configuration does not generate random sequences. With the used
numbers, 2122 values can be used as the seed for the random number generator. With the
different association in the multiplication, three bits can be added to the seed values, given
a total of 2125 possible values for the seed. An efficient design in hardware can be proposed
in a future work, as well as the search for more applications for the studied configuration.
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